The Predictive Value of Low Muscle Mass as Measured on CT Scans for Postoperative Complications and Mortality in Gastric Cancer Patients: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Study Outcomes
2.3. Assessment of Methodological Quality
2.4. Statistical Analysis
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. CT-Based Assessment of Muscle Mass
3.4. Risk of Bias
3.5. Postoperative Complications
3.6. Mortality
3.7. Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Thrumurthy, S.G.; Chaudry, M.A.; Hochhauser, D.; Mughal, M. The diagnosis and management of gastric cancer. BMJ 2013, 347, f6367. [Google Scholar] [CrossRef] [Green Version]
- Van Cutsem, E.; Sagaert, X.; Topal, B.; Haustermans, K.; Prenen, H. Gastric Cancer. Lancet 2016, 388, 2654–2664. [Google Scholar] [CrossRef]
- Gertsen, E.C.; Brenkman, H.J.; Seesing, M.F.; Groense, L.; Ruurda, J.P.; Van Hillegersberg, R. Introduction of minimally invasive surgery for distal and total gastrectomy: A population-based study. Eur. J. Surg. Oncol. 2018, 45, 403–409. [Google Scholar] [CrossRef]
- Li, F.; Zhang, R.; Liang, H.; Liu, H.; Quan, J. The pattern and risk factors of recurrence of proximal gastric cancer after curative resection. J. Surg. Oncol. 2013, 107, 130–135. [Google Scholar] [CrossRef]
- Li, C.; Oh, S.J.; Kim, S.; Hyung, W.J.; Yan, M.; Zhu, Z.G.; Noh, S.H. Risk factors of survival and surgical treatment for advanced gastric cancer with large tumor size. J. Gastrointest. Surg. 2009, 13, 881–885. [Google Scholar] [CrossRef] [PubMed]
- Shiraishi, N.; Sato, K.; Yasuda, K.; Inomata, M.; Kitabo, S. Multivariate prognostic study on large gastric cancer. J. Surg. Oncol. 2007, 96, 14–18. [Google Scholar] [CrossRef] [PubMed]
- An, J.Y.; Kim, K.M.; Kim, J.M.; Cheong, J.H.; Hyung, W.J.; Noh, S.H. Surgical complications in gastric cancer patients preoperatively treated with chemotherapy: Their risk factors and clinical relevance. Ann. Surg. Oncol. 2012, 19, 2452–2458. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.N.; Chen, X.Z.; Zhang, W.H.; Yang, K.; Chen, X.L.; Zhang, B.; Chen, Z.X.; Chen, J.P.; Zhou, Z.G.; Hu, J.K.; et al. The Impact of Body Mass Index on the Surgical Outcomes of Patients with Gastric Cancer. Med. Baltim. 2015, 94, e1769. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Sayer, A.A. Sarcopenia. Lancet 2019, 393, 2636–2646. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2018, 48, 16–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tegels, J.J.; Van Vught, J.L.; Reisinger, K.W.; Hulsewé, K.W.; Hoofwijk, A.G.; Derikx, J.P.; Stoot, J.H. Sarcopenia is highly prevalent in patients undergoing surgery for gastric cancer but not associated with worse outcomes. J. Surg. Oncol. 2015, 112, 403–407. [Google Scholar] [CrossRef] [PubMed]
- Mirkin, K.A.; Luke, F.E.; Gangi, A.; Pimiento, J.M.; Jeong, D.; Hollenbeak, C.S.; Wong, J. Sarcopenia related to neoadjuvant chemotherapy and perioperative outcomes in resected gastric cancer: A multi-institutional analysis. J. Gastrointest. Oncol. 2017, 8, 589–595. [Google Scholar] [CrossRef] [Green Version]
- Martin, L.; Birdsell, L.; Macdonald, N.; Reiman, T.; Clandinin, M.T.; McCargar, L.J.; Murphy, R.; Ghosh, S.; Sawyer, M.B.; Baracos, V.E.; et al. Cancer cachexia in the age of obesity: Skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J. Clin. Oncol. 2013, 31, 1539–1547. [Google Scholar] [CrossRef] [PubMed]
- Prado, C.M.; Lieffers, J.R.; McCargar, L.J.; Reiman, T.; Sawyer, M.B.; Martin, L.; Baracos, V.E. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: A population-based study. Lancet. Oncol. 2008, 9, 629–635. [Google Scholar] [CrossRef]
- Borggreve, A.; Den Boer, R.; Ruurda, J.; Van Hillegersberg, R. The influence of sarcopenia as measured on CT scans on short- and long-term outcomes in gastric cancer patients: A systematic review (and meta-analysis). PROSPERO 2018, CRD42018091573. Available online: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42018091573 (accessed on 8 January 2020).
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gotzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Deveraux, P.J.; Kleijnen, J.; Moher, D.; et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [Green Version]
- Clavien, P.A.; Barkun, J.; De Oliveira, M.L.; Vauthey, J.N.; Dindo, D.; Schulick, R.D.; De Santibanes, E.; Pekolj, J.; Slankamenac, K.; Bassi, S.; et al. The Clavien-Dindo Classification of Surgical Complications. Ann. Surg. 2009, 250, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Hayden, J.; Van der Windt, D.; Cartwright, J.; Cote, P.; Bombardier, C. Assessing Bias in Studies of Prognostic Factors. Ann. Intern. Med. 2013, 4, 280–286. [Google Scholar] [CrossRef]
- Tierney, J.F.; Stewart, L.A.; Ghersi, D.; Burdett, S.; Sydes, M.R. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 2007, 8, 16. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions; John Wiley & Sons: Chichester, UK, 2008; pp. 277–280. [Google Scholar]
- IntHout, J.; Ioannidis, J.P.A.; Rovers, M.M.; Goeman, J.J. Plea for routinely presenting prediction intervals in meta-analysis. BMJ Open 2016, 6, e010247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, D.D.; Zhou, C.J.; Wang, S.L.; Mao, S.T.; Zhou, X.Y.; Lou, N.; Zhang, Z.; Yu, Z.; Shen, X.; Zhuang, C.L.; et al. Impact of different sarcopenia stages on the postoperative outcomes after radical gastrectomy for gastric cancer. Surgery 2015, 161, 680–693. [Google Scholar] [CrossRef] [PubMed]
- Kudou, K.; Saeki, H.; Nakashima, Y.; Edahiro, K.; Korehisa, S.; Taniguchi, D.; Tsutsumi, R.; Nishimura, S.; Nakaji, Y.; Akiyama, S.; et al. Prognostic Significance of Sarcopenia in Patients with Esophagogastric Junction Cancer or Upper Gastric Cancer. Ann. Surg. Oncol. 2017, 24, 1804–1810. [Google Scholar] [CrossRef] [PubMed]
- Kuwada, K.; Kuroda, S.; Kikuchi, S.; Yoshida, R.; Nishizaki, M.; Kagawa, S.; Fujiwara, T. Sarcopenia and Comorbidity in Gastric Cancer Surgery as a Useful Combined Factor to Predict Eventual Death from Other Causes. Ann. Surg. Oncol. 2018, 25, 1160–1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, J.; Zheng, Z.E.; Li, P.; Xie, J.W.; Wang, J.B.; Lin, J.X.; Chen, Q.Y.; Cao, L.L.; Lin, M.; Tu, R.H.; et al. A Novel Preoperative Skeletal Muscle Measure as a Predictor of Postoperative Complications, Long-Term Survival and Tumor Recurrence for Patients with Gastric Cancer After Radical Gastrectomy. Ann. Surg. Oncol. 2018, 25, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Nishigori, T.; Tsunoda, S.; Okabe, H.; Tanaka, E.; Hisamori, S.; Hosogi, H.; Shinohara, H.; Sakai, Y. Impact of Sarcopenic Obesity on Surgical Site Infection after Laparoscopic Total Gastrectomy. Ann. Surg. Oncol. 2016, 23, 524–531. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, S.; Twomey, M.; Moloney, F.; Kavanagh, R.G.; Carey, B.W.; Power, D.; Maher, M.M.; O’Connor, O.J.; Ó’Súilleabháin, C. Sarcopenia and Post-Operative Morbidity and Mortality in Patients with Gastric Cancer. J. Gastric Cancer 2018, 18, 242–252. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.P.; Wang, X.L.; Tian, H.; Gao, T.T.; Tang, L.M.; Tian, F.; Wang, J.W.; Zheng, H.J.; Zhang, L.; et al. Computed tomography-quantified body composition predicts short-term outcomes after gastrectomy in gastric cancer. Curr. Oncol. 2018, 25, e411–e422. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhuang, C.; Huang, D.; Pang, W.; Lou, N.; Chen, F.F.; Zhou, C.J.; Shen, X.; Yu, Z. Sarcopenia Adversely Impacts Postoperative Clinical Outcomes Following Gastrectomy in Patients with Gastric Cancer: A Prospective Study. Ann. Surg. Oncol. 2016, 23, 556–564. [Google Scholar] [CrossRef]
- Zhuang, C.L.; Huang, D.D.; Pang, W.Y.; Zhou, C.J.; Wang, S.L.; Lou, N.; Ma, L.L.; Yu, Z.; Shen, X. Sarcopenia is an Independent Predictor of Severe Postoperative Complications and Long-Term Survival After Radical Gastrectomy for Gastric Cancer: Analysis from a Large-Scale Cohort. Med. Baltim. 2016, 95, e3164. [Google Scholar] [CrossRef]
- Sierzega, M.; Chrzan, R.; Wiktorowicz, M.; Kolodziejczyk, P.; Richter, P. Prognostic and predictive implications of sarcopenia in Western patients undergoing gastric resections for carcinoma of the stomach. J. Surg. Oncol. 2019, 120, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Nishigori, T.; Tsunoda, S.; Obama, K.; Hisamori, S.; Hashimoto, K.; Itatani, Y.; Okada, K.; Sakai, Y. Optimal Cutoff Values of Skeletal Muscle Index to Define Sarcopenia for Prediction of Survival in Patients with Advanced Gastric Cancer. Ann. Surg. Oncol. 2018, 25, 3596–3603. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, K.; Kubo, N.; Tamura, T.; Toyokawa, T.; Amano, R.; Tanaka, H.; Muguruma, K.; Yashiro, M.; Maeda, K.; Hirakawa, K.; et al. Adverse Effects of Low Preoperative Skeletal Muscle Mass in Patients Undergoing Gastrectomy for Gastric Cancer. Ann. Surg. Oncol. 2017, 24, 2712–2719. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.F.; Lu, J.; Zheng, C.H.; Li, P.; Xie, J.W.; Wang, J.B.; Lin, J.X.; Chen, Q.Y.; Lin, M.; Huang, C.M.; et al. A Novel Prognostic Scoring System Based on Preoperative Sarcopenia Predicts the Long-Term Outcome for Patients After R0 Resection for Gastric Cancer: Experiences of a High-Volume Center. Ann. Surg. Oncol. 2017, 24, 1795–1803. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [Green Version]
- Levolger, S.; Van Vugt, J.L.; De Bruin, R.W.; IJzermans, J.N. Systematic review of sarcopenia in patients operated on for gastrointestinal and hepatopancreatobiliary malignancies. Br. J. Surg. 2015, 102, 1448–1458. [Google Scholar] [CrossRef]
- Boshier, P.R.; Heneghan, R.; Markar, S.R.; Baracos, V.E.; Low, D.E. Assessment of body composition and sarcopenia in patients with esophageal cancer: A systematic review and meta-analysis. Dis. Esophagus 2018, 31, 1–11. [Google Scholar] [CrossRef]
- Lee, S.Y.; Gallagher, D. Assessment methods in human body composition. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 566–572. [Google Scholar] [CrossRef] [Green Version]
- Colloca, G.; Di Capua, B.; Bellieni, A.; Cesari, M.; Marzetti, E.; Valentini, V.; Calvani, R. Muscoloskeletal aging, sarcopenia and cancer. J. Geriatr. Oncol. 2018, 10, 504–509. [Google Scholar] [CrossRef]
- Amini, B.; Boyle, S.P.; Boutin, R.D.; Lenchik, L. Approaches to Assessment of Muscle Mass and Myosteatosis on Computed Tomography: A Systematic Review. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 1671–1678. [Google Scholar] [CrossRef]
- Prado, C.M.; Purcell, S.A.; Alish, C.; Pereira, S.L.; Deutz, N.E.; Heyland, D.K.; Goodpaster, B.H.; Tappenden, K.A.; Heymsfield, S.B. Implications of low muscle mass across the continuum of care: A narrative review. Ann. Med. 2018, 50, 675–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmela, C.; Velho, S.; Agostinho, L.; Branco, F.; Santos, M.; Santos, M.P.; Oliveira, M.H.; Strecht, J.; Maio, R.; Cravo, M.; et al. Body composition as a prognostic factor of neoadjuvant chemotherapy toxicity and outcome in patients with locally advanced gastric cancer. J. Gastric Cancer 2017, 17, 74–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Author, Year, Continent | Study Design | No. of Included Patients | Mean Age (Years) | Sex (% Male) | Tumor Stage | Type of Gastrectomy (Total Versus Partial and Surgical Approach) | Mean Follow-up Time (Months) | Time of Muscle Mass Assessment | Level of Assessment of Muscle Mass | Definition of Muscle Mass on CT in HU | Definition of Low Muscle Mass (cm2/m2) | Normalization | No. of Patients with Low Muscle Mass (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tegels, 2015, Europe | RCS | 152 | 70 | 59% | 0—3% Ia—8% Ib—16% II—15% IIIa—15% IIIb—11% IV—32% Not reported—1% | Total: 43 Subtotal: 104 Gastroenterostomy: 17 Laparotomy: 16 Approach: NR | 6 | Preoperative | L3 (caudal level) | −30 to +110 | BMI < 25.0 kg/m2: Male < 43, Female < 41 BMI ≥ 25.0 kg/m2: Male < 53, Female < 41 | SMA/height squared | 86 (58%) |
Huang, 2016, Asia | PCS | 470 | 65 | 77% | I—35% II—22% III—43% | Total: 164 Subtotal: 306 Laparoscopic: 198 Open: 742 | 1 | Preoperative | L3 (caudal level) | −29 to +150 | Male < 40.8, Female < 34.9 | SMA/height squared | 49 (10%) |
Nishigori, 2016, Asia | RCS | 157 | 66 | 66% | I—59% II—17% III—17% IV—1% | Total laparoscopic: 157 | NR | Preoperative | L3 | −29 to +150 | Male < 52.4, Female < 38.5 | SMA/height squared | 97 (62%) |
Wang, 2016, Asia | PCS | 255 | 65 | 84% | I—32% II—19% III—49% | Total: 85 Subtotal: 170 Open: 209 Laparoscopic: 46 | 1 | Preoperative | L3 (caudal level) | −29 to +150 | Male < 36.0, Female < 29.0 | SMA/height squared | 23 (9%) |
Zhuang, 2016, Asia | RCS | 937 | 64 | 78% | I—29% II—23% III—48% | Total: 337 Subtotal: 600 Approach: NR | 62 | Preoperative | L3 (caudal level) | −29 to +150 | Male < 40.8, Female < 34.9 | SMA/height squared | 389 (42%) |
Kudou, 2017, Asia | RCS | 148 | 65 | 72% | NR | Total: 143 Proximal: 5 Thoracotomy or thoracoscopy: 9 | 60 | Preoperative | L3 | NR | BMI < 25.0 kg/m2: Male < 43, Female < 41; BMI ≥ 25.0 kg/m2: Male < 53, Female < 41 | SMA/height squared | 42 (28%) |
Sakurai, 2017, Asia | RCS | 569 | 67 | 70% | I—46% II—21% III—22% IV—58% | Total: 203 Partial: 366 Open: 378 Laparoscopy: 191 | 32 | Preoperative | L3 | −29 to +150 | Male < 43.2, Female < 34.6 | SMA/height squared | 142 (25%) |
Mirkin, 2017, North America | RCS | 36 | 64 | 35% | NR | Total: 26 Subtotal: 10 Robot: 36 | 18 | Preoperative: Before and after neoadjuvant therapy | L3 (caudal level) | NR | Male < 5.45, Female < 3.85 | Psoas muscle area/height squared | 12 (33%) |
Zheng, 2017, Asia | PCS | 924 | 61 | 76% | T4—57.1% N+—47.6% | Radical gastrectomy: 924 Approach: NR | 36 | Preoperative | L3 (vertebral spines visible) | −29 to +150 | Male < 32.5, Female < 28.6 | SMA/height squared | 103 (11%) |
Kuwada, 2018, Asia | RCS | 491 | 68 | 71% | ≥III—22% | Total: 26 Distal:192 Partial: 38 Other: 44 Approach: NR | NR | Preoperative | L3 | −30 to +150 | Male < 69.7, Female < 54.2 | SMA/BSA | 123 (25%) |
Lu, 2018, Asia | RCS | 221 | 62 | 77% | I—31% II—24% III—44% | Total: 111 Subtotal: 110 Open: 37 Laparoscopy: 184 | 64 | Preoperative | L3 (vertebral spines visible) | −30 to +110 | Male < 5127, Female < 3443 | Psoas muscle area/height squared | NR |
Nishigori, 2018, Asia | RCS | 177 | <65: 33% | 72% | II—56% III—44% | Total: 69 Distal: 106 Proximal: 2 Open: 59 Laparoscopy: 116 Robot: 2 | 58 | Preoperative | L3 | −29 to +150 | Male < 36.0–53.0, Female < 29.0–41.0 | SMA/height squared | 76 (43%) |
O’Brien, 2018, Europe | RCS | 56 | 69 | 73% | 0—13% Ia—20% Ib—13% IIa—11% IIIa—1% IIIb—16% IIIc—11% | Total: 34 Distal: 12 Proximal: 10 Approach: NR | 40 | Preoperative | L3 | −30 to +150 | Male < 52.4, Female < 38.5 | SMA/height squared | 20 (36%) |
Zhang, 2018, Asia | PCS | 156 | 59 | 74% | I—31% II—17% III—52% | Total: 45 Subtotal: 111 Open: 156 | NR | Preoperative | L3 (transverse process visible) | −29 to +150 | Male < 40.8, Female < 34.9 | SMA/height squared | 24 (15%) |
Sierzega, 2019, Europe | PCS | 138 | 63 | 58% | I—14% II—22% III—46% IV—18% | Total: 77 Subtotal distal: 61 Laparotomy: 138 | 30 | Preoperative | L3 | −29 to +150 | Male < 52.4, Female < 38.5 | SMA/height squared | 60 (43%) |
Author and Year | Included Covariables in Analyses | |||
---|---|---|---|---|
Postoperative Complications | Severe Postoperative Complications | Overall Mortality | Disease-Specific Mortality | |
Wang, 2016 | Diabetes | |||
Zhuang, 2016 | Diabetes | Age, sex, TNM stage, type of resection, severe complications, neoadjuvant therapy | Histology, TNM stage, type of resection, operative time, adjuvant therapy, age, sex, BMI, hypoproteinemia, anemia, tumor size, tumor location, lymphovascular invasion, combined resection | |
Kudou, 2017 | Age, tumor location, T stage, N stage, blood loss | |||
Sakurai, 2017 | Age, histology, T stage, N stage, type of gastrectomy, intra-abdominal infection | Histology, T stage, N stage, type of gastrectomy | ||
Zheng, 2017 | Age, BMI, T stage, N stage, albumin, ASA score, adjuvant chemotherapy | BMI, T stage, N stage, sarcopenia, albumin, ASA score, adjuvant therapy | ||
Kuwada, 2018 | Age, comorbidity, histology, T score, N score, operation procedure, operation time, blood loss, postoperative complications | |||
Lu, 2018 | Total psoas gauge, Hounsfield unit average calculation, tumor stage | |||
Nishigori, 2018 | Sex, age, serum albumin, creatinine clearance, BMI, Charlson comorbidity index, and clinical stage | Sex, age, serum albumin, creatinine clearance, BMI, Charlson comorbidity index, and clinical stage | ||
O’Brien, 2018 | Sex | Body mass index, tumor stage | ||
Zhang, 2018 | Retinol-binding protein, myosteatosis | |||
Sierzega, 2019 | Age, BMI, NRS2002, respiratory comorbidity, diabetes, ASA score, type of gastrectomy, lymph node dissection, combined organ dissection, curative resection, perioperative chemotherapy | ASA score, TNM stage, curative resection, type of gastrectomy, major complications |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borggreve, A.S.; den Boer, R.B.; van Boxel, G.I.; de Jong, P.A.; Veldhuis, W.B.; Steenhagen, E.; van Hillegersberg, R.; Ruurda, J.P. The Predictive Value of Low Muscle Mass as Measured on CT Scans for Postoperative Complications and Mortality in Gastric Cancer Patients: A Systematic Review and Meta-Analysis. J. Clin. Med. 2020, 9, 199. https://doi.org/10.3390/jcm9010199
Borggreve AS, den Boer RB, van Boxel GI, de Jong PA, Veldhuis WB, Steenhagen E, van Hillegersberg R, Ruurda JP. The Predictive Value of Low Muscle Mass as Measured on CT Scans for Postoperative Complications and Mortality in Gastric Cancer Patients: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine. 2020; 9(1):199. https://doi.org/10.3390/jcm9010199
Chicago/Turabian StyleBorggreve, Alicia S., Robin B. den Boer, Gijs I. van Boxel, Pim A. de Jong, Wouter B. Veldhuis, Elles Steenhagen, Richard van Hillegersberg, and Jelle P. Ruurda. 2020. "The Predictive Value of Low Muscle Mass as Measured on CT Scans for Postoperative Complications and Mortality in Gastric Cancer Patients: A Systematic Review and Meta-Analysis" Journal of Clinical Medicine 9, no. 1: 199. https://doi.org/10.3390/jcm9010199
APA StyleBorggreve, A. S., den Boer, R. B., van Boxel, G. I., de Jong, P. A., Veldhuis, W. B., Steenhagen, E., van Hillegersberg, R., & Ruurda, J. P. (2020). The Predictive Value of Low Muscle Mass as Measured on CT Scans for Postoperative Complications and Mortality in Gastric Cancer Patients: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine, 9(1), 199. https://doi.org/10.3390/jcm9010199