Alternative Applications of Trans-Oral Robotic Surgery (TORS): A Systematic Review
Abstract
:1. Introduction
2. Materials and Method
3. Results
4. Discussion
4.1. Oropharynx
4.2. Parapharyngeal and Retropharyngeal Spaces
4.3. Hypopharynx
4.4. Larynx
4.5. Thyroid
4.6. Sublingual and Submandibular Glands
4.7. Sella Turcica
4.8. Reconstructive Surgery
4.9. Current Challenges
- In order to evaluate the benefits and the effectiveness of trans-oral robotic surgery for the presented indications, prospective comparative studies are strongly needed.
- Currently, the high costs associated with robotic surgery represent the main limitation of its application. However, the progressive worldwide spread of this technology might reduce its high costs, resulting in its wider implementation.
- Proper training with simulator and hands-on cadaveric courses might help young surgeons to be introduced to this new surgical technique. Collecting cases in tertiary centres would probably lead to an improvement of therapeutic outcomes.
- Finally, technological innovation in robotic surgery (e.g., single-port systems) is constantly working toward reducing the complexity of the procedures and facilitating surgical handling.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Ethical Approval
References
- Kwong, F.N.; Puvanendran, M.; Paleri, V. Transoral robotic surgery in head neck cancer management. B-ENT 2015, 11, 7–13. [Google Scholar]
- McLeod, I.K.; Melder, P.C. Da Vinci robot-assisted excision of a vallecular cyst- a case report. Ear Nose Throat J. 2005, 84, 170–172. [Google Scholar] [CrossRef] [PubMed]
- Lang, S.; Mattheis, S.; Hasskamp, P.; Lawson, G.; Güldner, C.; Mandapathil, M.; Schuler, P.; Hoffmann, T.; Scheithauer, M.; Remacle, M. A european multicenter study evaluating the flex robotic system in transoral robotic surgery. Laryngoscope 2017, 127, 391–395. [Google Scholar] [CrossRef] [PubMed]
- Urrutia, G.; Bonfill, X. Declaración PRISMA: Una propuesta para mejorar la publicación de revisiones sistemàticas y metaanálisis. Med. Clin. 2010, 135, 507–511. [Google Scholar] [CrossRef]
- Ebell, M.H.; Siwek, J.; Weiss, B.D.; Woolf, S.H.; Susman, J.; Ewigman, B.; Bowman, M. Strength of recommendation taxonomy (SORT): A patient-centered approach to grading evidence in the medical literature. J. Am. Board Fam. Pract. 2004, 17, 59–67. [Google Scholar] [CrossRef]
- Whiting, P.F.; Rutjes, A.W.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef]
- Meccariello, G.; Cammaroto, G.; Montevecchi, F.; Hoff, P.T.; Spector, M.E.; Negm, H.; Shams, M.; Bellini, C.; Zeccardo, E.; Vicini, C. Transoral robotic surgery for the management of obstructive sleep apnea: A systematic review and meta-analysis. Eur. Arch. Oto-Rhino-Laryngol. 2017, 274, 647–653. [Google Scholar] [CrossRef]
- Byrd, J.K.; Leonardis, R.L.; Bonawitz, S.C.; Losee, J.E.; Duvvuri, U. Transoral robotic surgery for pharyngeal stenosis. Int. J. Med. Robot. Comput. Assist. Surg. 2014, 10, 418–422. [Google Scholar] [CrossRef]
- Pellini, R.; Mercante, G.; Ruscito, P.; Cristalli, G.; Spriano, G. Ectopic lingual goiter treated by transoral roboticSurgery. Acta Otorhinolaryngol. Ital. 2013, 33, 343–346. [Google Scholar]
- Fong, S.; Hodge, J.C.; Foreman, A.; Krishnan, S. Transoral robotic excision of a lingual thyroglossal duct cyst. J. Robot. Surg. 2018, 12, 357–360. [Google Scholar] [CrossRef]
- Rassekh, C.H.; Kazahaya, K.; Livolsi, V.A.; Loevner, L.A.; Cowan, A.T.; Weinstein, G.S. Transoral robotic surgery–assisted excision of a congenital cervical salivary duct fistula presenting as a branchial cleft fistula. Head Neck 2016, 38, E49–E53. [Google Scholar] [CrossRef]
- Dziegielewski, P.T.; Durmus, K.; Ozer, E. Transoral robotic surgery for the excision of base of tongue vascular lesions. Head Neck 2015, 37, 1211–1212. [Google Scholar] [CrossRef] [PubMed]
- Strohl, M.P.; Dewyer, N.A.; Sckolnick, J.; Ryan, W.R. A Novel Approach to Oropharyngeal Foreign Body Removal. Otolaryngol. Head Neck Surg. 2018, 158, 194–196. [Google Scholar] [CrossRef] [PubMed]
- Montevecchi, F.; Bellini, C.; Meccariello, G.; Hoff, P.T.; Dinelli, E.; Dallan, I.; Corso, R.M.; Vicini, C. Transoral robotic-assisted tongue base resection in pediatric obstructive sleep apnea syndrome: Case presentation, clinical and technical consideration. Eur. Arch. Oto-Rhino-Laryngol. 2017, 274, 1161–1166. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.Y.K.; Tsang, R.K.; Eisele, D.W.; Richmon, J.D. Transoral robotic surgery of the parapharyngeal space: A case series and systematic review. Head Neck 2015, 37, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Montevecchi, F.; Caranti, A.; Cammaroto, G.; Meccariello, G.; Vicini, C. Transoral Robotic Surgery (TORS) for Bilateral Eagle Syndrome. ORL 2019, 81, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Bearelly, S.; Prendes, B.L.; Wang, S.J.; Glastonbury, C.; Orloff, L.A. Transoral robotic-assisted surgical excision of a retropharyngeal parathyroid adenoma: A case report. Head Neck 2015, 37, E150–E152. [Google Scholar] [CrossRef]
- Molteni, G.; Greco, M.G.; Presutti, L. Transoral robotic-assisted surgery for the approach to anterior cervical spine lesions. Eur. Arch. Oto-Rhino-Laryngol. 2017, 274, 4011–4016. [Google Scholar] [CrossRef]
- Smith, M.M.; Young, W.G.; Carlin, A.M.; Ghanem, T.A. Trans-oral robotic surgical excision of an ectopic parathyroid Adenoma. J. Robot. Surg. 2016, 10, 73–75. [Google Scholar] [CrossRef]
- Duek, I.; Bishara, T.; Gil, Z.; Cohen, J.T. Transoral Robotic Approach for Resection of a Giant Hypopharyngeal Fibroma. IMAJ 2017, 19, 121–122. [Google Scholar]
- Cadena, E.; Romero-Rojas, A.; Guerra, R.; Pérez-Mitchell, C. Transoral robotic surgery for oncocytic ductal cyst of hypopharynx: A lesion with a high probability of recurrence. J. Robot. Surg. 2018, 12, 731–735. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Koh, M.J.; Koh, Y.W.; Choi, E.C. Transoral Robotic Surgery for Huge Spindle Cell Lipoma of the Hypopharynx. J. Craniofac. Surg. 2013, 24, 1278–1279. [Google Scholar] [CrossRef] [PubMed]
- Karasen, R.M.; Acar, B. An Unusual Epiglottis Synechiae Managed with Transoral Robotic Surgery in a Patient with Pemphigus Vulgaris. J. Craniofac. Surg. 2013, 24, 1864–1865. [Google Scholar] [CrossRef] [PubMed]
- Zdanski, C.J.; Austin, G.K.; Walsh, J.M.; Drake, A.F.; Rose, A.S.; Hackman, T.G.; Zanation, A.M. Transoral Robotic Surgery for Upper Airway Pathology in the Pediatric Population. Laryngoscope 2017, 127, 247–251. [Google Scholar] [CrossRef]
- Sheng, B.T.W.; Wong, P.; Hoon, C.T.E. Transoral robotic excision of laryngeal papillomas with Flex® Robotic System—A novel surgical approach. Am. J. Otolaryngol. 2018, 39, 355–358. [Google Scholar] [CrossRef]
- Remacle, M.; Prasad, V.M. Preliminary experience in transoral laryngeal surgery with a flexible robotic system for benign lesions of the vocal folds. Eur. Arch. Oto-Rhino-Laryngol. 2018, 275, 761–765. [Google Scholar] [CrossRef]
- Villeneuve, A.; Vergez, S.; Bakhos, D.; Lescanne, E.; Pinlong, E.; Moriniere, S. Management of laryngoceles by transoral robotic surgery. Eur. Arch. Oto-Rhino-Laryngol. 2016, 273, 3813–3817. [Google Scholar] [CrossRef]
- Millas, T.; Granell, J.; Garrido, L.; Mendez–Benegassi, I.; Gutierrez–Fonseca, R. Transoral robotic approach for laryngeal schwannoma. Head Neck 2015, 37, E70–E73. [Google Scholar] [CrossRef]
- Arnold, M.A.; Mortelliti, A.J.; Marzouk, M.F. Transoral Resection of Extensive Pediatric Supraglottic Neurofibroma. Laryngoscope 2018, 128, 2525–2528. [Google Scholar] [CrossRef]
- Ferrel, J.K.; Roy, S.; Karni, R.J.; Yuksel, S. Applications for Transoral Robotic Surgery in the Pediatric Airway. Laryngoscope 2014, 124, 2630–2635. [Google Scholar] [CrossRef]
- Kim, H.Y.; Chai, Y.J.; Dionigi, G.; Anuwong, A.; Richmon, J.D. Transoral robotic thyroidectomy: Lessons learned from an initial consecutive series of 24 patients. Surg. Endosc. 2018, 32, 688–694. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.O.; Clark, J.; Noureldine, S.I.; Anuwong, A.; al Khadem, M.G.; Kim, H.Y.; Dhillon, V.K.; Dionigi, G.; Tufano, R.P.; Richmon, J.D. Transoral thyroidectomy and parathyroidectomy—A North American series of robotic and endoscopic transoral approaches to the central neck. Oral Oncol. 2017, 71, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Tae, K.; Ji, Y.B.; Song, C.M.; Park, J.S.; Park, J.H.; Kim, D.S. Safety and efficacy of transoral robotic and endoscopic thyroidectomy: The first 100 cases. Head Neck 2019. [Google Scholar] [CrossRef] [PubMed]
- Walvekar, R.R.; Peters, G.; Hardy, E.; Alsfeld, L.; Stromeyer, F.W.; Anderson, D.; DiLeo, M. Robotic-assisted transoral removal of a bilateral floor of mouth ranulas. World J. Surg. Oncol. 2011, 9, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razavi, C.; Pascheles, C.; Samara, G.; Marzouk, M. Robot-Assisted Sialolithotomy With Sialendoscopy for the Management of Large Submandibular Gland Stones. Laryngoscope 2016, 126, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Walvekar, R.R.; Tyler, P.D.; Tammareddi, N.; Peters, G. Robotic-Assisted Transoral Removal of a Submandibular Megalith. Laryngoscope 2011, 121, 534–537. [Google Scholar] [CrossRef]
- Capaccio, P.; Montevecchi, F.; Meccariello, G.; D’Agostino, G.; Cammaroto, G.; Pelucchi, S.; Vicini, C. Transoral robotic surgery for hilo-parenchymal submandibular stones: Step-by-step description and reasoned approach. Int. J. Oral Maxillofac. Surg. 2019, 48, 1520–1524. [Google Scholar] [CrossRef]
- Prosser, J.D.; Bush, C.M.; Solares, C.A.; Brown, J.J. Trans-oral robotic submandibular gland removal. J. Robot. Surg. 2013, 7, 87–90. [Google Scholar] [CrossRef]
- Jho, H.D.; Carrau, R.L. Endoscopic endonasal transsphenoidal surgery: Experience with 50 patients. J. Neurosurg. 1997, 87, 44–51. [Google Scholar] [CrossRef]
- Chauvet, D.; Hans, S.; Missistrano, A.; Rebours, C.; el Bakkouri, W.; Lot, G. Transoral robotic surgery for sellar tumors: First clinical study. J. Neurosurg. 2017, 127, 941–948. [Google Scholar] [CrossRef]
- Bonawitz, S.C.; Duvvuri, U. Robotic-Assisted FAMM Flap for Soft Palate Reconstruction. Laryngoscope 2013, 123, 870–874. [Google Scholar] [CrossRef] [PubMed]
- Gorphea, P.; Temama, S.; Kolbb, F.; Qassemyarb, Q. Cervical-transoral robotic oropharyngectomy and thin anterolateral thigh free flap. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2018, 135, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.S.; Chen, I.C.; Liu, S.A.; Lu, C.T.; Yen, J.H.; Song, D.Y. Robot-assisted Free Flap Reconstruction of Oropharyngeal. Cancer—A Preliminary Report. Ann. Plast. Surg. 2015, 74, S105–S108. [Google Scholar] [CrossRef] [PubMed]
- Hatten, K.M.; Brody, R.M.; Weinstein, G.S.; Newman, J.G.; Bur, A.M.; Chalian, A.A.; O’Malley, B.W., Jr.; Rassekh, C.H.; Cannady, S.B. Defining the Role of Free Flaps for Transoral Robotic Surgery. Ann. Plast. Surg. 2018, 80, 45–49. [Google Scholar] [CrossRef]
- Nadjmi, N. Transoral Robotic Cleft Palate Surgery. Cleft Palate Craniofac. J. 2016, 53, 326–331. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.Y. A shifting paradigm for patients with head and neck cancer: Transoral robotic surgery (TORS). Head Neck 2010, 24, 1030–1032. [Google Scholar]
- Iranmanesh, P.; Morel, P.; Wagner, O.J.; Inan, I.; Pugin, F.; Hagen, M.E. Set-up and docking of the da Vinci surgical system: Prospective analysis of initial experience. Int. J. Med. Robot. Comput. Assist. Surg. 2010, 6, 57–60. [Google Scholar]
Number of Papers | Anatomical District | Surgical Procedures | Number of Patients |
---|---|---|---|
1 | Oral cavity | Lesion removal | 1 |
37 | Oropharynx | Base of tongue reduction; Foreign body removal; Lingual thyroid resection and cyst excision | 289 |
3 | Retropharyngeal space | Mass resection | 3 |
2 | Cervical spine | Mass resection | 3 |
16 | Parapharyngeal space | Mass resection; Styloid process resection | 106 |
7 | Hypopharynx | Mass excision; | 23 |
11 | Larynx | Laryngocele excision; Mass excision | 33 |
5 | Thyroid space | Thyroidectomy (partial or total); Parathyroidectomy | 138 |
6 | Submandibular and sublingual glands | Sialolithotomy; Lesion removal | 6 |
1 | Sella Turcica | Mass removal | 4 |
11 | Reconstructive Surgery | Reconstruction post-oropharyngectomy; Palatal cleft repair Palatoplasty; Laryngeal cleft repair | 75 |
Tot. 100 | - | - | Tot. 5835 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cammaroto, G.; Stringa, L.M.; Zhang, H.; Capaccio, P.; Galletti, F.; Galletti, B.; Meccariello, G.; Iannella, G.; Pelucchi, S.; Baghat, A.; et al. Alternative Applications of Trans-Oral Robotic Surgery (TORS): A Systematic Review. J. Clin. Med. 2020, 9, 201. https://doi.org/10.3390/jcm9010201
Cammaroto G, Stringa LM, Zhang H, Capaccio P, Galletti F, Galletti B, Meccariello G, Iannella G, Pelucchi S, Baghat A, et al. Alternative Applications of Trans-Oral Robotic Surgery (TORS): A Systematic Review. Journal of Clinical Medicine. 2020; 9(1):201. https://doi.org/10.3390/jcm9010201
Chicago/Turabian StyleCammaroto, Giovanni, Luigi Marco Stringa, Henry Zhang, Pasquale Capaccio, Francesco Galletti, Bruno Galletti, Giuseppe Meccariello, Giannicola Iannella, Stefano Pelucchi, Ahmed Baghat, and et al. 2020. "Alternative Applications of Trans-Oral Robotic Surgery (TORS): A Systematic Review" Journal of Clinical Medicine 9, no. 1: 201. https://doi.org/10.3390/jcm9010201
APA StyleCammaroto, G., Stringa, L. M., Zhang, H., Capaccio, P., Galletti, F., Galletti, B., Meccariello, G., Iannella, G., Pelucchi, S., Baghat, A., & Vicini, C. (2020). Alternative Applications of Trans-Oral Robotic Surgery (TORS): A Systematic Review. Journal of Clinical Medicine, 9(1), 201. https://doi.org/10.3390/jcm9010201