Invasive Evaluation of the Microvasculature in Acute Myocardial Infarction: Coronary Flow Reserve versus the Index of Microcirculatory Resistance
Abstract
:1. Introduction
2. Methods
3. The Coronary Microvasculature
3.1. Anatomic and Physiologic Principles
3.2. Pathological Conditions
3.2.1. Coronary Microvascular Disease (CMD)
3.2.2. Microvascular Obstruction (MVO)
3.2.3. Ischemia/Reperfusion Injury and “No-Reflow”
3.2.4. The “Vulnerable” Plaque
3.3. Diagnosis of MVO at the Time of Coronary Angiography
3.3.1. Thrombolysis in Myocardial Infarction (TIMI) Flow Grading
3.3.2. TIMI Frame Count (CTFC)
3.3.3. Myocardial Blush Grading or TIMI Myocardial Perfusion (TMP) Grading
4. Invasive Physiologic Assessment of the Microcirculation in the Catheterization Lab
4.1. Coronary Flow Reserve (CFR)
Limitations of CFR
4.2. Fractional Flow Reserve (FFR)
FFR vs. CRF: Advantages and Significance of Discordance
4.3. The Index of Microcirculatory Resistance and Instantaneous Wave-Free Ratio (iFR)
Instantaneous Wave-Free Ratio (iFR)
5. Invasive Physiologic Assessment of the Coronary Circulation in STEMI: What is the Evidence?
5.1. Invasive Assessment of the Coronary Microcirculation in Reperfused STEMI: Predicting Microvascular Dysfunction and Prognosis
5.1.1. Flow-Derived Index: CFR
5.1.2. Pressure-Derived Index: IMR
5.2. Utility of Invasive Assessment Tools in Mitigating Microvascular Obstruction
5.3. The Future Implications of Invasive Microcirculatory Assessment in Myocardial Infarction
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation 2019, 139, e56–e528. [Google Scholar] [CrossRef] [PubMed]
- Keeley, E.C.; Boura, J.A.; Grines, C.L. Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: A quantitative review of 23 randomised trials. Lancet 2003, 361, 13–20. [Google Scholar] [CrossRef]
- O’Gara, P.T.; Kushner, F.G.; Ascheim, D.D.; Casey, D.E.; Chung, M.K.; De Lemos, J.A.; Ettinger, S.M.; Fang, G.C.; Fesmire, F.M.; Granger, C.B.; et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 2013, 127, e362–e425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roe, M.T.; Ohman, E.; Maas, A.C.; Christenson, R.H.; Mahaffey, K.W.; Granger, C.B.; Harrington, R.A.; Califf, R.M.; Krucoff, M.W. Shifting the open-artery hypothesis downstream: The quest for optimal reperfusion. J. Am. Coll. Cardiol. 2001, 37, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Wu, K.C.; Zerhouni, E.A.; Judd, R.M.; Lugo-Olivieri, C.H.; Barouch, L.A.; Schulman, S.P.; Blumenthal, R.S.; Lima, J.A.C. Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation 1998, 97, 765–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bech, G.; De Bruyne, B.; Pijls, N. Fractional flow reserve to determine the appropriateness of angioplasty in moderate coronary stenosis: A randomized trial. Circulation 2001, 103, 2928–2934. [Google Scholar] [CrossRef] [Green Version]
- Kern, M.J.; Yu, K.M. Advances in Coronary Physiology: Update for 2017. US Cardiol. Rev. 2017, 11, 80. [Google Scholar] [CrossRef]
- Cuculi, F.; Dall’Armellina, E.; Manlhiot, C.; De Caterina, A.R.; Colyer, S.; Ferreira, V.; Morovat, A.; Prendergast, B.D.; Forfar, J.C.; Choudhury, R.P. Early change in invasive measures of microvascular function can predict myocardial recovery following PCI for ST-elevation myocardial infarction. Eur. Heart J. 2014, 35, 1971–1980. [Google Scholar] [CrossRef] [Green Version]
- Chilian, W.M. Coronary microcirculation in health and disease. Summary of an NHLBI workshop. Circulation 1997, 95, 522–528. [Google Scholar] [CrossRef] [Green Version]
- Camici, P.G.; Crea, F. Coronary microvascular dysfunction. N. Engl. J. Med. 2007, 356, 830–840. [Google Scholar] [CrossRef] [Green Version]
- Taqueti, V.R.; Di Carli, M.F. Coronary Microvascular Disease Pathogenic Mechanisms and Therapeutic Options: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2018, 72, 2625–2641. [Google Scholar] [CrossRef] [PubMed]
- Egashira, K.; Inou, T.; Hirooka, Y.; Yamada, A.; Maruoka, Y.; Kai, H.; Sugimachi, M.; Suzuki, S.; Takeshita, A. Impaired coronary blood flow response to acetylcholine in patients with coronary risk factors and proximal atherosclerotic lesions. J. Clin. Investig. 1993, 91, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Ong, P.; Camici, P.G.; Beltrame, J.F.; Crea, F.; Shimokawa, H.; Sechtem, U.; Kaski, J.C.; Merz, C.N.B. International standardization of diagnostic criteria for microvascular angina. Int. J. Cardiol. 2018, 250, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Bekkers, S.C.; Yazdani, S.K.; Virmani, R.; Waltenberger, J. Microvascular obstruction: Underlying pathophysiology and clinical diagnosis. J. Am. Coll. Cardiol. 2010, 55, 1649–1660. [Google Scholar] [CrossRef] [Green Version]
- Rios-Navarro, C.; Marcos-Garces, V.; Bayes-Genis, A.; Husser, O.; Nuñez, J.; Bodi, V. Microvascular Obstruction in ST-Segment Elevation Myocardial Infarction: Looking Back to Move Forward. Focus on CMR. J. Clin. Med. 2019, 8, 1805. [Google Scholar] [CrossRef] [Green Version]
- Jennings, R.B. Historical perspective on the pathology of myocardial ischemia/reperfusion injury. Circ. Res. 2013, 113, 428–438. [Google Scholar] [CrossRef]
- Jennings, R.B.; Crout, J.R.; Smetters, G.W. Studies on distribution and localization to potassium in early myocardial ischemic injury. AMA Arch. Pathol. 1957, 63, 586–592. [Google Scholar]
- Jennings, R.B.; Sommers, H.M.; Smyth, G.A.; Flack, H.A.; Linn, H. Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch. Pathol. 1960, 70, 68–78. [Google Scholar]
- Reimer, K.A.; Jennings, R.B. The wavefront phenomenon of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab. Investig. 1979, 40, 633–644. [Google Scholar]
- Yellon, D.M.; Hausenloy, D.J. Myocardial reperfusion injury. N. Engl. J. Med. 2007, 357, 1121–1135. [Google Scholar] [CrossRef]
- Frink, R.J.; Rooney, P.A., Jr.; Trowbridge, J.O.; Rose, J.P. Coronary thrombosis and platelet/fibrin microemboli in death associated with acute myocardial infarction. Br. Heart J. 1988, 59, 196–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henriques, J.P.; Zijlstra, F.; Ottervanger, J.P.; de Boer, M.J.; van’t Hof, A.W.; Hoorntje, J.C.; Suryapranata, H. Incidence and clinical significance of distal embolization during primary angioplasty for acute myocardial infarction. Eur. Heart J. 2002, 23, 1112–1117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva-Orrego, P.; Colombo, P.; Bigi, R.; Gregori, D.; Delgado, A.; Salvade, P.; Oreglia, J.; Orrico, P.; de Biase, A.; Piccalo, G.; et al. Thrombus aspiration before primary angioplasty improves myocardial reperfusion in acute myocardial infarction: The DEAR-MI (Dethrombosis to Enhance Acute Reperfusion in Myocardial Infarction) study. J. Am. Coll. Cardiol. 2006, 48, 1552–1559. [Google Scholar] [CrossRef] [PubMed]
- Naghavi, M.; Libby, P.; Falk, E.; Casscells, S.W.; Litovsky, S.; Rumberger, J.; Badimon, J.J.; Stefanadis, C.; Moreno, P.; Pasterkamp, G.; et al. From vulnerable plaque to vulnerable patient: A call for new definitions and risk assessment strategies: Part, I. Circulation 2003, 108, 1664–1672. [Google Scholar] [CrossRef]
- Group, T.S. The Thrombolysis in Myocardial Infarction (TIMI) trial. Phase I findings. N. Engl. J. Med. 1985, 312, 932–936. [Google Scholar]
- Brener, S.J.; Moliterno, D.J.; Aylward, P.E.; van’t Hof, A.W.; Ruzyllo, W.; O’Neill, W.W.; Hamm, C.W.; Westerhout, C.M.; Granger, C.B.; Armstrong, P.W.; et al. Reperfusion after primary angioplasty for ST-elevation myocardial infarction: Predictors of success and relationship to clinical outcomes in the APEX-AMI angiographic study. Eur. Heart J. 2008, 29, 1127–1135. [Google Scholar] [CrossRef] [Green Version]
- Morishima, I.; Sone, T.; Okumura, K.; Tsuboi, H.; Kondo, J.; Mukawa, H.; Matsui, H.; Toki, Y.; Ito, T.; Hayakawa, T. Angiographic no-reflow phenomenon as a predictor of adverse long-term outcome in patients treated with percutaneous transluminal coronary angioplasty for first acute myocardial infarction. J. Am. Coll. Cardiol. 2000, 36, 1202–1209. [Google Scholar] [CrossRef] [Green Version]
- Gibson, C.M.; Murphy, S.A.; Rizzo, M.J.; Ryan, K.A.; Marble, S.J.; McCabe, C.H.; Cannon, C.P.; Van de Werf, F.; Braunwald, E. Relationship between TIMI frame count and clinical outcomes after thrombolytic administration. Thrombolysis in Myocardial Infarction (TIMI) Study Group. Circulation 1999, 99, 1945–1950. [Google Scholar] [CrossRef]
- Gibson, C.M.; Cannon, C.P.; Murphy, S.A.; Ryan, K.A.; Mesley, R.; Marble, S.J.; McCabe, C.H.; Van De Werf, F.; Braunwald, E. Relationship of TIMI myocardial perfusion grade to mortality after administration of thrombolytic drugs. Circulation 2000, 101, 125–130. [Google Scholar] [CrossRef] [Green Version]
- Gibson, C.M.; Cannon, C.P.; Murphy, S.A.; Marble, S.J.; Barron, H.V.; Braunwald, E. Relationship of the TIMI myocardial perfusion grades, flow grades, frame count, and percutaneous coronary intervention to long-term outcomes after thrombolytic administration in acute myocardial infarction. Circulation 2002, 105, 1909–1913. [Google Scholar] [CrossRef] [Green Version]
- Gould, K.L.; Lipscomb, K.; Hamilton, G.W. Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am. J. Cardiol. 1974, 33, 87–94. [Google Scholar] [CrossRef]
- Kern, M.J. Coronary physiology revisited: Practical insights from the cardiac catheterization laboratory. Circulation 2000, 101, 1344–1351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Bruyne, B.; Pijls, N.H.; Smith, L.; Wievegg, M.; Heyndrickx, G.R. Coronary thermodilution to assess flow reserve: Experimental validation. Circulation 2001, 104, 2003–2006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaufmann, P.A.; Namdar, M.; Matthew, F.; Roffi, M.; Aschkenasy, S.V.; van der Loo, B.; Sutsch, G.; Lüscher, T.F.; Jenni, R. Novel doppler assessment of intracoronary volumetric flow reserve: Validation against PET in patients with or without flow-dependent vasodilation. J. Nucl. Med. 2005, 46, 1272–1277. [Google Scholar] [PubMed]
- Hirsch, A.; Nijveldt, R.; Haeck, J.D.; Beek, A.M.; Koch, K.T.; Henriques, J.P.; van der Schaaf, R.J.; Vis, M.M.; Baan, J., Jr.; de Winter, R.J.; et al. Relation between the assessment of microvascular injury by cardiovascular magnetic resonance and coronary Doppler flow velocity measurements in patients with acute anterior wall myocardial infarction. J. Am. Coll. Cardiol. 2008, 51, 2230–2238. [Google Scholar] [CrossRef] [Green Version]
- Pijls, N.H.; van Son, J.A.; Kirkeeide, R.L.; De Bruyne, B.; Gould, K.L. Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation 1993, 87, 1354–1367. [Google Scholar] [CrossRef] [Green Version]
- Pijls, N.H.; Van Gelder, B.; Van der Voort, P.; Peels, K.; Bracke, F.A.; Bonnier, H.J.; el Gamal, M.I. Fractional flow reserve. A useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood flow. Circulation 1995, 92, 3183–3193. [Google Scholar] [CrossRef]
- Levine, G.N.; Bates, E.R.; Blankenship, J.C.; Bailey, S.R.; Bittl, J.A.; Cercek, B.; Chambers, C.E.; Ellis, S.G.; Guyton, R.A.; Hollenberg, S.M.; et al. 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. Circulation 2011, 124, e574–e651. [Google Scholar]
- Lotfi, A.; Jeremias, A.; Fearon, W.F.; Feldman, M.D.; Mehran, R.; Messenger, J.C.; Grines, C.L.; Dean, L.S.; Kern, M.J.; Klein, L.W.; et al. Expert consensus statement on the use of fractional flow reserve, intravascular ultrasound, and optical coherence tomography: A consensus statement of the Society of Cardiovascular Angiography and Interventions. Catheter. Cardiovasc. Interv. 2014, 83, 509–518. [Google Scholar] [CrossRef]
- Agarwal, S.K.; Kasula, S.; Edupuganti, M.M.; Raina, S.; Shailesh, F.; Almomani, A.; Payne, J.J.; Pothineni, N.V.; Uretsky, B.F.; Hakeem, A. Clinical Decision-Making for the Hemodynamic “Gray Zone” (FFR 0.75-0.80) and Long-Term Outcomes. J. Invasive Cardiol. 2017, 29, 371–376. [Google Scholar] [CrossRef]
- Adjedj, J.; De Bruyne, B.; Flore, V.; Di Gioia, G.; Ferrara, A.; Pellicano, M.; Toth, G.G.; Bartunek, J.; Vanderheyden, M.; Heyndrickx, G.R.; et al. Significance of Intermediate Values of Fractional Flow Reserve in Patients with Coronary Artery Disease. Circulation 2016, 133, 502–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, J.M.; Park, D.W.; Shin, E.S.; Koo, B.K.; Nam, C.W.; Doh, J.H.; Kim, J.H.; Chae, I.H.; Yoon, J.H.; Her, S.H.; et al. Fractional Flow Reserve and Cardiac Events in Coronary Artery Disease: Data from a Prospective IRIS-FFR Registry (Interventional Cardiology Research Incooperation Society Fractional Flow Reserve). Circulation 2017, 135, 2241–2251. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.G.; Suh, J.; Hung, O.Y.; Lee, H.S.; Bouchi, Y.H.; Zeng, W.; Gandhi, R.; Eshtehardi, P.; Gogas, B.D.; Samady, H. Discordance Between Fractional Flow Reserve and Coronary Flow Reserve: Insights from Intracoronary Imaging and Physiological Assessment. JACC Cardiovasc. Interv. 2017, 10, 999–1007. [Google Scholar] [CrossRef] [PubMed]
- Fearon, W.F.; Balsam, L.B.; Farouque, H.M.; Caffarelli, A.D.; Robbins, R.C.; Fitzgerald, P.J.; Yock, P.G.; Yeung, A.C. Novel index for invasively assessing the coronary microcirculation. Circulation 2003, 107, 3129–3132. [Google Scholar] [CrossRef] [PubMed]
- de Bruyne, B.; Bartunek, J.; Sys, S.U.; Pijls, N.H.; Heyndrickx, G.R.; Wijns, W. Simultaneous coronary pressure and flow velocity measurements in humans. Feasibility, reproducibility, and hemodynamic dependence of coronary flow velocity reserve, hyperemic flow versus pressure slope index, and fractional flow reserve. Circulation 1996, 94, 1842–1849. [Google Scholar] [CrossRef]
- Martinez, G.J.; Yong, A.S.; Fearon, W.F.; Ng, M.K. The index of microcirculatory resistance in the physiologic assessment of the coronary microcirculation. Coron. Artery Dis. 2015, 26, e15–e26. [Google Scholar] [CrossRef]
- Melikian, N.; Vercauteren, S.; Fearon, W.; Cuisset, T.; MacCarthy, P.; Davidavičius, G.; Aarnoudse, W.; Bartunek, J.; Vanderheyden, M.; Wyffels, E.; et al. Quantitative assessment of coronary microvascular function in patients with and without epicardial atherosclerosis. EuroIntervention 2010, 5, 939–945. [Google Scholar] [CrossRef]
- Luo, C.; Long, M.; Hu, X.; Huang, Z.; Hu, C.; Gao, X.; Du, Z. Thermodilution-derived coronary microvascular resistance and flow reserve in patients with cardiac syndrome X. Circ. Cardiovasc. Interv. 2014, 7, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Ng, M.K.; Yeung, A.C.; Fearon, W.F. Invasive assessment of the coronary microcirculation: Superior reproducibility and less hemodynamic dependence of index of microcirculatory resistance compared with coronary flow reserve. Circulation 2006, 113, 2054–2061. [Google Scholar] [CrossRef]
- Sen, S.; Escaned, J.; Malik, I.S.; Mikhail, G.W.; Foale, R.A.; Mila, R.; Tarkin, J.; Petraco, R.; Broyd, C.; Jabbour, R.; et al. Development and validation of a new adenosine-independent index of stenosis severity from coronary wave-intensity analysis: Results of the ADVISE (ADenosine Vasodilator Independent Stenosis Evaluation) study. J. Am. Coll. Cardiol. 2012, 59, 1392–1402. [Google Scholar] [CrossRef] [Green Version]
- Neumann, F.-J.; Kósa, I.; Dickfeld, T.; Blasini, R.; Gawaz, M.; Hausleiter, J.; Schwaiger, M.; Schömig, A. Recovery of Myocardial Perfusion in Acute Myocardial Infarction After Successful Balloon Angioplasty and Stent Placement in the Infarct-Related Coronary Artery. J. Am. Coll. Cardiol. 1997, 30, 1270–1276. [Google Scholar] [CrossRef] [Green Version]
- Lepper, W.; Hoffmann, R.; Kamp, O.; Franke, A.; de Cock, C.C.; Kuhl, H.P.; Sieswerda, G.T.; Dahl, J.; Janssens, U.; Voci, P.; et al. Assessment of myocardial reperfusion by intravenous myocardial contrast echocardiography and coronary flow reserve after primary percutaneous transluminal coronary angioplasty [correction of angiography] in patients with acute myocardial infarction. Circulation 2000, 101, 2368–2374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bax, M.; de Winter, R.J.; Schotborgh, C.E.; Koch, K.T.; Meuwissen, M.; Voskuil, M.; Adams, R.; Mulder, K.J.; Tijssen, J.G.; Piek, J.J. Short-and long-term recovery of left ventricular function predicted at the time of primary percutaneous coronary intervention in anterior myocardial infarction. J. Am. Coll. Cardiol. 2004, 43, 534–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, T.; Hiasa, Y.; Ohara, Y.; Miyazaki, S.; Ogura, R.; Miyajima, H.; Yuba, K.; Suzuki, N.; Hosokawa, S.; Kishi, K.; et al. Usefulness of coronary flow reserve immediately after primary coronary angioplasty for acute myocardial infarction in predicting long-term adverse cardiac events. Am. J. Cardiol. 2007, 100, 806–811. [Google Scholar] [CrossRef]
- Wakatsuki, T.; Nakamura, M.; Tsunoda, T.; Toma, H.; Degawa, T.; Oki, T.; Yamaguchi, T. Coronary flow velocity immediately after primary coronary stenting as a predictor of ventricular wall motion recovery in acute myocardial infarction. J. Am. Coll. Cardiol. 2000, 35, 1835–1841. [Google Scholar] [CrossRef] [Green Version]
- van de Hoef, T.P.; Bax, M.; Meuwissen, M.; Damman, P.; Delewi, R.; de Winter, R.J.; Koch, K.T.; Schotborgh, C.; Henriques, J.P.; Tijssen, J.G.; et al. Impact of coronary microvascular function on long-term cardiac mortality in patients with acute ST-segment-elevation myocardial infarction. Circ. Cardiovasc. Interv. 2013, 6, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Fearon, W.F.; Shah, M.; Ng, M.; Brinton, T.; Wilson, A.; Tremmel, J.A.; Schnittger, I.; Lee, D.P.; Vagelos, R.H.; Fitzgerald, P.J.; et al. Predictive value of the index of microcirculatory resistance in patients with ST-segment elevation myocardial infarction. J. Am. Coll. Cardiol. 2008, 51, 560–565. [Google Scholar] [CrossRef] [Green Version]
- Lim, H.S.; Yoon, M.H.; Tahk, S.J.; Yang, H.M.; Choi, B.J.; Choi, S.Y.; Sheen, S.S.; Hwang, G.S.; Kang, S.J.; Shin, J.H. Usefulness of the index of microcirculatory resistance for invasively assessing myocardial viability immediately after primary angioplasty for anterior myocardial infarction. Eur. Heart J. 2009, 30, 2854–2860. [Google Scholar] [CrossRef] [Green Version]
- McGeoch, R.; Watkins, S.; Berry, C.; Steedman, T.; Davie, A.; Byrne, J.; Hillis, S.; Lindsay, M.; Robb, S.; Dargie, H.; et al. The index of microcirculatory resistance measured acutely predicts the extent and severity of myocardial infarction in patients with ST-segment elevation myocardial infarction. JACC Cardiovasc. Interv. 2010, 3, 715–722. [Google Scholar] [CrossRef] [Green Version]
- Yoo, S.H.; Yoo, T.K.; Lim, H.S.; Kim, M.Y.; Koh, J.H. Index of microcirculatory resistance as predictor for microvascular functional recovery in patients with anterior myocardial infarction. J. Korean Med. Sci. 2012, 27, 1044–1050. [Google Scholar] [CrossRef] [Green Version]
- Payne, A.R.; Berry, C.; Doolin, O.; McEntegart, M.; Petrie, M.C.; Lindsay, M.M.; Hood, S.; Carrick, D.; Tzemos, N.; Weale, P.; et al. Microvascular Resistance Predicts Myocardial Salvage and Infarct Characteristics in ST-Elevation Myocardial Infarction. J. Am. Heart Assoc. 2012, 1, e002246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fearon, W.F.; Low, A.F.; Yong, A.S.; McGeoch, R.; Berry, C.; Shah, M.G.; Ho, M.Y.; Kim, H.S.; Loh, J.P.; Oldroyd, K.G. Prognostic value of the Index of Microcirculatory Resistance measured after primary percutaneous coronary intervention. Circulation 2013, 127, 2436–2441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukunaga, M.; Fujii, K.; Kawasaki, D.; Sawada, H.; Miki, K.; Tamaru, H.; Imanaka, T.; Iwasaku, T.; Nakata, T.; Shibuya, M.; et al. Thermodilution-derived coronary blood flow pattern immediately after coronary intervention as a predictor of microcirculatory damage and midterm clinical outcomes in patients with ST-segment-elevation myocardial infarction. Circ. Cardiovasc. Interv. 2014, 7, 149–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuculi, F.; De Maria, G.L.; Meier, P.; Dall’Armellina, E.; de Caterina, A.R.; Channon, K.M.; Prendergast, B.D.; Choudhury, R.P.; Forfar, J.C.; Kharbanda, R.K.; et al. Impact of microvascular obstruction on the assessment of coronary flow reserve, index of microcirculatory resistance, and fractional flow reserve after ST-segment elevation myocardial infarction. J. Am. Coll. Cardiol. 2014, 64, 1894–1904. [Google Scholar] [CrossRef] [PubMed]
- Baek, Y.S.; Park, S.D.; Kim, S.H.; Lee, M.J.; Shin, S.H.; Kim, D.H.; Kwan, J.; Park, K.S.; Woo, S.I. Clinical and Angiographic Predictors of Microvascular Dysfunction in ST-Segment Elevation Myocardial Infarction. Yonsei Med. J. 2015, 56, 1235–1243. [Google Scholar] [CrossRef] [Green Version]
- Park, S.D.; Baek, Y.S.; Lee, M.J.; Kwon, S.W.; Shin, S.H.; Woo, S.I.; Kim, D.H.; Kwan, J.; Park, K.S. Comprehensive assessment of microcirculation after primary percutaneous intervention in ST-segment elevation myocardial infarction: Insight from thermodilution-derived index of microcirculatory resistance and coronary flow reserve. Coron. Artery Dis. 2016, 27, 34. [Google Scholar] [CrossRef] [Green Version]
- Faustino, M.; Baptista, S.B.; Freitas, A.; Monteiro, C.; Leal, P.; Nedio, M.; Antunes, C.; Farto e Abreu, P.; Gil, V.; Morais, C. The Index of Microcirculatory Resistance as a Predictor of Echocardiographic Left Ventricular Performance Recovery in Patients With ST-Elevation Acute Myocardial Infarction Undergoing Successful Primary Angioplasty. J. Interv. Cardiol. 2016, 29, 137–145. [Google Scholar] [CrossRef]
- Ahn, S.G.; Hung, O.Y.; Lee, J.W.; Lee, J.H.; Youn, Y.J.; Ahn, M.S.; Kim, J.Y.; Yoo, B.S.; Lee, S.H.; Yoon, J.; et al. Combination of the Thermodilution-Derived Index of Microcirculatory Resistance and Coronary Flow Reserve Is Highly Predictive of Microvascular Obstruction on Cardiac Magnetic Resonance Imaging After ST-Segment Elevation Myocardial Infarction. JACC Cardiovasc. Interv. 2016, 9, 793–801. [Google Scholar] [CrossRef]
- Bulluck, H.; Foin, N.; Cabrera-Fuentes, H.A.; Yeo, K.K.; Wong, A.S.; Fam, J.M.; Wong, P.E.; Tan, J.W.; Low, A.F.; Hausenloy, D.J. Index of Microvascular Resistance and Microvascular Obstruction in Patients With Acute Myocardial Infarction. JACC Cardiovasc. Interv. 2016, 9, 2172–2174. [Google Scholar] [CrossRef]
- Carrick, D.; Haig, C.; Ahmed, N.; Carberry, J.; Yue May, V.T.; McEntegart, M.; Petrie, M.C.; Eteiba, H.; Lindsay, M.; Hood, S.; et al. Comparative Prognostic Utility of Indexes of Microvascular Function Alone or in Combination in Patients with an Acute ST-Segment-Elevation Myocardial Infarction. Circulation 2016, 134, 1833–1847. [Google Scholar] [CrossRef] [Green Version]
- Beygui, F.; Le Feuvre, C.; Helft, G.; Maunoury, C.; Metzger, J.P. Myocardial viability, coronary flow reserve, and in-hospital predictors of late recovery of contractility following successful primary stenting for acute myocardial infarction. Heart 2003, 89, 179–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marques, K.M.; Knaapen, P.; Boellaard, R.; Westerhof, N.; Lammertsma, A.A.; Visser, C.A.; Visser, F.C. Hyperaemic microvascular resistance is not increased in viable myocardium after chronic myocardial infarction. Eur. Heart J. 2007, 28, 2320–2325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sezer, M.; Oflaz, H.; Goren, T.; Okcular, I.; Umman, B.; Nisanci, Y.; Bilge, A.K.; Sanli, Y.; Meric, M.; Umman, S. Intracoronary streptokinase after primary percutaneous coronary intervention. N. Engl. J. Med. 2007, 356, 1823–1834. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.G.; Lee, S.H.; Lee, J.H.; Lee, J.W.; Youn, Y.J.; Ahn, M.S.; Kim, J.Y.; Yoo, B.S.; Yoon, J.; Choe, K.H.; et al. Efficacy of combination treatment with intracoronary abciximab and aspiration thrombectomy on myocardial perfusion in patients with ST-segment elevation myocardial infarction undergoing primary coronary stenting. Yonsei Med. J. 2014, 55, 606–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niccoli, G.; Scalone, G.; Lerman, A.; Crea, F. Coronary microvascular obstruction in acute myocardial infarction. Eur. Heart J. 2016, 37, 1024–1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, H.; Tomooka, T.; Sakai, N.; Yu, H.; Higashino, Y.; Fujii, K.; Masuyama, T.; Kitabatake, A.; Minamino, T. Lack of myocardial perfusion immediately after successful thrombolysis. A predictor of poor recovery of left ventricular function in anterior myocardial infarction. Circulation 1992, 85, 1699–1705. [Google Scholar] [CrossRef] [Green Version]
- Stone, G.W.; Webb, J.; Cox, D.A.; Brodie, B.R.; Qureshi, M.; Kalynych, A.; Turco, M.; Schultheiss, H.P.; Dulas, D.; Rutherford, B.D.; et al. Distal microcirculatory protection during percutaneous coronary intervention in acute ST-segment elevation myocardial infarction: A randomized controlled trial. JAMA 2005, 293, 1063–1072. [Google Scholar] [CrossRef] [Green Version]
- Bulluck, H.; Foin, N.; Tan, J.W.; Low, A.F.; Sezer, M.; Hausenloy, D.J. Invasive Assessment of the Coronary Microcirculation in Reperfused ST-Segment-Elevation Myocardial Infarction Patients: Where Do We Stand? Circ. Cardiovasc. Interv. 2017, 10, e004373. [Google Scholar] [CrossRef]
- Heusch, G. Cardioprotection research must leave its comfort zone. Eur. Heart J. 2018, 39, 3393–3395. [Google Scholar] [CrossRef] [Green Version]
Attempt | Search Terms |
---|---|
1 | “fractional flow reserve” |
2 | “coronary flow reserve” |
3 | “index of microcirculatory resistance” |
4 | fractional flow reserve, myocardial infarction[MeSH Terms] |
5 | fractional flow reserve, STEMI[MeSH Terms] |
6 | fractional flow reserve, acute coronary syndrome[MeSH Terms] |
7 | coronary flow reserve, STEMI[MeSH Terms] |
8 | “cardioprotection” |
9 | “no-reflow” |
10 | 1 or 2 or 3 or 8 |
Study | Year | (N) | Population | Follow-Up Period | Outcome |
---|---|---|---|---|---|
Neumann et al. [51] | 1997 | 19 | STEMI | 2 weeks | CFR shows improvement as early as 1 h after P-PCI in select patients; which continues within 2 weeks. |
Lepper et al. [52] | 2000 | 25 | STEMI | 1 month | Improvement in myocardial perfusion (as indicated by significant ↑ in CFR at 24 h was predictive of LV functional recovery |
Bax et al. [53] | 2004 | 73 | Anterior STEMI | 6 months | Doppler-derived CFR after P-PCI was predictive of long-term global and regional recovery of LV function |
Takahashi et al. [54] | 2007 | 118 | Anterior STEMI | 62 ± 32 months | Patients with a CFR ≤1.3 were more likely to experience acute heart failure or cardiac death |
Cuculi et al. [8] | 2014 | 44 | STEMI | 6 months | Both CFR at P-PCI and the change in CFR over the first day, correlated with myocardial salvage index |
Wakatsuki et al. [55] | 2000 | 31 | Anterior STEMI | 16 ± 2 days | Coronary flow velocity pattern after P-PCI is predictive of global and regional LV recovery |
van de Hoef et al. [56] | 2013 | 100 | Anterior STEMI | 10 years | N-IRA impaired CFVR measured after P-PCI is associated with increased long-term mortality |
Fearon et al. [57] | 2008 | 28 | STEMI | 3 months | IMR after PPCI predicts left ventricular function and recovery at 3 months |
Lim et al. [58] | 2009 | 40 | Anterior STEMI | 6 months | IMR was reliable in predicting myocardial viability and LV wall motion recovery at 6-month follow-up |
McGeoch et al. [59] | 2010 | 52 | STEMI | 3 months | IMR measured acutely predicted LV function and infarct size at 3 months. IMR was higher in patients with MVO on CMR. |
Yoo et al. [60] | 2012 | 34 | Anterior STEMI | 6 months | A higher IMR is associated with worse functional cardiac improvement—measured by regional wall motion score index and LVEF on echocardiography |
Payne et al. [61] | 2012 | 108 | STEMI | 3 months | IMR after P-PCI predicts myocardial salvage, LVEF at 3 months and infarct characteristics (including IS, MVO and myocardial hemorrhage) |
Fearon et al. [62] | 2013 | 253 | STEMI | 2.8 years | IMR at the time of P-PCI is an independent predictor of death alone and death or rehospitalization related to heart failure. |
Fukunaga et al. [63] | 2014 | 88 | STEMI | 6 months | A bimodal pattern on the thermodilution curve, rather than IMR value, was associated with MVO on CMR and worse mid-term clinical outcome. |
Cuculi et al. [64] | 2014 | 45 | STEMI | 6 months | Using univariate analysis, there is a relationship between IMR and infarct size |
Baek et al. [65] | 2015 | 113 | STEMI | N/A | Age and symptom-onset-to-balloon time were independent determinants of a high IMR. |
Park et al. [66] | 2016 | 89 | STEMI | 3 months | Complimentary IMR and CFR measurements after P-PCI may discriminate myocardial viability and predict long-term risk of MACCE |
Faustino et al. [67] | 2016 | 40 | STEMI | 3 months | IMR appears to be an early marker of cardiac recovery after AMI. Lower IMR was associated with better myocardial GLS acutely |
Ahn et al. [68] | 2016 | 40 | STEMI | 1 week | ↑IMR is an independent predictor of MVO. Combined ↑IMR↓CFRthermo are highly predictive of MVO |
Bulluck et al. [69] * | 2016 | 246 | STEMI | N/A | Weighted mean IMRs of <32 and >41 were discriminatory between the absence or presence of MVO respectively |
Carrick et al. [70] | 2016 | 283 | STEMI | 845 days | An IMR > 40 was associated with predicting changes in LVEF and risk of all-cause mortality and heart failure |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
D. Clarke, J.-R.; Kennedy, R.; Duarte Lau, F.; I. Lancaster, G.; W. Zarich, S. Invasive Evaluation of the Microvasculature in Acute Myocardial Infarction: Coronary Flow Reserve versus the Index of Microcirculatory Resistance. J. Clin. Med. 2020, 9, 86. https://doi.org/10.3390/jcm9010086
D. Clarke J-R, Kennedy R, Duarte Lau F, I. Lancaster G, W. Zarich S. Invasive Evaluation of the Microvasculature in Acute Myocardial Infarction: Coronary Flow Reserve versus the Index of Microcirculatory Resistance. Journal of Clinical Medicine. 2020; 9(1):86. https://doi.org/10.3390/jcm9010086
Chicago/Turabian StyleD. Clarke, John-Ross, Randol Kennedy, Freddy Duarte Lau, Gilead I. Lancaster, and Stuart W. Zarich. 2020. "Invasive Evaluation of the Microvasculature in Acute Myocardial Infarction: Coronary Flow Reserve versus the Index of Microcirculatory Resistance" Journal of Clinical Medicine 9, no. 1: 86. https://doi.org/10.3390/jcm9010086
APA StyleD. Clarke, J. -R., Kennedy, R., Duarte Lau, F., I. Lancaster, G., & W. Zarich, S. (2020). Invasive Evaluation of the Microvasculature in Acute Myocardial Infarction: Coronary Flow Reserve versus the Index of Microcirculatory Resistance. Journal of Clinical Medicine, 9(1), 86. https://doi.org/10.3390/jcm9010086