Effect of Le Fort I Maxillary Advancement and Clockwise Rotation on the Anteromedial Cheek Soft Tissue Change in Patients with Skeletal Class III Pattern and Midface Deficiency: A 3D Imaging-Based Prediction Study
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Orthognathic Surgery Treatment
2.3. Three-Dimensional Image Acquisition and Processing
2.4. Three-Dimensional Anatomical Landmarks, Planes, and Measurement Parameters
2.5. Three-Dimensional Facial Region of Interest and Calculations
2.6. Measuring the Cheek Mass Position
2.7. Reliability
2.8. Statistical Analysis
3. Results
3.1. Accuracy and Reliability
3.2. Soft Tissue and Bone Movements
3.3. Ratio of 3D Soft Tissue to Bone Sagittal Movement
3.4. Effect of the Maxillary Advancement and Rotational Movements
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pessa, J.E.; Desvigne, L.D.; Lambros, V.S.; Nimerick, J.; Sugunan, B.; Zadoo, V.P. Changes in ocular globe-to-orbital rim position with age: Implications for aesthetic blepharoplasty of the lower eyelids. Aesthetic Plast. Surg. 1999, 23, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Linkov, G.; Mally, P.; Czyz, C.N.; Wulc, A.E. Quantification of the aesthetically desirable female midface position. Aesthet. Surg. J. 2018, 38, 231–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surek, C.C.; Beut, J.; Stephens, R.; Jelks, G.; Lamb, J. Pertinent anatomy and analysis for midface volumizing procedures. Plast. Reconstr. Surg. 2015, 135, 818e–829e. [Google Scholar] [CrossRef] [PubMed]
- Yaremchuk, M.J. Infraorbital rim augmentation. Plast. Reconstr. Surg. 2001, 107, 1585–1592. [Google Scholar] [CrossRef] [PubMed]
- Frey, S.T. New diagnostic tenet of the esthetic midface for clinical assessment of anterior malar projection. Angle Orthod. 2013, 83, 790–794. [Google Scholar] [CrossRef]
- Ho, C.T.; Denadai, R.; Lai, H.C.; Lo, L.J.; Lin, H.H. Computer-aided planning in orthognathic surgery: A comparative study with the establishment of burstone analysis-derived 3D norms. J. Clin. Med. 2019, 8, 2106. [Google Scholar] [CrossRef] [Green Version]
- Mulliken, J.B.; Goodwin, S.L.; Pracharktam, N.; Altobelli, D.E. The concept of the sagittal orbital-globe relationship in craniofacial surgery. Plast. Reconstr. Surg. 1996, 97, 700–706. [Google Scholar] [CrossRef]
- Park, H.; Chun, K.W.; Kye, M.S.; Dhong, E.S.; Yoon, E.S. Midface augmentation using bony segments obtained from sagittal splitting angle ostectomy in Asians. Plast. Reconstr. Surg. 2008, 121, 578–586. [Google Scholar] [CrossRef]
- Fattahi, T.; Salman, S.; Steinberg, B. Augmentation of the infraorbital rim in orthognathic surgery. Int. J. Oral. Maxillofac. Surg. 2017, 46, 1315–1318. [Google Scholar] [CrossRef]
- Nkenke, E.; Vairaktaris, E.; Kramer, M.; Schlegel, A.; Holst, A.; Hirschfelder, U.; Wiltfang, J.; Neukam, F.W.; Stamminger, M. Three-dimensional analysis of changes of the malar-midfacial region after LeFort I osteotomy and maxillary advancement. Oral. Maxillofac. Surg. 2008, 12, 5–12. [Google Scholar] [CrossRef]
- Whitaker, L.A. Aesthetic augmentation of the malar-midface structures. Plast. Reconstr. Surg. 1987, 80, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Keller, E.E.; Sather, A.H. Quadrangular Le Fort I osteotomy: Surgical technique and review of 54 patients. J. Oral. Maxillofac. Surg. 1990, 48, 2–11. [Google Scholar] [CrossRef]
- Yuan, L.; Shen, G.; Wu, Y.; Jiang, L.; Yang, Z.; Liu, J.; Mao, L.; Fang, B. Three-dimensional analysis of soft tissue changes in fullface view after surgical correction of skeletal class III malocclusion. J. Craniofac. Surg. 2013, 24, 725–730. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.I.; Park, S.B.; Son, W.S.; Hwang, D.S. Midfacial soft-tissue changes after advancement of maxilla with Le Fort I osteotomy and mandibular setback surgery: Comparison of conventional and high Le Fort I osteotomies by superimposition of cone-beam computed tomography volumes. J. Oral. Maxillofac. Surg. 2011, 69, e225–e233. [Google Scholar] [CrossRef]
- Jung, Y.J.; Kim, M.J.; Baek, S.H. Hard and soft tissue changes after correction of mandibular prognathism and facial asymmetry by mandibular setback surgery: Three-dimensional analysis using computerized tomography. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2009, 107, 763–771. [Google Scholar] [CrossRef]
- Park, S.B.; Kim, Y.I.; Hwang, D.S.; Lee, J.Y. Midfacial soft-tissue changes after mandibular setback surgery with or without paranasal augmentation: Cone-beam computed tomography (CBCT) volume superimposition. J. Craniomaxillofac. Surg. 2013, 41, 119–123. [Google Scholar] [CrossRef]
- Kim, M.; Lee, D.Y.; Lim, Y.K.; Baek, S.H. Three-dimensional evaluation of soft tissue changes after mandibular setback surgery in class III malocclusion patients according to extent of mandibular setback, vertical skeletal pattern, and genioplasty. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2010, 109, e20–e32. [Google Scholar] [CrossRef]
- Sonego, C.L.; Bobrowski, Â.N.; Chagas, O.L., Jr.; Torriani, M.A. Aesthetic and functional implications following rotation of the maxillomandibular complex in orthognathic surgery: A systematic review. Int. J. Oral. Maxillofac. Surg. 2014, 43, 40–45. [Google Scholar] [CrossRef]
- Choi, J.W.; Lee, J.Y.; Oh, T.S.; Kwon, S.M.; Yang, S.J.; Koh, K.S. Frontal soft tissue analysis using a 3 dimensional camera following two-jaw rotational orthognathic surgery in skeletal class III patients. J. Craniomaxillofac. Surg. 2014, 42, 220–226. [Google Scholar] [CrossRef]
- Seo, S.W.; Jung, Y.S.; Baik, H.S. Three-dimensional analysis of midfacial soft tissue changes after maxillary posterior impaction and intraoral vertical ramus osteotomy for mandibular setback in class III Patients. J. Craniofac. Surg. 2017, 28, 1789–1796. [Google Scholar] [CrossRef]
- Baik, H.S.; Kim, S.Y. Facial soft-tissue changes in skeletal class III orthognathic surgery patients analyzed with 3-dimensional laser scanning. Am. J. Orthod. Dentofac. Orthop. 2010, 138, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.J.; Ruellas, A.C.O.; Yatabe, M.S.; Westgate, P.M.; Cevidanes, L.H.S.; Huja, S.S. Soft tissue changes measured with three-dimensional software provides new insights for surgical predictions. J. Oral. Maxillofac. Surg. 2017, 75, 2191–2201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, B.; Lee, H.C.; Kim, S.H.; Kim, Y.; Son, W.; Kim, S.S. Hard- and soft-tissue profiles of the midface region in patients with skeletal class III malocclusion using cone-beam computed tomography multiplanar-reconstructed image analysis. Korean J. Orthod. 2018, 48, 143–152. [Google Scholar] [CrossRef]
- Willinger, K.; Cede, J.; Guevara-Rojas, G.; Sinko, K.; Figl, M.; Schicho, K.; Nemec, S.; Klug, C. Midfacial advancement line—A comparative evaluation of a new measurement method in orthognathic surgery. J. Oral. Maxillofac. Surg. 2019. [Google Scholar] [CrossRef] [PubMed]
- Wagner, F.; Figl, M.; Cede, J.; Schicho, K.; Sinko, K.; Klug, C. Soft tissue changes in patients undergoing intraoral quadrangular Le Fort II osteotomy versus conventional Le Fort I osteotomy. J. Oral. Maxillofac. Surg. 2018, 76, 416–425. [Google Scholar] [CrossRef]
- Lo, L.J.; Weng, J.L.; Ho, C.T.; Lin, H.H. Three-dimensional region-based study on the relationship between soft and hard tissue changes after orthognathic surgery in patients with prognathism. PLoS ONE 2018, 13, e0200589. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.Y.; Lin, H.H.; Lo, L.J.; Ho, C.T. Postoperative outcomes of two- and three-dimensional planning in orthognathic surgery: A comparative study. J. Plast. Reconstr. Aesthet. Surg. 2017, 70, 1101–1111. [Google Scholar] [CrossRef]
- Lin, H.H.; Chuang, Y.F.; Weng, J.L.; Lo, L.J. Comparative validity and reproducibility study of various landmark-oriented reference planes in 3-dimensional computed tomographic analysis for patients receiving orthognathic surgery. PLoS ONE 2015, 10, e0117604. [Google Scholar] [CrossRef]
- Ho, C.T.; Lin, H.H.; Liou, E.J.; Lo, L.J. Three-dimensional surgical simulation improves the planning for correction of facial prognathism and asymmetry: A qualitative and quantitative study. Sci. Rep. 2017, 7, 40423. [Google Scholar] [CrossRef]
- Ho, C.T.; Lin, H.H.; Lo, L.J. Intraoral scanning and setting up the digital final occlusion in three-dimensional planning of orthognathic surgery: Its comparison with the dental model approach. Plast. Reconstr. Surg. 2019, 143, 1027e–1036e. [Google Scholar] [CrossRef]
- Seo, H.J.; Denadai, R.; Pai, B.C.J.; Lo, L.J. Modern surgery-first approach concept in cleft-orthognathic surgery: A comparative cohort study with 3D quantitative analysis of surgical-occlusion setup. J. Clin. Med. 2019, 8, 2116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denadai, R.; Chou, P.Y.; Su, Y.Y.; Lo, C.C.; Lin, H.H.; Ho, C.T.; Lo, L.J. Facial appearance and psychosocial features in orthognathic surgery: A FACE-Q- and 3D facial image-based comparative study of patient-, clinician-, and lay-observer-reported outcomes. J. Clin. Med. 2019, 8, 909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, T.Y.; Denadai, R.; Lin, H.H.; Ho, C.T.; Lo, L.J. The outcome of skeletofacial reconstruction with mandibular rotation for management of asymmetric skeletal class III deformity: A three-dimensional computer-assisted investigation. Sci. Rep. 2019, 9, 13337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, H.J.; Denadai, R.; Pai, B.C.J.; Lo, L.J. Digital occlusion setup is quantitatively comparable to the conventional dental model approach: Characteristics and guidelines for orthognathic surgery in patients with unilateral cleft lip and palate. Ann. Plast. Surg. 2019. [Google Scholar] [CrossRef]
- Lin, H.H.; Kim, S.G.; Kim, H.Y.; Niu, L.S.; Lo, L.J. Higher dose of dexamethasone does not further reduce facial swelling after orthognathic surgery: A randomized controlled trial using 3-Dimensional photogrammetry. Ann. Plast. Surg. 2017, 78, S61–S69. [Google Scholar] [CrossRef]
- Kau, C.H.; Cronin, A.; Durning, P.; Zhurov, A.I.; Sandham, A.; Richmond, S. A new method for the 3D measurement of postoperative swelling following orthognathic surgery. Orthod. Craniofac. Res. 2006, 9, 31–37. [Google Scholar] [CrossRef]
- Altman, D.G. Practical Statistics for Medical Research, 1st ed.; Chapman & Hall/CRC: Boca Raton, FL, USA, 1990. [Google Scholar]
- Hinkle, D.E.; Wiersma, W.; Jurs, S.G. Applied Statistics for the Behavioral Sciences, 5th ed.; Houghton Mifflin: Boston, MS, USA, 2003. [Google Scholar]
- Beebee, H.; Hitchcock, C.; Menzies, P. The Oxford Handbook of Causation; Oxford University Press: Oxford, MS, USA, 2009. [Google Scholar]
- Su, Y.Y.; Denadai, R.; Ho, C.T.; Lai, B.R.; Lo, L.J. Measuring patient-reported outcomes in orthognathic surgery: Linguistic and psychometric validation of the Mandarin Chinese version of FACE-Q. Biomed. J. 2019. [Google Scholar] [CrossRef]
- Denadai, R.; Chou, P.Y.; Su, Y.Y.; Lin, H.H.; Ho, C.T.; Lo, L.J. The impacts of orthognathic surgery on the facial appearance and age perception of patients presenting skeletal class III deformity: An outcome study using the FACE-Q report and surgical professional-based panel assessment. Plast. Reconstr. Surg. 2019. (accepted). [Google Scholar]
- Lee, T.Y.; Kim, K.H.; Yu, H.S.; Kim, K.D.; Jung, Y.S.; Baik, H.S. Correlation analysis of three-dimensional changes of hard and soft tissues in class III orthognathic surgery patients using cone-beam computed tomography. J. Craniofac. Surg. 2014, 25, 1530–1540. [Google Scholar] [CrossRef]
- Moss, J.P.; McCance, A.M.; Fright, W.R.; Linney, A.D.; James, D.R. A three-dimensional soft tissue analysis of fifteen patients with class, II; Division 1 malocclusions after bimaxillary surgery. Am. J. Orthod. Dentofac. Orthop. 1994, 105, 430–437. [Google Scholar] [CrossRef]
- Soncul, M.; Bamber, M.A. Evaluation of facial soft tissue changes with optical surface scan after surgical correction of class III deformities. J. Oral. Maxillofac. Surg. 2004, 62, 1331–1340. [Google Scholar] [CrossRef] [PubMed]
Parameters | Pre-Orthognathic Surgery | Post-Orthognathic Surgery | p-Value | ||
---|---|---|---|---|---|
Mean | SD | Mean | SD | ||
SNA (°) | 83.776 | 4.149 | 86.887 | 4.224 | <0.001 |
SNB (°) | 87.787 | 4.379 | 84.231 | 4.006 | <0.001 |
ANB (°) | −4.412 | 3.048 | 2.953 | 2.435 | <0.001 |
A-N vertical (mm) | −2.052 | 2.351 | 0.978 | 1.694 | <0.001 |
Occlusal plane (°) | 8.348 | 4.507 | 11.102 | 5.236 | <0.001 |
Mandibular plane-FH plane angle (°) | 28.151 | 5.460 | 26.793 | 4.158 | 0.049 |
Angle convexity (°) | −9.466 | 5.118 | 2.641 | 3.401 | <0.001 |
Facial convexity (°) | −3.222 | 6.717 | 8.429 | 4.803 | <0.001 |
Sn-G’ vertical (mm) | 4.363 | 1.101 | 6.031 | 1.254 | <0.001 |
Nasolabial angle (°) | 95.607 | 13.146 | 109.111 | 10.697 | <0.001 |
Parameters | Abbreviations | Definitions |
---|---|---|
Soft tissue landmarks | ||
Exocanthion | ExL, ExR | The most lateral points at the outer commissure of the eye fissure |
Cornea | CL, CR | The most anterior point of the cornea |
Alare | AlL, AlR | The most lateral point on each alar contour |
Subnasale | Sn | The midpoint of the angle at the columella base where the lower border of the nasal septum and the surface of the upper lip meet |
Check mass | CkL, CkR | The most anterior point on the mid-pupillary plane (MPP) under infraorbital area and ahead of cornea perpendicular plane (CPP) |
Bone landmarks | ||
Orbitale | OrL, OrR | The most inferior point of the infra-orbital rim |
Porion | PoL, PoR | The most superior point of the external acoustic meatus |
Nasion | N | The junction between the nasal and frontonasal sutures |
Sella turcica | S | The center point of the sella turcica |
Basion | Ba | The most anterior point of the foramen magnum |
Dental landmarks | ||
U1 incisal tip | U1 | The midpoint between the crowns of the maxillary central incisors tip |
U6 cusp | U6L, U6R | The most inferior point of the mesial cusp of the crown of the first upper molar in the profile plane |
Reference planes | ||
Frankfort horizontal plane | FH | The plane passes the bilateral porion points and the midpoint between the bilateral inferior orbital points |
Midsagittal plane | MSP | The plane perpendicular to the FH plane and passing through the sella turcica (S) and the nasion (N) points |
Coronal plane | CO | The plane perpendicular to the FH and MSP planes and passing through the sella turcica (S) point |
Occlusal plane | OP | The plane passes the midpoint between upper incisor tips and the midpoint between upper molar buccal cusps |
Mid-pupillary plane | MPP | The plane perpendicular to the FH and CO planes and passing through the cornea (C) point |
Cornea perpendicular plane | CPP | The plane perpendicular to the FH and MSP planes and passing through the cornea (C) point |
Lateral cheek plane | LCP | The plane perpendicular to the FH plane and passing through the exocanthion (Ex) point |
Medial cheek plane | MCP | The plane perpendicular to the FH plane and passing through the alare (Al) point |
Inferior cheek plane | ICP | The plane parallel to the FH plane and passing through the subnasale (Sn) point |
Angle measurement | ||
Maxillary rotational angle | - | The angle formed between the FH and OP planes |
Parameters | Right Side | Left Side | Total |
---|---|---|---|
(m ± SD) | (m ± SD) | (m ± SD) | |
Cheek soft tissue sagittal movement (mm) | 2.180 ± 0.695 | 2.173 ± 0.691 | 2.176 ± 0.689 |
Maxillary bone sagittal movement (mm) | 2.971 ± 0.826 | 2.969 ± 0.828 | 2.970 ± 0.823 |
Maxillary bone rotation (°) | 3.341 ± 2.346 | 3.341 ± 2.346 | 3.341 ± 2.346 |
Regions | Soft Tissue/Bone Ratio (m ± SD) |
---|---|
Right side | 0.733 ± 0.128 |
Left side | 0.731 ± 0.125 |
Total | 0.732 ± 0.126 |
Regions of Interest | Predictive Regression Models | Coefficient of Determination (R2) * | Partial R-squared (X1, X2) | Maxillary Advancement (p-Value) | Maxillary Rotation (p-Value) |
---|---|---|---|---|---|
Right cheek region | Y = 0.625X1 + 0.073X2 | 0.789 | 0.423, 0.046 | <0.001 | 0.003 |
Left cheek region | Y = 0.629X1 + 0.067X2 | 0.788 | 0.436, 0.040 | <0.001 | 0.006 |
Total cheek region | Y = 0.627X1 + 0.070X2 | 0.788 | 0.432, 0.043 | <0.001 | <0.001 |
Level of the Maxillary Advancement (n = 96, 100%) | Check Mass Position (mm) | |||
---|---|---|---|---|
Post-Orthognathic Surgery | Healthy Taiwanese Chinese Norm | Difference * | p-Value | |
1–2 mm (n = 14, 14.6%) | 1.307 ± 0.621 | 2.145 ± 1.201 | −0.837 ± 0.621 | 0.018 |
2–3 mm (n = 34, 35.4%) | 1.491 ± 0.607 | 2.145 ± 1.201 | −0.654 ± 0.607 | 0.004 |
3–4 mm (n = 34, 35.4%) | 1.906 ± 0.531 | 2.145 ± 1.201 | −0.238 ± 0.531 | 0.191 |
>4 mm (n = 14, 14.6%) | 2.375 ± 0.723 | 2.145 ± 1.201 | 0.230 ± 0.723 | 0.498 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, H.-C.; Denadai, R.; Ho, C.-T.; Lin, H.-H.; Lo, L.-J. Effect of Le Fort I Maxillary Advancement and Clockwise Rotation on the Anteromedial Cheek Soft Tissue Change in Patients with Skeletal Class III Pattern and Midface Deficiency: A 3D Imaging-Based Prediction Study. J. Clin. Med. 2020, 9, 262. https://doi.org/10.3390/jcm9010262
Lai H-C, Denadai R, Ho C-T, Lin H-H, Lo L-J. Effect of Le Fort I Maxillary Advancement and Clockwise Rotation on the Anteromedial Cheek Soft Tissue Change in Patients with Skeletal Class III Pattern and Midface Deficiency: A 3D Imaging-Based Prediction Study. Journal of Clinical Medicine. 2020; 9(1):262. https://doi.org/10.3390/jcm9010262
Chicago/Turabian StyleLai, Hsin-Chih, Rafael Denadai, Cheng-Ting Ho, Hsiu-Hsia Lin, and Lun-Jou Lo. 2020. "Effect of Le Fort I Maxillary Advancement and Clockwise Rotation on the Anteromedial Cheek Soft Tissue Change in Patients with Skeletal Class III Pattern and Midface Deficiency: A 3D Imaging-Based Prediction Study" Journal of Clinical Medicine 9, no. 1: 262. https://doi.org/10.3390/jcm9010262
APA StyleLai, H. -C., Denadai, R., Ho, C. -T., Lin, H. -H., & Lo, L. -J. (2020). Effect of Le Fort I Maxillary Advancement and Clockwise Rotation on the Anteromedial Cheek Soft Tissue Change in Patients with Skeletal Class III Pattern and Midface Deficiency: A 3D Imaging-Based Prediction Study. Journal of Clinical Medicine, 9(1), 262. https://doi.org/10.3390/jcm9010262