A Review of GC-Based Analysis of Non-Invasive Biomarkers of Colorectal Cancer and Related Pathways
Abstract
:1. Introduction
1.1. Colorectal Cancer Background
1.2. Available Diagnostic Methods
1.3. Metabolomics Studies on CRC
2. Studies on Colorectal Cancer Metabolic Biomarkers
2.1. Applied Methodologies
2.2. General Analytical Platforms Available for Metabolomics Studies
2.3. Search Strategy
2.4. CRC Biomarkers in Urine
2.5. CRC Biomarkers in Feces
2.6. CRC Biomarkers in Exhaled Breath
2.7. Clinical Relevance of Reviewed Articles
3. Possible Origin of Potential Molecular Biomarkers of CRC
3.1. Alterations in Cell Energetics
3.2. Structural Self-Maintenance
3.3. Oxidative Stress
3.4. Alterations in Enzyme Catalytic Activity
3.5. Contribution of the Microbiota
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Rawla, P.; Sunkara, T.; Barsouk, A. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Gastroenterol. Rev. 2019, 14, 89–103. [Google Scholar] [CrossRef] [PubMed]
- Manne, U.; Shanmugam, C.; Katkoori, V.R.; Bumpers, H.L.; Grizzle, W.E. Development and progression of colorectal neoplasia. Cancer Biomark. 2011, 9, 235–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Wang, S.; Lee, J.J.K.; Lee, S.; Lee, E.; Shinbrot, E.; Wheeler, D.A.; Kucherlapati, R.; Park, P.J. An enhanced genetic model of colorectal cancer progression history. Genome Biol. 2019, 20, 168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elsafi, S.H.; Alqahtani, N.I.; Zakary, N.Y.; Al Zahrani, E.M. The sensitivity, specificity, predictive values, and likelihood ratios of fecal occult blood test for the detection of colorectal cancer in hospital settings. Clin. Exp. Gastroenterol. 2015, 8, 279–284. [Google Scholar] [CrossRef] [Green Version]
- Young, G.P.; Symonds, E.L.; Allison, J.E.; Cole, S.R.; Fraser, C.G.; Halloran, S.P.; Kuipers, E.J.; Seaman, H.E. Advances in Fecal Occult Blood Tests: The FIT Revolution. Dig. Dis. Sci. 2015, 60, 609–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robertson, R.; Campbell, C.; Weller, D.P.; Elton, R.; Mant, D.; Primrose, J.; Nugent, K.; Macleod, U.; Sharma, R. Predicting colorectal cancer risk in patients with rectal bleeding. Br. J. Gen. Pract. 2006, 56, 763–767. [Google Scholar]
- Issa, I.A.; Noureddine, M. Colorectal cancer screening: An updated review of the available options. World J. Gastroenterol. 2017, 23, 50865096. [Google Scholar] [CrossRef]
- Young, P.E.; Womeldorph, C.M. Colonoscopy for colorectal cancer screening. J. Cancer 2013, 4, 217–226. [Google Scholar] [CrossRef]
- Van Cutsem, E.; Verheul, H.M.W.; Flamen, P.; Rougier, P.; Beets-Tan, R.; Glynne-Jones, R.; Seufferlein, T. Imaging in colorectal cancer: Progress and challenges for the clinicians. Cancers 2016, 8, 81. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Pons, M.; Cruz-Correa, M. Colorectal cancer biomarkers: Where are we now? BioMed Res. Int. 2015, 2015, 149014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, V.; Kalita, J.; Pal, M. Predictive and prognostic biomarkers in colorectal cancer: A systematic review of recent advances and challenges. Biomed. Pharmacother. 2017, 87, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Verma, M.; Henson, D.E. Biomarkers for early detection of colon cancer. Clin. Cancer Res. 2001, 7, 1118–1126. [Google Scholar]
- Vacante, M.; Borzì, A.M.; Basile, F.; Biondi, A. Biomarkers in colorectal cancer: Current clinical utility and future perspectives. World J. Clin. Cases 2018, 6, 869–881. [Google Scholar] [CrossRef]
- Alves Martins, B.A.; de Bulhões, G.F.; Cavalcanti, I.N.; Martins, M.M.; de Oliveira, P.G.; Martins, A.M.A. Biomarkers in colorectal cancer: The role of translational proteomics research. Front. Oncol. 2019, 9, 1284. [Google Scholar] [CrossRef] [PubMed]
- Newton, K.F.; Newman, W.; Hill, J. Review of biomarkers in colorectal cancer. Color. Dis. 2012, 14, 3–17. [Google Scholar] [CrossRef]
- Lledo, S.M.; Garcia-Granero, E.; Dasi, F.; Ripoli, R.; Garcia, S.A.; Cervantes, A.; Alino, S.F. Real time quantification in plasma of human telomerase reverse transcriptase (hTERT) mRNA in patients with colorectal cancer. Color. Dis. 2004, 6, 236–242. [Google Scholar] [CrossRef]
- Song, L.-L.; Li, Y.-M. Current noninvasive tests for colorectal cancer screening: An overview of colorectal cancer screening tests. World J. Gastrointest. Oncol. 2016, 8, 793–800. [Google Scholar] [CrossRef]
- Lamb, Y.N.; Dhillon, S. Epi proColon® 2.0 CE: A blood-based screening test for colorectal cancer. Mol. Diagn. Ther. 2017, 21, 225–232. [Google Scholar] [CrossRef]
- Zhang, A.; Sun, H.; Yan, G.; Wang, P.; Wang, X. Metabolomics for biomarker discovery: Moving to the clinic. BioMed Res. Int. 2015, 2015, 354671. [Google Scholar] [CrossRef]
- Gowda, G.N.; Zhang, S.; Gu, H.; Asiago, V.; Shanaiah, N.; Raftery, D. Metabolomics-based methods for early disease diagnostics. Expert Rev. Mol. Diagn. 2008, 8, 617–633. [Google Scholar] [CrossRef] [Green Version]
- Fukui, Y.; Itoh, K. A plasma metabolomic investigation of colorectal cancer patients by liquid chromatography-mass spectrometry. Open Anal. Chem. J. 2010, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Du, Y.; Song, Z.; Liu, S.; Li, W.; Wang, D.; Suo, J. Profiling of serum metabolites in advanced colon cancer using liquid chromatography-mass spectrometry. Oncol. Lett. 2020, 19, 4002–4010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djukovic, D.; Zhang, J.; Raftery, D. Colorectal cancer detection using targeted LC-MS metabolic profiling. In Low-Fat Love; Beaulieu, J.-F., Ed.; Springer: New York, NY, USA, 2018; Volume 1765, pp. 229–240. ISBN 9781493977659. [Google Scholar]
- Buszewski, B.; Kęsy, M.; Ligor, T.; Amann, A. Human exhaled air analytics: Biomarkers of diseases. Biomed. Chromatogr. 2007, 21, 553–566. [Google Scholar] [CrossRef] [PubMed]
- Amann, A.; Miekisch, W.; Schubert, J.; Buszewski, B.; Ligor, T.; Jezierski, T.; Pleil, J.; Risby, T. Analysis of exhaled breath for disease detection. Annu. Rev. Anal. Chem. 2014, 7, 455–482. [Google Scholar] [CrossRef] [PubMed]
- Ulanowska, A.; Kowalkowski, T.; Hrynkiewicz, K.; Jackowski, M.; Buszewski, B. Determination of volatile organic compounds in human breath for Helicobacter pylori detection by SPME-GC/MS. Biomed. Chromatogr. 2011, 25, 391–397. [Google Scholar] [CrossRef]
- Monedeiro, F.; Milanowski, M.; Ratiu, I.-A.; Zmysłowski, H.; Ligor, T.; Buszewski, B. VOC profiles of saliva in assessment of halitosis and submandibular abscesses using HS-SPME-GC/MS technique. Molecules 2019, 24, 2977. [Google Scholar] [CrossRef] [Green Version]
- Clish, C.B. Metabolomics: An emerging but powerful tool for precision medicine. Mol. Case Stud. 2015, 1, a000588. [Google Scholar] [CrossRef] [Green Version]
- Jacob, M.; Lopata, A.L.; Dasouki, M.; Abdel Rahman, A.M. Metabolomics toward personalized medicine. Mass Spectrom. Rev. 2019, 38, 221–238. [Google Scholar] [CrossRef]
- Segers, K.; Declerck, S.; Mangelings, D.; Heyden, Y.V.; Eeckhaut, A.V. Analytical techniques for metabolomic studies: A review. Bioanalysis 2019, 11, 2297–2318. [Google Scholar] [CrossRef]
- Zhang, A.; Sun, H.; Wang, P.; Han, Y.; Wang, X. Modern analytical techniques in metabolomics analysis. Analyst 2012, 137, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Dunn, W.B.; Ellis, D.I. Metabolomics: Current analytical platforms and methodologies. TrAC Trends Anal. Chem. 2005, 24, 285–294. [Google Scholar] [CrossRef]
- De Lacy Costello, B.; Amann, A.; Al-Kateb, H.; Flynn, C.; Filipiak, W.; Khalid, T.; Osborne, D.; Ratcliffe, N.M. A review of the volatiles from the healthy human body. J. Breath Res. 2014, 8, 014001. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Cai, G.; Su, M.; Chen, T.; Liu, Y.; Xu, Y.; Ni, Y.; Zhao, A.; Cai, S.; Xu, L.X.; et al. Urinary metabonomic study on colorectal cancer. J. Proteome Res. 2010, 9, 1627–1634. [Google Scholar] [CrossRef]
- Silva, C.L.; Passos, M.; Câmara, J.S. Investigation of urinary volatile organic metabolites as potential cancer biomarkers by solid-phase microextraction in combination with gas chromatography-mass spectrometry. Br. J. Cancer 2011, 105, 1894–1904. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Xie, G.; Chen, T.; Qiu, Y.; Zou, X.; Zheng, M.; Tan, B.; Feng, B.; Dong, T.; He, P.; et al. Distinct urinary metabolic profile of human colorectal cancer. J. Proteome Res. 2012, 11, 1354–1363. [Google Scholar] [CrossRef]
- Arasaradnam, R.P.; McFarlane, M.J.; Ryan-Fisher, C.; Westenbrink, E.; Hodges, P.; Thomas, M.G.; Chambers, S.; O’Connell, N.; Bailey, C.; Harmston, C.; et al. Detection of colorectal cancer (CRC) by urinary volatile organic compound analysis. PLoS ONE 2014, 9, e108750. [Google Scholar] [CrossRef]
- Liesenfeld, D.B.; Habermann, N.; Toth, R.; Owen, R.W.; Frei, E.; Böhm, J.; Schrotz-King, P.; Klika, K.D.; Ulrich, C.M. Changes in urinary metabolic profiles of colorectal cancer patients enrolled in a prospective cohort study (ColoCare). Metabolomics 2015, 11, 998–1012. [Google Scholar] [CrossRef] [Green Version]
- Delphan, M.; Lin, T.; Liesenfeld, D.B.; Nattenmüller, J.; Böhm, J.T.; Gigic, B.; Habermann, N.; Zielske, L.; Schrotz-King, P.; Schneider, M.; et al. Associations of branched-chain amino acids with parameters of energy balance and survival in colorectal cancer patients: Results from the ColoCare study. Metabolomics 2018, 14, 22. [Google Scholar] [CrossRef] [Green Version]
- Mozdiak, E.; Wicaksono, A.N.; Covington, J.A.; Arasaradnam, R.P. Colorectal cancer and adenoma screening using urinary volatile organic compound (VOC) detection: Early results from a single-centre bowel screening population (UK BCSP). Tech. Coloproctol. 2019, 23, 343–351. [Google Scholar] [CrossRef] [Green Version]
- Wong, S.H.; Kwong, T.N.Y.; Wu, C.-Y.; Yu, J. Clinical applications of gut microbiota in cancer biology. Semin. Cancer Biol. 2019, 55, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Weir, T.L.; Manter, D.K.; Sheflin, A.M.; Barnett, B.A.; Heuberger, A.L.; Ryan, E.P. Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults. PLoS ONE 2013, 8, e70803. [Google Scholar] [CrossRef] [Green Version]
- Phua, L.C.; Chue, X.P.; Koh, P.K.; Cheah, P.Y.; Ho, H.K.; Chan, E.C.Y. Non-invasive fecal metabonomic detection of colorectal cancer. Cancer Biol. Ther. 2014, 15, 389–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bond, A.; Greenwood, R.; Lewis, S.; Corfe, B.; Sarkar, S.; Rooney, P.; Probert, C. OC-048 The use of volatile organic compounds emitted from stool as a biomarker for colonic neoplasia. Gut 2016, 65, A28.1-A28. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Rao, B.; Deng, L. Gut flora profiling and fecal metabolite composition of colorectal cancer patients and healthy individuals. Exp. Ther. Med. 2017, 13, 2848–2854. [Google Scholar] [CrossRef] [Green Version]
- Song, E.M.; Byeon, J.-S.; Lee, S.M.; Yoo, H.J.; Kim, S.J.; Lee, S.-H.; Chang, K.; Hwang, S.W.; Yang, D.-H.; Jeong, J.-Y. Fecal fatty acid profiling as a potential new screening biomarker in patients with colorectal cancer. Dig. Dis. Sci. 2018, 63, 1229–1236. [Google Scholar] [CrossRef]
- Bond, A.; Greenwood, R.; Lewis, S.; Corfe, B.; Sarkar, S.; O’Toole, P.; Rooney, P.; Burkitt, M.; Hold, G.; Probert, C. Volatile organic compounds emitted from faeces as a biomarker for colorectal cancer. Aliment. Pharmacol. Ther. 2019, 49, 1005–1012. [Google Scholar] [CrossRef]
- Haines, A.; Dilawari, J.; Metz, G.; Blendis, L.; Wiggins, H. breath-methane in patients with cancer of the large bowel. Lancet 1977, 310, 481–483. [Google Scholar] [CrossRef]
- Piqué, J.M.; Pallarés, M.; Cusó, E.; Vilar-Bonet, J.; Gassull, M.A. Methane production and colon cancer. Gastroenterology 1984, 87, 601–605. [Google Scholar] [CrossRef]
- Peng, G.; Hakim, M.; Broza, Y.Y.; Billan, S.; Abdah-Bortnyak, R.; Kuten, A.; Tisch, U.; Haick, H. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Br. J. Cancer 2010, 103, 542–551. [Google Scholar] [CrossRef]
- Altomare, D.F.; Di Lena, M.; Porcelli, F.; Trizio, L.; Travaglio, E.; Tutino, M.; Dragonieri, S.; Memeo, V.; de Gennaro, G. Exhaled volatile organic compounds identify patients with colorectal cancer. Br. J. Surg. 2013, 100, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Depalma, N.; Lena, M.D.; Porcelli, F.; Travaglio, E.; Longobardi, F.; Demarinis Loiotile, A.; Tedesco, G.; De Gennaro, G.; Altomare, D.F. Detection of colorectal polyps by exhaled VOCs. Preliminary data. Tech. Coloproctol. 2014, 18, 92–93. [Google Scholar] [CrossRef]
- Wang, C.; Ke, C.; Wang, X.; Chi, C.; Guo, L.; Luo, S.; Guo, Z.; Xu, G.; Zhang, F.; Li, E. Noninvasive detection of colorectal cancer by analysis of exhaled breath. Anal. Bioanal. Chem. 2014, 406, 4757–4763. [Google Scholar] [CrossRef] [PubMed]
- Altomare, D.F.; Di Lena, M.; Porcelli, F.; Travaglio, E.; Longobardi, F.; Tutino, M.; Depalma, N.; Tedesco, G.; Sardaro, A.; Memeo, R.; et al. Effects of curative colorectal cancer surgery on exhaled volatile organic compounds and potential implications in clinical follow-up. Ann. Surg. 2015, 262, 862–867. [Google Scholar] [CrossRef]
- Amal, H.; Leja, M.; Funka, K.; Lasina, I.; Skapars, R.; Sivins, A.; Ancans, G.; Kikuste, I.; Vanags, A.; Tolmanis, I.; et al. Breath testing as potential colorectal cancer screening tool. Int. J. Cancer 2016, 138, 229–236. [Google Scholar] [CrossRef]
- Dutkiewicz, E.P.; Urban, P.L. Quantitative mass spectrometry of unconventional human biological matrices. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150380. [Google Scholar] [CrossRef]
- Pereira, J.; Porto-Figueira, P.; Cavaco, C.; Taunk, K.; Rapole, S.; Dhakne, R.; Nagarajaram, H.; Câmara, J. Breath analysis as a potential and non-invasive frontier in disease diagnosis: An overview. Metabolites 2015, 5, 3–55. [Google Scholar] [CrossRef] [Green Version]
- Smith, L.; Villaret-Cazadamont, J.; Claus, S.P.; Canlet, C.; Guillou, H.; Cabaton, N.J.; Ellero-Simatos, S. Important considerations for sample collection in metabolomics studies with a special focus on applications to liver functions. Metabolites 2020, 10, 104. [Google Scholar] [CrossRef] [Green Version]
- Yin, P.; Lehmann, R.; Xu, G. Effects of pre-analytical processes on blood samples used in metabolomics studies. Anal. Bioanal. Chem. 2015, 407, 4879–4892. [Google Scholar] [CrossRef] [Green Version]
- Roux, A.; Thévenot, E.A.; Seguin, F.; Olivier, M.-F.; Junot, C. Impact of collection conditions on the metabolite content of human urine samples as analyzed by liquid chromatography coupled to mass spectrometry and nuclear magnetic resonance spectroscopy. Metabolomics 2015, 11, 1095–1105. [Google Scholar] [CrossRef] [Green Version]
- Manoni, F.; Gessoni, G.; Alessio, M.G.; Caleffi, A.; Saccani, G.; Silvestri, M.G.; Poz, D.; Ercolin, M.; Tinello, A.; Valverde, S.; et al. Mid-stream vs. first-voided urine collection by using automated analyzers for particle examination in healthy subjects: An Italian multicenter study. Clin. Chem. Lab. Med. 2012, 50, 679–684. [Google Scholar] [CrossRef] [PubMed]
- Favé, G.; Beckmann, M.; Lloyd, A.J.; Zhou, S.; Harold, G.; Lin, W.; Tailliart, K.; Xie, L.; Draper, J.; Mathers, J.C. Development and validation of a standardized protocol to monitor human dietary exposure by metabolite fingerprinting of urine samples. Metabolomics 2011, 7, 469–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edmands, W.M.B.; Ferrari, P.; Scalbert, A. Normalization to specific gravity prior to analysis improves information recovery from high resolution mass spectrometry metabolomic profiles of human urine. Anal. Chem. 2014, 86, 10925–10931. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Li, X.H.; Chen, W.N. An untargeted fecal and urine metabolomics analysis of the interplay between the gut microbiome, diet and human metabolism in Indian and Chinese adults. Sci. Rep. 2019, 9, 9191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farag, M.A.; Abdelwareth, A.; Sallam, I.E.; el Shorbagi, M.; Jehmlich, N.; Fritz-Wallace, K.; Serena Schäpe, S.; Rolle-Kampczyk, U.; Ehrlich, A.; Wessjohann, L.A.; et al. Metabolomics reveals impact of seven functional foods on metabolic pathways in a gut microbiota model. J. Adv. Res. 2020, 23, 47–59. [Google Scholar] [CrossRef]
- Karu, N.; Deng, L.; Slae, M.; Guo, A.C.; Sajed, T.; Huynh, H.; Wine, E.; Wishart, D.S. A review on human fecal metabolomics: Methods, applications and the human fecal metabolome database. Anal. Chim. Acta 2018, 1030, 1–24. [Google Scholar] [CrossRef]
- Garner, C.E.; Smith, S.; Lacy Costello, B.; White, P.; Spencer, R.; Probert, C.S.J.; Ratcliffem, N.M. Volatile organic compounds from feces and their potential for diagnosis of gastrointestinal disease. FASEB J. 2007, 21, 1675–1688. [Google Scholar] [CrossRef] [Green Version]
- Phua, L.C.; Koh, P.K.; Cheah, P.Y.; Ho, H.K.; Chan, E.C.Y. Global gas chromatography/time-of-flight mass spectrometry (GC/TOFMS)-based metabonomic profiling of lyophilized human feces. J. Chromatogr. B 2013, 937, 103–113. [Google Scholar] [CrossRef]
- Nunes de Paiva, M.J.; Menezes, H.C.; de Lourdes Cardeal, Z. Sampling and analysis of metabolomes in biological fluids. Analyst 2014, 139, 3683–3694. [Google Scholar] [CrossRef] [Green Version]
- Kimball, B.A. Volatile metabolome: Problems and prospects. Bioanalysis 2016, 8, 1987–1991. [Google Scholar] [CrossRef] [Green Version]
- Laaks, J.; Jochmann, M.A.; Schilling, B.; Schmidt, T.C. In-tube extraction of volatile organic compounds from aqueous samples: An economical alternative to purge and trap enrichment. Anal. Chem. 2010, 82, 7641–7648. [Google Scholar] [CrossRef] [PubMed]
- Tjalsma, H.; Boleij, A.; Marchesi, J.R.; Dutilh, B.E. A bacterial driver–passenger model for colorectal cancer: Beyond the usual suspects. Nat. Rev. Microbiol. 2012, 10, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Woolfenden, E. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air. J. Chromatogr. A 2010, 1217, 2674–2684. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-P.; Lin, T.-C.; Lin, Y.-W.; Hua, Y.-C.; Chu, W.-M.; Lin, T.-Y.; Lin, Y.-W.; Wu, J.-D. Comparison between thermal desorption tubes and stainless steel canisters used for measuring volatile organic compounds in petrochemical factories. Ann. Occup. Hyg. 2016, 60, 348–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gogvadze, V.; Zhivotovsky, B.; Orrenius, S. The Warburg effect and mitochondrial stability in cancer cells. Mol. Aspects Med. 2010, 31, 60–74. [Google Scholar] [CrossRef] [PubMed]
- Dell’ Antone, P. Energy metabolism in cancer cells: How to explain the Warburg and Crabtree effects? Med. Hypotheses 2012, 79, 388–392. [Google Scholar] [CrossRef]
- Anderson, N.M.; Mucka, P.; Kern, J.G.; Feng, H. The emerging role and targetability of the TCA cycle in cancer metabolism. Protein Cell 2018, 9, 216–237. [Google Scholar] [CrossRef]
- Sajnani, K.; Islam, F.; Smith, R.A.; Gopalan, V.; Lam, A.K.-Y. Genetic alterations in Krebs cycle and its impact on cancer pathogenesis. Biochimie 2017, 135, 164–172. [Google Scholar] [CrossRef]
- Icard, P.; Lincet, H. A global view of the biochemical pathways involved in the regulation of the metabolism of cancer cells. Biochim. Biophys. Acta Rev. Cancer 2012, 1826, 423–433. [Google Scholar] [CrossRef]
- Jiang, B. Aerobic glycolysis and high level of lactate in cancer metabolism and microenvironment. Genes Dis. 2017, 4, 25–27. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Cooper, D.E.; Cluntun, A.A.; Warmoes, M.O.; Zhao, S.; Reid, M.A.; Liu, J.; Lund, P.J.; Lopes, M.; Garcia, B.A.; et al. Acetate production from glucose and coupling to mitochondrial metabolism in mammals. Cell 2018, 175, 502–513. [Google Scholar] [CrossRef] [Green Version]
- Bose, S.; Ramesh, V.; Locasale, J.W. Acetate metabolism in physiology, cancer, and beyond. Trends Cell Biol. 2019, 29, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Kamphorst, J.J.; Chung, M.K.; Fan, J.; Rabinowitz, J.D. Quantitative analysis of acetyl-CoA production in hypoxic cancer cells reveals substantial contribution from acetate. Cancer Metab. 2014, 2, 23. [Google Scholar] [CrossRef] [PubMed]
- Koundouros, N.; Poulogiannis, G. Reprogramming of fatty acid metabolism in cancer. Br. J. Cancer 2020, 122, 4–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prentki, M.; Madiraju, S.R.M. Glycerolipid metabolism and signaling in health and disease. Endocr. Rev. 2008, 29, 647–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swinnen, J.V.; Brusselmans, K.; Verhoeven, G. Increased lipogenesis in cancer cells: New players, novel targets. Curr. Opin. Clin. Nutr. Metab. Care 2006, 9, 358–365. [Google Scholar] [CrossRef]
- Zaidi, N.; Lupien, L.; Kuemmerle, N.B.; Kinlaw, W.B.; Swinnen, J.V.; Smans, K. Lipogenesis and lipolysis: The pathways exploited by the cancer cells to acquire fatty acids. Prog. Lipid Res. 2013, 52, 585–589. [Google Scholar] [CrossRef] [Green Version]
- Tamanoi, F.; Azizian, M.; Ashrafi, M.; Bathaie, S. Mevalonate pathway and human cancers. Curr. Mol. Pharmacol. 2017, 10, 77–85. [Google Scholar] [CrossRef]
- Mullen, P.J.; Yu, R.; Longo, J.; Archer, M.C.; Penn, L.Z. The interplay between cell signalling and the mevalonate pathway in cancer. Nat. Rev. Cancer 2016, 16, 718–731. [Google Scholar] [CrossRef]
- Barreiros, A.L.B.S.; David, J.M.; David, J.P. Estresse oxidativo: Relação entre geração de espécies reativas e defesa do organismo. Quim. Nova 2006, 29, 113–123. [Google Scholar] [CrossRef] [Green Version]
- Waris, G.; Ahsan, H. Reactive oxygen species: Role in the development of cancer and various chronic conditions. J. Carcinog. 2006, 5, 14. [Google Scholar] [CrossRef] [PubMed]
- Miekisch, W.; Schubert, J.K.; Noeldge-Schomburg, G.F. Diagnostic potential of breath analysis—focus on volatile organic compounds. Clin. Chim. Acta 2004, 347, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Schaich, K.M.; Shahidi, F.; Zhong, Y.; Eskin, N.A.M. Lipid oxidation. In Biochemistry of Foods; Eskin, N.A., Shahidi, F., Eds.; Elsevier: Cambridge, UK, 2013; pp. 419–478. ISBN 9780122423529. [Google Scholar]
- Elfaki, I.; Mir, R.; Almutairi, F.M.; Abu Duhier, F.M. Cytochrome P450: Polymorphisms and roles in cancer, diabetes and atherosclerosis. Asian Pac. J. Cancer Prev. 2018, 19, 2057–2070. [Google Scholar] [CrossRef]
- Hakim, M.; Broza, Y.Y.; Barash, O.; Peled, N.; Phillips, M.; Amann, A.; Haick, H. Volatile organic compounds of lung cancer and possible biochemical pathways. Chem. Rev. 2012, 112, 5949–5966. [Google Scholar] [CrossRef]
- Jelski, W.; Szmitkowski, M. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in the cancer diseases. Clin. Chim. Acta 2008, 395, 1–5. [Google Scholar] [CrossRef]
- Kang, J.H.; Lee, S.-H.; Hong, D.; Lee, J.-S.; Ahn, H.-S.; Ahn, J.-H.; Seong, T.W.; Lee, C.-H.; Jang, H.; Hong, K.M.; et al. Aldehyde dehydrogenase is used by cancer cells for energy metabolism. Exp. Mol. Med. 2016, 48, e272. [Google Scholar] [CrossRef] [Green Version]
- Hugenholtz, F.; Mullaney, J.A.; Kleerebezem, M.; Smidt, H.; Rosendale, D.I. Modulation of the microbial fermentation in the gut by fermentable carbohydrates. Bioact. Carbohydrates Diet. Fibre 2013, 2, 133–142. [Google Scholar] [CrossRef]
- Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short Chain Fatty Acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 2019, 10, 277. [Google Scholar] [CrossRef] [Green Version]
- Commane, D.; Hughes, R.; Shortt, C.; Rowland, I. The potential mechanisms involved in the anti-carcinogenic action of probiotics. Mutat. Res. Mol. Mech. Mutagen. 2005, 591, 276–289. [Google Scholar] [CrossRef]
- Ishibe, A.; Ota, M.; Takeshita, A.; Tsuboi, H.; Kizuka, S.; Oka, H.; Suwa, Y.; Suzuki, S.; Nakagawa, K.; Suwa, H.; et al. Detection of gas components as a novel diagnostic method for colorectal cancer. Ann. Gastroenterol. Surg. 2018, 2, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Ramachandriya, K.D.; Wilkins, M.R.; Delorme, M.J.M.; Zhu, X.; Kundiyana, D.K.; Atiyeh, H.K.; Huhnke, R.L. Reduction of acetone to isopropanol using producer gas fermenting microbes. Biotechnol. Bioeng. 2011, 108, 2330–2338. [Google Scholar] [CrossRef]
- Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P.; Bäckhed, F. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 2016, 165, 1332–1345. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Z.; Xu, P. Acetoin metabolism in bacteria. Crit. Rev. Microbiol. 2007, 33, 127–140. [Google Scholar] [CrossRef]
- Whiteson, K.L.; Meinardi, S.; Lim, Y.W.; Schmieder, R.; Maughan, H.; Quinn, R.; Blake, D.R.; Conrad, D.; Rohwer, F. Breath gas metabolites and bacterial metagenomes from cystic fibrosis airways indicate active pH neutral 2,3-butanedione fermentation. ISME J. 2014, 8, 1247–1258. [Google Scholar] [CrossRef]
- Li, Q.; Cao, L.; Tian, Y.; Zhang, P.; Ding, C.; Lu, W.; Jia, C.; Shao, C.; Liu, W.; Wang, D.; et al. Butyrate suppresses the proliferation of colorectal cancer cells via targeting pyruvate kinase M2 and metabolic reprogramming. Mol. Cell. Proteom. 2018, 17, 1531–1545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, A.; Bennett, N.; Ahmed, B.; Whelan, J.; Donohoe, D.R. Butyrate decreases its own oxidation in colorectal cancer cells through inhibition of histone deacetylases. Oncotarget 2018, 9, 27280–27292. [Google Scholar] [CrossRef] [PubMed]
- Kufe, D.W. Mucins in cancer: Function, prognosis and therapy. Nat. Rev. Cancer 2009, 9, 874–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliphant, K.; Allen-Vercoe, E. Macronutrient metabolism by the human gut microbiome: Major fermentation by-products and their impact on host health. Microbiome 2019, 7, 91. [Google Scholar] [CrossRef] [PubMed]
- Derrien, M.; van Passel, M.W.J.; van de Bovenkamp, J.H.B.; Schipper, R.G.; de Vos, W.M.; Dekker, J. Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes 2010, 1, 254–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, P.; Li, L.; Rezaei, A.; Eslamfam, S.; Che, D.; Ma, X. Metabolites of Dietary Protein and Peptides by Intestinal Microbes and their Impacts on Gut. Curr. Protein Pept. Sci. 2015, 16, 646–654. [Google Scholar] [CrossRef] [PubMed]
- Diether, N.; Willing, B. Microbial Fermentation of Dietary Protein: An Important Factor in Diet–Microbe–Host Interaction. Microorganisms 2019, 7, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Portune, K.J.; Beaumont, M.; Davila, A.M.; Tomé, D.; Blachier, F.; Sanz, Y. Gut microbiota role in dietary protein metabolism and health-related outcomes: The two sides of the coin. Trends Food Sci. Technol. 2016, 57, 213–232. [Google Scholar] [CrossRef] [Green Version]
- Bhalla, T.C.; Kumar, V.; Kumar, V. Enzymes of aldoxime–nitrile pathway for organic synthesis. Rev. Environ. Sci. Bio/Technol. 2018, 17, 229–239. [Google Scholar] [CrossRef]
- Furne, J.; Springfield, J.; Koenig, T.; DeMaster, E.; Levitt, M.D. Oxidation of hydrogen sulfide and methanethiol to thiosulfate by rat tissues: A specialized function of the colonic mucosa. Biochem. Pharmacol. 2001, 62, 255–259. [Google Scholar] [CrossRef]
- Louis, P.; Hold, G.L.; Flint, H.J. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol. 2014, 12, 661–672. [Google Scholar] [CrossRef]
Reference | Subjects | Sample Preparation and Analytical Technique | Main Analytes | Type of GC Column | Statistical Approach |
---|---|---|---|---|---|
URINE SAMPLES | |||||
Qiu et al., 2010 [31] |
| solvent extraction with chloroform and derivatization with ECF + GC-MS | SNM: amino acids; organic acids | DB-5MS capillary column (30 m × 250 µm i.d., 0.25-μm film thickness) | PCA, OPLS-DA |
Silva et al., 2011 [32] |
| HS-SPME with CAR/PDMS (75 µm) + GC-MS | SVM: hydrocarbons; aldehydes; sulfur compounds | 30 m × 0.25 mm ID × 0.25 µm film thickness BP-20 | one-way ANOVA, LSD, PCA |
Cheng et al., 2012 [33] |
| solvent extraction with methanol and derivatization with methoxyamine (in pyridine) and BSTFA (1% TMCS) + GC-TOFMS | SNM: amino acids; organic acids; saccharides | DB-5MS capillary column (30 m × 250 µm I.D., 0.25-μm film thickness; (5%-phenyl) methyl-polysiloxane bonded and cross-linked | PCA, OPLS-DA, ROC curve, Student’s t-test, Wilcoxon−Mann−Whitney test |
Arasaradnam et al., 2014 [34] |
| ITEX + GC-MS | SVM: ketones; aldehydes; nitrogen compounds | Rxi-624Sil column (20 m length, 0.18 mm ID, 1.0 µm df) | FDA, KNN method |
Liesenfeld et al., 2015 [35] | Total for GC-MS and 1H-NMR is 199 CRC:
| solvent extraction with methanol and derivatization with methoxyamine (in pyridine) and BSTFA (1% TMCS) + GC-MS | SNM: alcohols; amino acids; organic acids; saccharides | HP-5 MS fused silica column (30 m × 0.25 mm; 0.25 µm film thickness of the 5% phenyl 95% dimethylpolysiloxane stationary phase | Wilcoxon–Mann–Whitney tests, PLS-DA, one-way ANOVA, ROC curve |
Delphan et al., 2018 [36] |
| solvent extraction with methanol and derivatization with methoxyamine (in pyridine) and BSTFA (1% TMCS) + GC-MS | SNM: amino acids | HP-5 MS fused silica column (30 m × 0.25 mm; 0.25 µm film thickness of the 5% phenyl 95% dimethylpolysiloxane stationary phase | one-way ANOVA, Pearson Chi-squared test, Pearson’s partial correlation coefficients, Cox proportional hazard models |
Mozdiak et al., 2019 [37] |
| not specified + GC-IMS | undetermined | not specified | ROC curve, Sparse logistic regression, Random Forest, Gaussian process classifier, Support vector machine, Neural network |
FECAL SAMPLES | |||||
Weir et al., 2013 [38] |
| solvent extraction with isopropanol:acetonitrile:water and derivatization with methoxyamine (in pyridine) and MSTFA (1% TMCS) + GC-MS | SNM: amino acids; organic acids; lipids; steroids | TG-5MS column (30 m, 0.25 mm i.d., 0.25 µm film thickness), SCFA determination: TG-WAX-A column (30 m, 0.25 mm ID, 0.25 µm film thickness) | AMOVA, Student’ t test, ANOVA, Pearson correlation, PLS-DA |
Phua et al., 2014 [39] |
| solvent extraction with methanol:water and derivatization with methoxyamine (in pyridine) and MSTFA (1% TMCS) + GC-TOFMS | SNM: lipids; saccharides | DB-1 (30 min × 250 µm i.d.) fused silica capillary column with 0.25 µm film thickness | PCA, OPLS-DA, ROC curve, Welch t test |
Bond et al., 2016 [40] |
| HS-SPME + GC-MS | SVM | not specified | Student’s t test, Fisher’s exact test, ANOVA, false discovery rate correction, PLS-DA, factor analysis, ROC curve |
Wang et al., 2017 [41] |
| solvent extraction with isopropanol:acetonitrile:water and derivatization with pyridine-methoxy amino acid salt solution, SCFA determination: solvent extraction and derivatization with sulfuric acid solution (50%) and diethyl ether + GC-MS | SNM: amino acids; organic acids; lipids; steroids | 30-m TG-5MS column | Student’s t-test, Pearson correlation |
Song et al., 2018 [42] |
| Analysis of Long-Chain Fatty Acids: solvent extraction with chloroform:methanol (Folch method) and derivatization with BCl3–MeOH Analysis of Short-Chain Fatty Acids: solvent extraction with HCl and diethyl ether and derivatization with PFBB in acetonitrile and EDIPA + GC-MS | lipids | HP-5 MS 30 m × 250 µm × 0.25 µm column | Chi-square test, Fisher’s exact test, Mann–Whitney U test |
Bond et al., 2019 [43] |
| HS-SPME with CAR/PDMS + GC-MS | SVM: esters; alcohols | 60 m long Zebron ZB-624 capillary column with an inner diameter of 0.25 mm. The column was lined with a 1.4 µm film of 94% dimethyl polysiloxane and 6% cyanopropylphenyl | Student’s t test, Mann-Whitey tests, Fisher’s exact test, ANOVA, false discovery rate correction, PLS-DA, factor analysis, ROC curve |
BREATH SAMPLES | |||||
Haines et al. 1977 [44] |
| direct gas sampling by means of: either a modified Haldane–Priestley tube’ or a 3-bag collecting system in which one bag contains sample which can then be transferred to a syringe or evacuated aerosol can for later analysis + GC | gases | not specified | p value |
Piqué et al. 1984 [45] |
| direct gas sampling by means of a 3-bag collecting system in which one bag contains sample which can then be transferred to a syringe or evacuated aerosol can for later analysis + GC-FID | gases | not specified | p value |
Peng et al., 2010 [46] |
| HS-SPME with PDMS/DVB + GC-MS | SVM: hydrocarbons | H5-5MS 5% phenyl methyl siloxane (30 m length, 0.25 mm i.d., 0.25 µm thickness) | PCA |
Altomare et al., 2013 [47] |
| adsorption of VOCs on to sorbent cartridges and thermal desorption + GC-MS | SVM: hydrocarbons | SUPELCOWAX, polyethylene glycol 30 m × 0.25 mm ID. × 0.25 µm stationary phase thickness | PNN, ROC curve |
Depalma et al., 2014 [48] |
| adsorption of VOCs on to sorbent cartridges and thermal desorption + GC-MS | undetermined | not specified | LDA |
Wang et al., 2014 [49] |
| HS-SPME with CAR/PDMS (75 µm) + GC-MS | SVM: alcohols; hydrocarbons | DB-5MS (length 30 m × inner diameter (ID) 0.250 mm × film thickness 0.25 µm) | PCA, PLS-DA, Kruskal–Wallis rank sum test |
Altomare et al., 2015 [50] |
| adsorption of VOCs on to sorbent cartridges and thermal desorption + GC-MS | SVM: hydrocarbons | HP-5MS, 95% polydimethylsiloxane, 5% polydiphenylsiloxane, 30 m × 0.25 mm ID, 0.25 µm stationary phase thickness | Mann–Whitney U test, chi-square test, Student’s t test, PNN, ROC curve |
Amal et al., 2016 [51] |
| adsorption of VOCs on to sorbent cartridges and thermal desorption + GC-MS | SVM: hydrocarbons; ketones; esters; alcohols | SLB-5ms capillary column (with 5% phenyl methyl siloxane; 30 m length; 0.25 mm internal diameter; 0.5 µm thicknesses) | Student’s t test, DFA, ROC curve |
Compound | CAS Number | Code | Matrix | Reference |
---|---|---|---|---|
ALCOHOLS, POLYOLS AND PHENOLS | ||||
1-octanol | 111-87-5 | M1 | Urine↓ | Silva et al., 2011 [32] |
hexen-1-ol | 928-95-0 | M2 | Urine | Arasaradnam et al., 2014 [34] |
2-propanol | 67-63-0 | M3 | Feces↑ | Bond et al., 2019 [43] |
4-methylphenol (p-cresol) | 106-44-5 | M4 | Urine↑ Urine↑ Urine↓post Urine↓ Urine↑ | Silva et al., 2011 [32] Qiu et al., 2010 [31] Qiu et al., 2010 [31] -Cheng et al., 2012 [33] Liesenfeld et al., 2015 [35] |
ethanol | 64-17-5 | M5 | Breath↓ | Amal et al., 2016 [51] |
glycerol (glycerin) | 56-81-5 | M6 | Feces↓ Feces↓ | Weir et al., 2013 [38] Wang et al., 2017 [41] |
monoacyl glycerol | - | M7 | Feces↓ | Wang et al., 2017 [41] |
phenol | 108-95-2 | M8 | Urine↓ | Cheng et al., 2012 [33] |
guaiacol | 90-05-1 | M9 | Urine↓ | Liesenfeld et al., 2015 [35] |
2,3-butanediol | 513-85-9 | M10 | Urine↓ | Liesenfeld et al., 2015 [35] |
ALDEHYDES | ||||
acetaldehyde | 75-07-0 | M11 | Urine | Arasaradnam et al., 2014 [34] |
decanal | 112-31-2 | M12 | Breath↑ Breath↑ | Altomare et al., 2013 [47] Altomare et al., 2015 [50] |
heptanal | 111-71-7 | M13 | Urine↓ | Silva et al., 2011 [32] |
hexanal | 66-25-1 | M14 | Urine↓ Urine | Silva et al., 2011 [32] Arasaradnam et al., 2014 [34] |
nonanal | 124-19-6 | M15 | Breath↑ Breath↑ | Altomare et al., 2013 [47] Altomare et al., 2015 [50] |
KETONES | ||||
2-hexanone | 591-78-6 | M16 | Feces↑ | Bond et al., 2019 [43] |
3-heptanone | 106-35-4 | M17 | Urine↑ Urine | Silva et al., 2011 [32] Arasaradnam et al., 2014 [34] |
4-heptanone | 123-19-3 | M18 | Urine | Arasaradnam et al., 2014 [34] |
4-methyl-2-pentanone | 108-10-1 | M19 | Breath↑ Breath↑ | Altomare et al., 2013 [47] Altomare et al., 2015 [50] |
2-pentanone | 107-87-9 | M20 | Urine | Arasaradnam et al., 2014 [34] |
acetone | 67-64-1 | M21 | Breath↑ Urine | Amal et al., 2016 [51] Arasaradnam et al., 2014 [34] |
2,3-butanedione | 431-03-8 | M22 | Urine | Arasaradnam et al., 2014 [34] |
ESTERS | ||||
phenyl acetate | 122-79-2 | M23 | Urine↑ Urine↓post | Qiu et al., 2010 [31] Qiu et al., 2010 [31] |
ETHERS | ||||
anisole | 100-66-3 | M24 | Urine↑ | Silva et al., 2011 [32] |
HYDROCARBONS | ||||
methane | 74-82-8 | M25 | Breath Breath | Haines et al. 1977 [44] Piqué et al. 1984 [45] |
1,2-pentadiene | 591-95-7 | M26 | Breath↑ Breath↑ | Altomare et al., 2013 [47] Altomare et al., 2015 [50] |
1,3-dimethylbenzene | 108-38-3 | M27 | Breath↑ Breath↓ Breath↑ | Altomare et al., 2013 [47] Peng et al., 2010 [46] Altomare et al., 2015 [50] |
1,4-dimethylbenzene (1,4-xylene) | 106-42-3 | M28 | Breath↑ Breath↑ Feces↑ | Altomare et al., 2013 [47] Altomare et al., 2015 [50] Bond et al., 2019 [43] |
1-octene | 111-66-0 | M29 | Breath↑ | Altomare et al., 2015 [50] |
2-methylbutane | 78-78-4 | M30 | Breath↑ Breath↑ | Altomare et al., 2013 [47] Altomare et al., 2015 [50] |
2-methylpentane | 107-83-5 | M31 | Breath↑ Breath↑ | Altomare et al., 2013 [47] Altomare et al., 2015 [50] |
3-methylpentane | 96-14-0 | M32 | Breath↑ | Altomare et al., 2013 [47] |
octane | 111-65-9 | M33 | Breath↑ | Altomare et al., 2015 [50] |
undecane | 1120-21-4 | M34 | Breath↑ | Altomare et al., 2015 [50] |
4-methyloctane | 2216-34-4 | M35 | Breath↑ Breath↓ | Altomare et al., 2013 [47] Amal et al., 2016 [51] |
cyclohexane | 110-82-7 | M36 | Breath↑ Breath↑ | Altomare et al., 2013 [47] Altomare et al., 2015 [50] |
dodecane | 112-40-3 | M37 | Breath↑ Breath↑ | Wang et al., 2014 [49] Altomare et al., 2015 [50] |
heptane | 142-82-5 | M38 | Breath↑ | Altomare et al., 2015 [50] |
methylcyclohexane | 108-87-2 | M39 | Breath↑ Breath↑ | Altomare et al., 2013 [47] Altomare et al., 2015 [50] |
methylcyclopentane | 96-37-7 | M40 | Breath↑ Breath↑ | Altomare et al., 2013 [47] Altomare et al., 2015 [50] |
p-cymene | 99-87-6 | M41 | Urine↑ | Silva et al., 2011 [32] |
γ-terpinene | 99-85-4 | M42 | Urine↑ | Silva et al., 2011 [32] |
beta-pinene | 127-91-3 | M43 | Breath↑ | Altomare et al., 2015 [50] |
ACIDS | ||||
acetic acid | 64-19-7 | M44 | Feces↑ Feces↑ | Weir et al., 2013 [38] Wang et al., 2017 [41] |
benzeneacetic acid (phenylacetic acid) | 103-82-2 | M45 | Feces↑ Feces↑ | Weir et al., 2013 [38] Wang et al., 2017 [41] |
butyric acid | 107-92-6 | M46 | Feces↓ Feces↑ | Weir et al., 2013 [38] Wang et al., 2017 [41] |
citric acid | 77-92-9 | M47 | Urine↓ Urine↓post Urine↓ Urine↑ | Qiu et al., 2010 [31] Qiu et al., 2010 [31] Cheng et al., 2012 [33] Liesenfeld et al., 2015 [35] |
elaidic acid | 112-79-8 | M48 | Feces↓ Feces↓ | Weir et al., 2013 [38] Wang et al., 2017 [41] |
isobutyric acid | 79-31-2 | M49 | Feces↑ Feces↓ | Weir et al., 2013 [38] Wang et al., 2017 [41] |
2-hydroxyisobutyric acid | 594-61-6 | M50 | Urine↑ | Liesenfeld et al., 2015 [35] |
isocitric acid | 320-77-4 | M51 | Urine↓ | Qiu et al., 2010 [31] |
isovaleric acid | 503-74-2 | M52 | Feces↑ Feces↑ | Weir et al., 2013 [38] Wang et al., 2017 [41] |
3-hydroxybutanoic acid | 300-85-6 | M53 | Urine↑ | Liesenfeld et al., 2015 [35] |
lactic acid | 50-21-5 | M54 | Urine↑ | Liesenfeld et al., 2015 [35] |
linoleic acid | 60-33-3 | M55 | Feces↓ Feces↓ Feces↑m Feces↓ | Weir et al., 2013 [38] Wang et al., 2017 [41] Song et al., 2018 [42] Phua et al., 2014 [39] |
myristic acid | 544-63-8 | M56 | Feces↑ Feces↓ Urine↓ | Weir et al., 2013 [38] Wang et al., 2017 [41] Cheng et al., 2012 [33] |
oleic acid | 2027-47-6 | M57 | Feces↓ Feces↓ Feces↑m | Weir et al., 2013 [38] Wang et al., 2017 [41] Song et al., 2018 [42] |
oxalic acid | 6153-56-6 | M58 | Urine Urine↓ | Arasaradnam et al., 2014 [34] Liesenfeld et al., 2015 [35] |
propionic acid | 79-09-4 | M59 | Feces↑ Feces↑ | Weir et al., 2013 [38] Wang et al., 2017 [41] |
pyruvic acid | 127-17-3 | M60 | Urine↓ | Cheng et al., 2012 [33] |
succinic acid | 110-15-6 | M61 | Urine↓ | Qiu et al., 2010 [31] |
valeric acid | 109-52-4 | M62 | Feces↑ Feces↑ | Weir et al., 2013 [38] Wang et al., 2017 [41] |
fumaric acid | 110-17-8 | M63 | Urine↑ | Cheng et al., 2012 [33] |
SULFUR-CONTAINING COMPOUNDS | ||||
2-methoxythiophene | 16839-97-7 | M64 | Urine↑ | Silva et al., 2011 [32] |
dimethyl disulfide | 624-92-0 | M65 | Urine↓ | Silva et al., 2011 [32] |
NITROGEN-CONTAINING COMPOUNDS | ||||
putrescine | 110-60-1 | M66 | Urine↑ | Cheng et al., 2012 [33] |
dimethyl-thiourea | 534-13-4 | M67 | Urine | Arasaradnam et al., 2014 [34] |
allyl isothiocyanate | 57-06-7 | M68 | Urine | Arasaradnam et al., 2014 [34] |
AMINO ACIDS AND THEIR DERIVATIVES | ||||
2-aminobutyric acid | 1492-24-6 | M69 | Urine↑ | Cheng et al., 2012 [33] |
hippuric acid | 495-69-2 | M70 | Urine↓post Urine↓ | Qiu et al., 2010 [31] Cheng et al., 2012 [33] |
5-oxoproline | 149-87-1 | M71 | Urine↑ Urine↑post | Qiu et al., 2010 [31] Qiu et al., 2010 [31] |
alanine | 56-41-7 | M72 | Feces↑ Urine↓ Urine↓ | Weir et al., 2013 [38] Cheng et al., 2012 [33] Liesenfeld et al., 2015 [35] |
aspartic acid | 56-84-8 | M73 | Feces↑ Feces↑ | Weir et al., 2013 [38] Wang et al., 2017 [41] |
glutamic acid | 617-65-2 | M74 | Feces↑ Feces↑ Urine↑ Urine↑ | Weir et al., 2013 [38] Wang et al., 2017 [41] Qiu et al., 2010 [31] Liesenfeld et al., 2015 [35] |
glutamine | 56-85-9 | M75 | Urine↓ | Liesenfeld et al., 2015 [35] |
glycine | 56-40-6 | M76 | Feces↑ Feces↑ | Weir et al., 2013 [38] Wang et al., 2017 [41] |
histidine | 71-00-1 | M77 | Urine↓ Urine↑post Urine↓ | Qiu et al., 2010 [31] Qiu et al., 2010 [31] Liesenfeld et al., 2015 [35] |
isoleucine | 73-32-5 | M78 | Urine↑post | Qiu et al., 2010 [31] |
leucine | 61-90-5 | M79 | Feces↑ Feces↑ Urine↑post | Weir et al., 2013 [38] Wang et al., 2017 [41] Qiu et al., 2010 [31] |
lysine | 70-54-2 | M80 | Feces↑ Urine↑post Urine↓ | Weir et al., 2013 [38] Qiu et al., 2010 [31] Liesenfeld et al., 2015 [35] |
phenylacetylglutamine | 28047-15-6 | M81 | Urine↑ Urine↓post | Qiu et al., 2010 [31] Qiu et al., 2010 [31] |
phenylalanine | 150-30-1 | M82 | Feces↑ Feces↑ Urine↓ | Weir et al., 2013 [38] Wang et al., 2017 [41] Liesenfeld et al., 2015 [35] |
proline | 609-36-9 | M83 | Feces↑ Feces↑ | Weir et al., 2013 [38] Wang et al., 2017 [41] |
salicyluric acid (2-hydroxyhippuric acid) | 487-54-7 | M84 | Urine↑ Urine↓post Urine↓ | Qiu et al., 2010 [31] Qiu et al., 2010 [31] Liesenfeld et al., 2015 [35] |
serine | 56-45-1 | M85 | Feces↑ Feces↑ Urine↑post | Weir et al., 2013 [38] Wang et al., 2017 [41] Qiu et al., 2010 [31] |
threonine | 72-19-5 | M86 | Feces↑ Urine↑post Urine↓ | Weir et al., 2013 [38] Qiu et al., 2010 [31] Liesenfeld et al., 2015 [35] |
tyrosine | 60-18-4 | M87 | Urine↑post Urine↓ | Qiu et al., 2010 [31] Liesenfeld et al., 2015 [35] |
tryptophan | 54-12-6 | M88 | Urine↑ Urine↑post | Qiu et al., 2010 [31] Qiu et al., 2010 [31] |
valine | 516-06-3 | M89 | Feces↑ Feces↑ | Weir et al., 2013 [38] Wang et al., 2017 [41] |
SUGARS AND THEIR DERIVATIVES | ||||
fructose | 7660-25-5 | M90 | Feces↓ Urine↓ | Phua et al., 2014 [39] Liesenfeld et al., 2015 [35] |
xylose | 58-86-6 | M91 | Urine↓ | Cheng et al., 2012 [33] |
sorbose | 87-79-6 | M92 | Urine↓ | Cheng et al., 2012 [33] |
arabitol | 7643-75-6 | M93 | Urine↓ | Cheng et al., 2012 [33] |
arabinose | 147-81-9 | M94 | Urine↓ | Liesenfeld et al., 2015 [35] |
mannitol | 69-65-8 | M95 | Urine↓ | Liesenfeld et al., 2015 [35] |
glucuronic acid | 6556-12-3 | M96 | Urine↓ | Cheng et al., 2012 [33] |
gluconic acid | 526-95-4 | M97 | Urine↓ | Liesenfeld et al., 2015 [35] |
threonic acid | 3909-12-4 | M98 | Urine↓ | Cheng et al., 2012 [33] |
3-phosphoglyceric acid | 820-11-1 | M99 | Urine↓ | Liesenfeld et al., 2015 [35] |
COMPLEX NITROGEN COMPOUNDS AND THEIR DERIVATIVES | ||||
uracil | 66-22-8 | M100 | Urine↓ | Cheng et al., 2012 [33] |
xanthine | 69-89-6 | M101 | Urine↑ | Liesenfeld et al., 2015 [35] |
STEROIDS AND THEIR DERIVATIVES | ||||
cholesterol derivative | - | M102 | Feces↑ Feces↑ | Weir et al., 2013 [38] Wang et al., 2017 [41] |
ursodeoxycholic acid | 128-13-2 | M103 | Feces↓ Feces↓ | Weir et al., 2013 [38] Wang et al., 2017 [41] |
OTHERS | ||||
pantothenic acid (vitamin B5) | 599-54-2 | M104 | Feces↑ Feces↓ | Weir et al., 2013 [38] Wang et al., 2017 [41] |
Incidence of Compounds, Per Class | Breath | Fecal Samples | Urine | All |
---|---|---|---|---|
Totals | 65 | 64 | 148 | 278 |
Alcohols, polyols and phenols | 4 | 6 | 12 | 22 |
Aldehydes | 4 | 0 | 5 | 9 |
Ketones | 4 | 1 | 8 | 13 |
Esters | 3 | 4 | 6 | 13 |
Ethers | 0 | 0 | 3 | 3 |
Hydrocarbons | 47 | 1 | 8 | 56 |
Acids | 1 | 25 | 27 | 53 |
Sulfur-containing compounds | 0 | 0 | 2 | 2 |
Nitrogen-containing compounds | 2 | 0 | 11 | 13 |
Amino acids and their derivatives | 0 | 19 | 47 | 66 |
Sugars and their derivatives | 0 | 1 | 15 | 16 |
Complex nitrogen compounds and derivatives | 0 | 0 | 4 | 5 |
Steroids and their derivatives | 0 | 4 | 0 | 4 |
Others | 0 | 3 | 0 | 3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monedeiro, F.; Monedeiro-Milanowski, M.; Ligor, T.; Buszewski, B. A Review of GC-Based Analysis of Non-Invasive Biomarkers of Colorectal Cancer and Related Pathways. J. Clin. Med. 2020, 9, 3191. https://doi.org/10.3390/jcm9103191
Monedeiro F, Monedeiro-Milanowski M, Ligor T, Buszewski B. A Review of GC-Based Analysis of Non-Invasive Biomarkers of Colorectal Cancer and Related Pathways. Journal of Clinical Medicine. 2020; 9(10):3191. https://doi.org/10.3390/jcm9103191
Chicago/Turabian StyleMonedeiro, Fernanda, Maciej Monedeiro-Milanowski, Tomasz Ligor, and Bogusław Buszewski. 2020. "A Review of GC-Based Analysis of Non-Invasive Biomarkers of Colorectal Cancer and Related Pathways" Journal of Clinical Medicine 9, no. 10: 3191. https://doi.org/10.3390/jcm9103191
APA StyleMonedeiro, F., Monedeiro-Milanowski, M., Ligor, T., & Buszewski, B. (2020). A Review of GC-Based Analysis of Non-Invasive Biomarkers of Colorectal Cancer and Related Pathways. Journal of Clinical Medicine, 9(10), 3191. https://doi.org/10.3390/jcm9103191