The Metabolic Rearrangements of Bariatric Surgery: Focus on Orexin-A and the Adiponectin System
Abstract
:1. Introduction
2. Adipose Tissue: General Characteristics
3. Adiponectin: General Characteristics
4. Orexin-A: General Characteristics
5. Bariatric Surgery: Why Is It Done and Who Is It for?
6. Effects of Bariatric Surgery on Adiponectin and Orexin-A
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nigro, E.; Scudiero, O.; Monaco, M.L.; Palmieri, A.; Mazzarella, G.; Costagliola, C.; Bianco, A.; Daniele, A. New Insight into Acrp30 Role in Obesity and Obesity-Related Diseases. BioMed Res. Int. 2014, 2014, 658913. [Google Scholar] [CrossRef] [PubMed]
- Xin, S.; Daoquan, P. Adipokines as novel biomarkers of cardio-metabolic disorders. Clin. Chim. Acta 2020, 507, 31–38. [Google Scholar]
- Richard, A.J.; White, U.; Elks, C.M.; Stephens, J.M. Adipose Tissue: Physiology to Metabolic Dysfunction; Endotext. MDText.com, Inc.: South Dartmouth, MA, USA, 2020. [Google Scholar]
- Messina, A.; Monda, M.; Valenzano, A.; Messina, G.; Villano, I.; Moscatelli, F.; Cibelli, G.; Marsala, G.; Polito, R.; Ruberto, M.; et al. Functional Changes Induced by Orexin A and Adiponectinon the Sympathetic/Parasympathetic Balance. Front. Physiol. 2018, 9, 259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Wang, Q.; Liu, A.; Lan, X.; Huang, Y.; Zhao, Z.; Jie, H.; Chen, J.; Zhao, Y.-J. Physiological Implications of Orexins/Hypocretins on Energy Metabolism and Adipose Tissue Development. ACS Omega 2020, 5, 547–555. [Google Scholar] [CrossRef] [Green Version]
- Sams, V.G.; Blackledge, C.; Wijayatunga, N.; Barlow, P.; Mancini, M.; Mancini, G.; Moustaid-Moussa, N. Effect of bariatric surgery on systemic and adipose tissue inflammation. Surg. Endosc. 2016, 30, 3499–3504. [Google Scholar] [CrossRef]
- Colquitt, J.L.; Pickett, K.; Loveman, E.; Frampton, G. Surgery for weight loss in adults. Cochrane Database Syst. Rev. 2014, 8, CD003641. [Google Scholar] [CrossRef]
- Kadowaki, T.; Yamauchi, T. Acrp30 and Acrp30 receptors. Endocr. Rev. 2005, 26, 439–451. [Google Scholar] [CrossRef] [Green Version]
- Yamauchi, T.; Kamon, J.; Ito, Y.; Tsuchida, A.; Yokomizo, T.; Kita, S.; Sugiyama, T.; Miyagishi, M.; Hara, K.; Tsunoda, M.; et al. Cloning of Acrp30 receptors that mediate antidiabetic metabolic effects. Nature 2003, 423, 762–769. [Google Scholar] [CrossRef]
- Di Gregorio, P.A.; Lu, G.B.; Rassuoli, N.; Ranganathan, G. Acrp30 expression from human adipose tissue: Relation to obesity, insulin resistance, and tumor necrosis factor-alpha expression. Diabetes 2003, 52, 1779–1785. [Google Scholar]
- Pecoraro, A.; Nigro, E.; Polito, R.; Monaco, M.L.; Scudiero, O.; Mormile, I.; Marcelli, A.C.; Capasso, M.; Habetswallner, F.; Genovese, A.; et al. Total and High Molecular Weight Acrp30 Expression Is Decreased in Patients with Common Variable Immunodeficiency: Correlation with Ig Replacement Therapy. Front. Immunol. 2017, 8, 895. [Google Scholar] [CrossRef] [Green Version]
- De Rosa, A.; Monaco, M.L.; Capasso, M.; Forestieri, P.; Pilone, V.; Nardelli, C.; Buono, P.; Daniele, A. Acrp30 oligomers as potential indicators of adipose tissue improvement in obese subjects. Eur. J. Endocrinol. 2013, 169, 37–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacedonia, D.; Nigro, E.; Matera, M.G.; Scudiero, O.; Monaco, M.L.; Polito, R.; Carpagnano, G.E.; Barbaro, M.P.F.; Mazzarella, G.; Bianco, A.; et al. Evaluation of Acrp30 profile in Italian patients affected by obstructive sleep apnea syndrome. Pulm. Pharmacol. Ther. 2016, 40, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Corbi, G.; Polito, R.; Monaco, M.L.; Cacciatore, F.; Scioli, M.; Ferrara, N.; Daniele, A.; Nigro, E. Adiponectin Expression and Genotypes in Italian People with Severe Obesity Undergone a Hypocaloric Diet and Physical Exercise Program. Nutrients 2019, 11, 2195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polito, R.; Nigro, E.; Messina, A.; Monaco, M.L.; Monda, V.; Scudiero, O.; Cibelli, G.; Valenzano, A.; Picciocchi, E.; Zammit, C.; et al. Adiponectin and Orexin-A as a Potential Immunity Link between Adipose Tissue and Central Nervous System. Front. Physiol. 2018, 9, 982. [Google Scholar] [CrossRef]
- Kotz, C.M.; Teske, J.A.; Levine, J.A.; Wang, C. Feeding and activity induced by Orexin A in the lateral hypothalamus in rats. Regul. Pept. 2002, 104, 27–32. [Google Scholar] [CrossRef]
- Kotz, C.M.; Wang, C.; Teske, J.A.; Thorpe, A.; Novak, C.; Kiwaki, K.; Levine, J. Orexin A mediation of time spent moving in rats: Neural mechanisms. Neuroscience 2006, 142, 29–36. [Google Scholar] [CrossRef]
- Boss, C.; Roch, C. Recent trends in Orexin research—2010 to 2015. Bioorg. Med. Chem. Lett. 2015, 25, 2875–2887. [Google Scholar] [CrossRef]
- Salerno, M.; Villano, I.; Nicolosi, D.; Longhitano, L.; Loreto, C.; Lovino, A.; Sessa, F.; Polito, A.N.; Monda, V.; Chieffi, S.; et al. Modafinil and Orexin system: Interactions and medico-legal considerations. Front. Biosci. Landmark. 2019, 24, 564–575. [Google Scholar] [CrossRef]
- Inutsuka, A.; Yamanaka, A. The physiological role of Orexin/hypocretin neurons in the regulation of sleep/wakefulness and neuroendocrine functions. Front. Endocrinol. 2013, 4, 18. [Google Scholar] [CrossRef] [Green Version]
- Chieffi, S.; Carotenuto, M.; Monda, V.; Valenzano, A.; Villano, I.; Precenzano, F.; Tafuri, D.; Salerno, M.; Filippi, N.; Nuccio, F.; et al. Orexin system: The key for a healthy life. Front. Neurol. 2017, 8, 357. [Google Scholar] [CrossRef] [Green Version]
- Milasta, S.; Evans, N.A.; Ormiston, L.; Wilson, S.; Lefkowitz, R.J.; Milligan, G. The sustainability of interactions between the Orexin-1 receptor and b-arrestin-2 is defined by a single C-terminal cluster of hydroxy amino acids and modulates the kinetics of ERK MAPK regulation. Biochem. J. 2005, 387, 573–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messina, A.; Bitetti, I.; Precenzano, F.; Iacono, D.; Messina, G.; Roccella, M.; Parisi, L.; Salerno, M.; Valenzano, A.; Maltese, A.; et al. Non-rapid eye movement sleep paras- omnias and migraine: A role of Orexinergic projections. Front. Neurol. 2018, 9, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messina, G.; Dalia, C.; Tafuri, D.; Monda, V.; Palmieri, F.; Dato, A.; Russo, A.; De Blasio, S.; Messina, G.; De Luca, V.; et al. Orexin-A controls sympathetic activity and eating behavior. Front. Psychol. 2014, 5, 997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messina, A.; De Fusco, C.; Monda, V.; Esposito, M.; Moscatelli, F.; Valenzano, A.; Carotenuto, M.; Viggiano, E.; Chieffi, S.; De Luca, V.; et al. Role of the Orexin system on the hypothalamus-pituitary-thyroid axis. Front. Neural Circuits 2016, 10, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monda, M.; Viggiano, A.; Viggiano, A.; Viggiano, E.; Messina, G.; Tafuri, D.; De Luca, V. Sympathetic and hyperthermic reactions by Orexin A: Role of cerebral catecholaminergic neurons. Regul. Pept. 2007, 139, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Messina, G.; Monda, V.; Moscatelli, F.; Valenzano, A.A.; Monda, G.; Esposito, T.; De Blasio, S.; Messina, A.; Tafuri, D.; Barillari, M.R.; et al. Role of Orexin system in obesity. Biol. Med. 2015, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Monda, V.; Salerno, M.; Sessa, F.; Bernardini, R.; Valenzano, A.; Marsala, G.; Zammit, C.; Avola, R.; Carotenuto, M.; Messina, G.; et al. Functional Changes of Orexinergic Reaction to Psychoactive Substances. Mol. Neurobiol. 2018, 55, 6362–6368. [Google Scholar] [CrossRef] [PubMed]
- Santacroce, R.; Santoro, R.; Sessa, F.; Iannaccaro, P.; Sarno, M.; Longo, V.; Gallone, A.; Vecchione, G.; Muleo, G.; Margaglione, M. Screening of mutations of hemophilia A in 40 Italian patients: A novel G-to-A mutation in intron 10 of the F8 gene as a putative cause of mild hemophilia a in southern Italy. Blood Coagul. Fibrinolysis 2008, 19, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Perez-Leighton, C.E.; Boland, K.; Teske, J.A.; Billington, C.; Kotz, C.M. Behavioral responses to Orexin, Orexin receptor gene expression, and spontaneous physical activity contribute to individual sensitivity to obesity. Am. J. Physiol. Endocrinol. Metab. 2012, 303, E865–E874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Digby, J.E.; Chen, J.; Tang, J.Y.; Lehnert, H.; Matthews, R.N.; Randeva, H.S. Orexin receptor expression inhuman adipose tissue: Effects of Orexin-A and Orexin-B.J. Endocrinology 2006, 191, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Valenzano, A.; Polito, R.; Trimigno, V.; Di Palma, A.; Moscatelli, F.; Corso, G.; Sessa, F.; Salerno, M.; Montana, A.; Di Nunno, N.; et al. Effects of Very Low Calorie Ketogenic Diet on the Orexinergic System, Visceral Adipose Tissue, and ROS Production. Antioxidants 2019, 13, 643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Odgen, C.L.; Carroll, M.D.; Kit, B.K.; Flegal, K.M. Prevalence of obesity among adults: United States, 2011–2012. NCHS Data Brief 2013, 131, 1–8. [Google Scholar]
- Buchwald, H.; Estok, R.; Fahrbach, K.; Banel, D.; Jensen, M.D.; Pories, W.J.; Bantle, J.P.; Sledge, I. Weightand type 2 diabetes after bariatric surgery: Systematic review and meta-analysis. Am. J. Med. 2009, 122, 248–256. [Google Scholar] [CrossRef]
- Chang, S.H.; Stoll, C.R.; Song, J.; Varela, J.E.; Eagon, C.J.; Colditz, G.A. The effectiveness and risks of bariatric surgery: An updated systematic review and meta-analysis, 2003–2012. JAMA Surg. 2014, 149, 275–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zsombok, A. Automic control and bariatric procedures. Review 2013, 177, 81–86. [Google Scholar]
- Foschi, D.; de Luca, M.; Sarro, G.; Bernante, P.; Zappa, M.A.; Moroni, R.; Navarra, G.; Foletto, M.; Ceriani, V.; Piazza, L.; et al. Linea Guida di Chirurgia Dell’obesita-Linee Guida Di Buona Pratica Clinica Nella Selezione, Nella Preparazione, Nel Trattamento Perioperatorio e a Lungo Termine Del Paziente Obeso Sottoposto a Chirurgia Bariatrica; Edizione: Treviso, Italy, 2016. [Google Scholar]
- Angrisani, L.; Santonicola, A.; Iovino, P.; Vitiello, A.; Zundel, N.; Buchwald, H.; Scopinaro, N. Bariatric surgery and endoluminal procedures: IFSO Worldwide Survery 2014. Obes. Surg. 2017, 27, 2279–2289. [Google Scholar] [CrossRef]
- Svane, M.S.; Bojsen-Møller, K.N.; Martinussen, C.; van Hall, G.; Holst, J.J.; Madsbad, S. Postprandial Nutrient Handling and Gastrointestinal Hormone Secretion After Roux-en-Y Gastric Bypass vs Sleeve Gastrectomy. Orig. Res. Full Rep. Clin. Aliment. Tract 2019, 156, 1627–1641. [Google Scholar] [CrossRef] [Green Version]
- Saverio, F.; Elghadban, H.; Parodi, C.; Pagliardi, F.; Weiss, A. BPD and BPD-DS Concerns and Results. In Advanced Bariatric and Metabolic Surgery; IntechOpen: London, UK, 2012. [Google Scholar] [CrossRef] [Green Version]
- Poirier, P.; Cornier, M.A.; Mazzone, T.; Stiles, S.; Cummings, S.; Klein, S.; McCullough, P.A.; Fielding, C.R.; Franklin, B.A. American Heart Association Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Bariatricsurgery and cardiovascular risk factors: A scientific statement from the AmericanHeart Association. Circulation 2011, 123, 1683–1701. [Google Scholar] [CrossRef]
- O’Brien, P.E.; McPhail, T.; Chaston, T.B.; Dixon, J.B. Systematic review ofmedium-term weight loss after bariatric operations. Obes. Surg. 2006, 16, 1032–1040. [Google Scholar] [CrossRef]
- Ganjavi, H.; Shapiro, C.M. Hypocretin/Orexin: A molecular link betweensleep, energy regulation, and pleasure. J. Neuropsychiatry Clin. Neurosci. 2007, 19, 413–419. [Google Scholar] [CrossRef]
- Heinonen, M.V.; Purhonen, A.K.; Miettinen, P.; Pääkkönen, M.; Pirinen, E.; Alhava, E.; Akerman, K.; Herzig, K.H. Apelin, Orexin-A and leptin plasma levels in morbid obesity and effect of gastric banding. Regul. Pept. 2005, 130, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Kirchgessner, A.L.; Liu, M. Orexin synthesis and response in the gut. Neuron 1999, 24, 941–951. [Google Scholar] [CrossRef] [Green Version]
- Edwards, C.M.; Abusnana, S.; Sunter, D.; Murphy, K.G.; Ghatei, M.A.; Bloom, S.R. The effect of the Orexins on food intake: Comparison with neuropeptide Y, melanin-concentrating hormone and galanin. J. Endocrinol. 1999, 160, R7–R12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burdyga, G.; Lal, S.; Spiller, D.; Jiang, W.; Thompson, D.; Attwood, S.; Saeed, S.; Grundy, D.; Varro, A.; Dimaline, R.; et al. Localization of Orexin-1 receptors to vagal afferent neurons in the rat and humans. Gastroenterology 2003, 124, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Miegueu, P.; Lapointe, M.; Poirier, P.; Martin, J.; Bastien, M.; Tiwari, S.; Cianflone, K. Acute Post-Bariatric Surgery Increase in Orexin Levels Associates with Preferential Lipid Profile Improvement. PLoS ONE 2014, 9, e84803. [Google Scholar] [CrossRef] [PubMed]
- Luo, N.; Liu, J.; Chung, B.H.; Yang, Q.; Klein, R.L.; Garvey, W.T.; Fu, Y. Macrophage Adiponectinexpression improves insulin sensitivity and protects against inflammation and atherosclerosis. Diabetes 2010, 59, 791–799. [Google Scholar] [CrossRef] [Green Version]
- Federico, A.; Dallio, M.; Tolone, S.; Gravina, A.G.; Patrone, V.; Romano, M.; Tuccillo, C.; Mozzillo, A.L.; Amoroso, V.; Misso, G.; et al. Gastrointestinal Hormones, Intestinal Microbiota and Metabolic Homeostasis in Obese Patients: Effect of Bariatric Surgery. In Vivo 2016, 30, 21–30. [Google Scholar]
- Cigdem, A.P.; Kocael, A.; Tabak, O.; Taskin, M.; Zengin, K.; Uzun, H. Plasma ghrelin, leptin, and Orexin-A levels and insulin resistance after laparoscopic gastric band applications in morbidly obese patients. Minerva Med. 2013, 104, 309–316. [Google Scholar]
- Amin, R.; Simakajornboon, N.; Szczesniak, R.; Inge, T. Early improvement in obstructive sleep apnea and increase in Orexin levels after bariatric surgery in adolescents and young adults. Surg. Obes. Relat. Dis. 2017, 13, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Rubino, F.; Schauer, P.R.; Lee, K.M.; Cummings, D.E. Metabolic surgery to treat type 2 diabetes: Clinical outcomes and mecha- nisms of action. Annu. Rev. Med. 2010, 61, 393–411. [Google Scholar] [CrossRef] [PubMed]
- Pournaras, D.J.; Aasheim, E.T.; Bueter, M.; Ahmed, A.R.; Welbourn, R.; Olbers, T.; le Roux, C.W. Effect of bypassing the proximal gut on gut hormones involved with gly-cemic control and weight loss. Surg. Obes. Relat. Dis. 2012, 8, 371–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salman, A.A.; Sultan, A.A.E.A.; Abdallah, A.; Abdelsalam, A.; Mikhail, H.M.S.; Tourky, M. Effect of weight loss induced by laparoscopic sleeve gastrectomy on liver histology and serum adipokine levels. J. Gastroenterol. Hepatol. 2020, 35, 1769–1773. [Google Scholar] [CrossRef]
- Askarpour, M.; Alizadeh, S.; Hadi, A.; Symonds, M.E.; Miraghajani, M.; Sheikhi, A.; Ghaedi, E. Effect of Bariatric Surgery on the Circulating Level of Adiponectin, Chemerin, Plasminogen Activator Inhibitor-1, Leptin, Resistin, and Visfatin: A Systematic Review and Meta-Analysis. Horm. Metab. Res. 2020, 52, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Cavaliere, G.; Viggiano, E.; Trinchese, G.; De Filippo, C.; Messina, A.; Monda, V.; Valenzano, A.; Cincione, R.I.; Zammit, C.; Cimmino, F.; et al. Long feeding high-fat diet induces hypothalamic oxidative stress and inflammation, and prolonged hypothalamic AMPK activation in rat animal model. Front. Physiol. 2018, 9, 818. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
Bariatric Surgery | |
---|---|
Adipose Tissue | Central Nervous System |
Increased Adiponectin | Increased Orexin-A |
Decreased Leptin | Increased Vagal Tone |
Decreased Insulin Resistance | Orexin-A Controls Appetite |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valenzano, A.; Tartaglia, N.; Ambrosi, A.; Tafuri, D.; Monda, M.; Messina, A.; Sessa, F.; Campanozzi, A.; Monda, V.; Cibelli, G.; et al. The Metabolic Rearrangements of Bariatric Surgery: Focus on Orexin-A and the Adiponectin System. J. Clin. Med. 2020, 9, 3327. https://doi.org/10.3390/jcm9103327
Valenzano A, Tartaglia N, Ambrosi A, Tafuri D, Monda M, Messina A, Sessa F, Campanozzi A, Monda V, Cibelli G, et al. The Metabolic Rearrangements of Bariatric Surgery: Focus on Orexin-A and the Adiponectin System. Journal of Clinical Medicine. 2020; 9(10):3327. https://doi.org/10.3390/jcm9103327
Chicago/Turabian StyleValenzano, Anna, Nicola Tartaglia, Antonio Ambrosi, Domenico Tafuri, Marcellino Monda, Antonietta Messina, Francesco Sessa, Angelo Campanozzi, Vincenzo Monda, Giuseppe Cibelli, and et al. 2020. "The Metabolic Rearrangements of Bariatric Surgery: Focus on Orexin-A and the Adiponectin System" Journal of Clinical Medicine 9, no. 10: 3327. https://doi.org/10.3390/jcm9103327
APA StyleValenzano, A., Tartaglia, N., Ambrosi, A., Tafuri, D., Monda, M., Messina, A., Sessa, F., Campanozzi, A., Monda, V., Cibelli, G., Messina, G., & Polito, R. (2020). The Metabolic Rearrangements of Bariatric Surgery: Focus on Orexin-A and the Adiponectin System. Journal of Clinical Medicine, 9(10), 3327. https://doi.org/10.3390/jcm9103327