Virtual Reality in the Assessment, Understanding and Treatment of Mental Health Disorders
Abstract
:Author Contributions
Funding
Conflicts of Interest
References
- Riva, G. Virtual reality in clinical psychology. Ref. Modul. Neurosci. Biobehav. Psychol. 2020. [Google Scholar] [CrossRef]
- Parsons, T.; Gaggioli, A.; Riva, G. Virtual reality for research in social neuroscience. Brain Sci. 2017, 7, 42. [Google Scholar] [CrossRef] [PubMed]
- Riva, G.; Wiederhold, B.K.; Mantovani, F. Neuroscience of virtual reality: From virtual exposure to embodied medicine. Cyberpsychol. Behav. Soc. Netw. 2019, 22, 82–96. [Google Scholar] [CrossRef]
- Riva, G.; Baños, R.M.; Botella, C.; Mantovani, F.; Gaggioli, A. Transforming experience: The potential of augmented reality and virtual reality for enhancing personal and clinical change. Front. Psychiatry 2016, 7, 164. [Google Scholar] [CrossRef] [PubMed]
- Schubring, D.; Kraus, M.; Stolz, C.; Weiler, N.; Keim, D.A.; Schupp, H. Virtual reality potentiates Emotion and task effects of alpha/beta brain oscillations. Brain Sci. 2020, 10, 537. [Google Scholar] [CrossRef] [PubMed]
- Muratore, M.; Tuena, C.; Pedroli, E.; Cipresso, P.; Riva, G. Virtual reality as a possible tool for the assessment of self-awareness. Front. Behav. Neurosci. 2019, 13, 62. [Google Scholar] [CrossRef] [Green Version]
- Riva, G. Virtual reality. In The Palgrave Encyclopedia of the Possible; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–10. [Google Scholar]
- Valmaggia, L. The use of virtual reality in psychosis research and treatment. World Psychiatry 2017, 16, 246–247. [Google Scholar] [CrossRef] [Green Version]
- Jerdan, S.W.; Grindle, M.; van Woerden, H.C.; Kamel Boulos, M.N. Head-mounted virtual reality and mental health: Critical review of current research. JMIR Serious Games 2018, 6, e14. [Google Scholar] [CrossRef] [Green Version]
- Lindner, P.; Miloff, A.; Hamilton, W.; Reuterskiöld, L.; Andersson, G.; Powers, M.B.; Carlbring, P. Creating state of the art, next-generation Virtual Reality exposure therapies for anxiety disorders using consumer hardware platforms: Design considerations and future directions. Cogn. Behav. Ther. 2017, 46, 404–420. [Google Scholar] [CrossRef]
- Zanier, E.R.; Zoerle, T.; Di Lernia, D.; Riva, G. Virtual reality for traumatic brain injury. Front. Neurol. 2018, 9, 345. [Google Scholar] [CrossRef] [Green Version]
- Realdon, O.; Serino, S.; Savazzi, F.; Rossetto, F.; Cipresso, P.; Parsons, T.D.; Cappellini, G.; Mantovani, F.; Mendozzi, L.; Nemni, R.; et al. An ecological measure to screen executive functioning in MS: The picture interpretation test (PIT) 360°. Sci. Rep. 2019, 9, 5690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carl, E.; Stein, A.T.; Levihn-Coon, A.; Pogue, J.R.; Rothbaum, B.; Emmelkamp, P.; Asmundson, G.J.; Carlbring, P.; Powers, M.B. Virtual reality exposure therapy for anxiety and related disorders: A meta-analysis of randomized controlled trials. J. Anxiety Disord. 2019, 61, 27–36. [Google Scholar] [CrossRef]
- Meyerbröker, K.; Emmelkamp, P.M. Virtual reality exposure therapy in anxiety disorders: A systematic review of process-and-outcome studies. Depress. Anxiety 2010, 27, 933–944. [Google Scholar] [CrossRef] [PubMed]
- Opriş, D.; Pintea, S.; García-Palacios, A.; Botella, C.; Szamosközi, Ş.; David, D. Virtual reality exposure therapy in anxiety disorders: A quantitative meta-analysis. Depress. Anxiety 2012, 29, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Powers, M.B.; Emmelkamp, P.M. Virtual reality exposure therapy for anxiety disorders: A meta-analysis. J. Anxiety Disord. 2008, 22, 561–569. [Google Scholar] [CrossRef]
- Cavalera, C.; Pepe, A.; Zurloni, V.; Diana, B.; Realdon, O. A short version of the state shame and guilt scale (SSGS-8). TPM Test. Psychom. Methodol. Appl. Psychol. 2017, 24, 99–106. [Google Scholar]
- Serino, S.; Triberti, S.; Villani, D.; Cipresso, P.; Gaggioli, A.; Riva, G. Toward a validation of cyber-interventions for stress disorders based on stress inoculation training: A systematic review. Virtual Real. 2014, 18, 73–87. [Google Scholar] [CrossRef]
- Botella, C.; Fernández-Álvarez, J.; Guillén, V.; García-Palacios, A.; Baños, R. Recent progress in virtual reality exposure therapy for phobias: A systematic review. Curr. Psychiatry Rep. 2017, 19, 42. [Google Scholar] [CrossRef] [PubMed]
- Botella, C.; Serrano, B.; Baños, R.M.; Garcia-Palacios, A. Virtual reality exposure-based therapy for the treatment of post-traumatic stress disorder: A review of its efficacy, the adequacy of the treatment protocol, and its acceptability. Neuropsychiatr. Dis. Treat. 2015, 11, 2533. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, R.; Pedrozo, A.L.; Coutinho, E.S.F.; Figueira, I.; Ventura, P. Efficacy of virtual reality exposure therapy in the treatment of PTSD: A systematic review. PLoS ONE 2012, 7, e48469. [Google Scholar] [CrossRef] [Green Version]
- Guitard, T.; Bouchard, S.; Bélanger, C.; Berthiaume, M. Exposure to a standardized catastrophic scenario in virtual reality or a personalized scenario in imagination for generalized anxiety disorder. J. Clin. Med. 2019, 8, 309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peñate, W.; Rivero, F.; Viña, C.; Herrero, M.; Betancort, M.; De la Fuente, J.; Álvarez-Pérez, Y.; Fumero, A. The Equivalence between virtual and real feared stimuli in a phobic adult sample: A neuroimaging study. J. Clin. Med. 2019, 8, 2139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montana, J.I.; Matamala-Gomez, M.; Maisto, M.; Mavrodiev, P.A.; Cavalera, C.M.; Diana, B.; Mantovani, F.; Realdon, O. The benefits of emotion regulation interventions in virtual Reality for the improvement of wellbeing in adults and older adults: A systematic review. J. Clin. Med. 2020, 9, 500. [Google Scholar] [CrossRef] [Green Version]
- López-Valverde, N.; Muriel Fernández, J.; López-Valverde, A.; Valero Juan, L.F.; Ramírez, J.M.; Flores Fraile, J.; Herrero Payo, J.; Blanco Antona, L.A.; Macedo de Sousa, B.; Bravo, M. Use of virtual reality for the Management of anxiety and pain in dental treatments: Systematic review and meta-analysis. J. Clin. Med. 2020, 9, 3086. [Google Scholar] [CrossRef]
- Bohil, C.J.; Alicea, B.; Biocca, F.A. Virtual reality in neuroscience research and therapy. Nat. Rev. Neurosci. 2011, 12, 752–762. [Google Scholar] [CrossRef]
- Perez-Marcos, D.; Bieler-Aeschlimann, M.; Serino, A. Virtual reality as a vehicle to empower motor-cognitive neurorehabilitation. Front. Psychol. 2018, 9, 2120. [Google Scholar] [CrossRef]
- Repetto, C.; Serino, S.; Macedonia, M.; Riva, G. Virtual reality as an embodied tool to enhance episodic memory in elderly. Front. Psychol. 2016, 7, 1839. [Google Scholar] [CrossRef] [Green Version]
- Riva, G.; Mantovani, F.; Gaggioli, A. Presence and rehabilitation: Toward second-generation virtual reality applications in neuropsychology. J. Neuroeng. Rehabil. 2004, 1, 9. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, A.S.; Kim, G.J. A SWOT analysis of the field of virtual reality rehabilitation and therapy. Presence Teleoper. Virtual Environ. 2005, 14, 119–146. [Google Scholar] [CrossRef]
- Parsons, T.D.; Carlew, A.R.; Magtoto, J.; Stonecipher, K. The potential of function-led virtual environments for ecologically valid measures of executive function in experimental and clinical neuropsychology. Neuropsychol. Rehabil. 2017, 27, 777–807. [Google Scholar] [CrossRef] [PubMed]
- Coyle, H.; Traynor, V.; Solowij, N. Computerized and virtual reality cognitive training for individuals at high risk of cognitive decline: Systematic review of the literature. Am. J. Geriatr. Psychiatry 2015, 23, 335–359. [Google Scholar] [CrossRef] [Green Version]
- García-Betances, R.I.; Arredondo Waldmeyer, M.T.; Fico, G.; Cabrera-Umpiérrez, M.F. A succinct overview of virtual reality technology use in Alzheimer’s disease. Front. Aging Neurosci. 2015, 7, 80. [Google Scholar]
- Clay, F.; Howett, D.; FitzGerald, J.; Fletcher, P.; Chan, D.; Price, A. Use of immersive virtual reality in the assessment and treatment of Alzheimer’s disease: A systematic review. J. Alzheimer’s Dis. 2020, 75, 1–21. [Google Scholar]
- Pedroli, E.; Serino, S.; Cipresso, P.; Pallavicini, F.; Riva, G. Assessment and rehabilitation of neglect using virtual reality: A systematic review. Front. Behav. Neurosci. 2015, 9, 226. [Google Scholar] [CrossRef] [Green Version]
- Tuena, C.; Serino, S.; Dutriaux, L.; Riva, G.; Piolino, P. Virtual enactment effect on memory in young and aged populations: A systematic review. J. Clin. Med. 2019, 8, 620. [Google Scholar] [CrossRef]
- Montana, J.I.; Tuena, C.; Serino, S.; Cipresso, P.; Riva, G. Neurorehabilitation of spatial memory using virtual environments: A systematic review. J. Clin. Med. 2019, 8, 1516. [Google Scholar] [CrossRef] [Green Version]
- Brooks, B.M. The specificity of memory enhancement during interaction with a virtual environment. Memory 1999, 7, 65–78. [Google Scholar] [CrossRef]
- Bevilacqua, R.; Maranesi, E.; Riccardi, G.R.; Di Donna, V.; Pelliccioni, P.; Luzi, R.; Lattanzio, F.; Pelliccioni, G. Non-immersive virtual reality for rehabilitation of the older people: A systematic review into efficacy and effectiveness. J. Clin. Med. 2019, 8, 1882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thapa, N.; Park, H.J.; Yang, J.-G.; Son, H.; Jang, M.; Lee, J.; Kang, S.W.; Park, K.W.; Park, H. The effect of a virtual reality-based intervention program on cognition in older adults with mild cognitive impairment: A randomized control trial. J. Clin. Med. 2020, 9, 1283. [Google Scholar] [CrossRef]
- Cabinio, M.; Rossetto, F.; Isernia, S.; Saibene, F.L.; Di Cesare, M.; Borgnis, F.; Pazzi, S.; Migliazza, T.; Alberoni, M.; Blasi, V. The use of a virtual reality platform for the assessment of the memory decline and the hippocampal neural injury in subjects with mild cognitive impairment: The validity of smart aging serious game (SASG). J. Clin. Med. 2020, 9, 1355. [Google Scholar] [CrossRef]
- Alcañiz Raya, M.; Marín-Morales, J.; Minissi, M.E.; Teruel Garcia, G.; Abad, L.; Chicchi Giglioli, I.A. Machine learning and virtual reality on body movements’ behaviors to classify children with autism spectrum disorder. J. Clin. Med. 2020, 9, 1260. [Google Scholar] [CrossRef] [PubMed]
- Pedroli, E.; La Paglia, F.; Cipresso, P.; La Cascia, C.; Riva, G.; La Barbera, D. A computational approach for the assessment of executive functions in patients with obsessive-compulsive disorder. J. Clin. Med. 2019, 8, 1975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riva, G.; Gaudio, S.; Serino, S.; Dakanalis, A.; Ferrer-García, M.; Gutiérrez-Maldonado, J. Virtual reality for the treatment of body image disturbances in eating and weight disorders. In Body Image, Eating, and Weight; Springer: Berlin/Heidelberg, Germany, 2018; pp. 333–351. [Google Scholar]
- Riva, G.; Gutiérrez-Maldonado, J.; Dakanalis, A.; Ferrer-García, M. Virtual reality in the assessment and treatment of weight-related disorders. In Virtual Reality for Psychological and Neurocognitive Interventions; Rizzo, A.S., Bouchard, S., Eds.; Springer: New York, NY, USA, 2019; pp. 163–193. [Google Scholar]
- Serino, S.; Dakanalis, A. Bodily illusions and weight-related disorders: Clinical insights from experimental research. Ann. Phys. Rehabil. Med. 2017, 60, 217–219. [Google Scholar] [CrossRef] [PubMed]
- Serino, S.; Pedroli, E.; Keizer, A.; Triberti, S.; Dakanalis, A.; Pallavicini, F.; Chirico, A.; Riva, G. Virtual reality body swapping: A tool for modifying the allocentric memory of the body. Cyberpsychol. Behav. Soc. Netw. 2016, 19, 127–133. [Google Scholar] [CrossRef]
- Keizer, A.; van Elburg, A.; Helms, R.; Dijkerman, H.C. A virtual reality full body illusion improves body image disturbance in anorexia nervosa. PLoS ONE 2016, 11, e0163921. [Google Scholar] [CrossRef]
- Porras Garcia, B.; Ferrer Garcia, M.; Olszewska, A.; Yilmaz, L.; González Ibañez, C.; Gracia Blanes, M.; Gültekin, G.; Serrano Troncoso, E.; Gutiérrez Maldonado, J. Is this my own body? Changing the perceptual and affective body image experience among college students using a new virtual reality embodiment-based technique. J. Clin. Med. 2019, 8, 925. [Google Scholar] [CrossRef] [Green Version]
- Scarpina, F.; Serino, S.; Keizer, A.; Chirico, A.; Scacchi, M.; Castelnuovo, G.; Mauro, A.; Riva, G. The effect of a virtual-reality full-body illusion on body representation in obesity. J. Clin. Med. 2019, 8, 1330. [Google Scholar] [CrossRef] [Green Version]
- Provenzano, L.; Porciello, G.; Ciccarone, S.; Lenggenhager, B.; Tieri, G.; Marucci, M.; Dazzi, F.; Loriedo, C.; Bufalari, I. Characterizing body image distortion and bodily self-plasticity in anorexia nervosa via visuo-tactile stimulation in virtual reality. J. Clin. Med. 2020, 9, 98. [Google Scholar] [CrossRef] [Green Version]
- Matamala-Gomez, M.; Nierula, B.; Donegan, T.; Slater, M.; Sanchez-Vives, M.V. Manipulating the perceived shape and color of a virtual limb can modulate pain responses. J. Clin. Med. 2020, 9, 291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Välimäki, M.; Hätönen, H.M.; Lahti, M.E.; Kurki, M.; Hottinen, A.; Metsäranta, K.; Riihimäki, T.; Adams, C.E. Virtual reality for treatment compliance for people with serious mental illness. Cochrane Database Syst. Rev. 2014, 10. [Google Scholar] [CrossRef]
- Drori, G.; Bar-Tal, P.; Stern, Y.; Zvilichovsky, Y.; Salomon, R. UnReal? Investigating the sense of reality and psychotic symptoms with virtual reality. J. Clin. Med. 2020, 9, 1627. [Google Scholar] [CrossRef] [PubMed]
- Stern, Y.; Koren, D.; Moebus, R.; Panishev, G.; Salomon, R. Assessing the relationship between sense of agency, the bodily-self and stress: Four virtual-reality experiments in healthy individuals. J. Clin. Med. 2020, 9, 2931. [Google Scholar] [CrossRef] [PubMed]
PC Based | Mobile Based | Console Based | Standalone | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mobility Required | |||||||||||
System | Oculus Rift S | HTC Cosmos/ | Valve Index | HP Reverb G2 | Samsung Gear VR | Google Cardboard | Google Daydream | PlayStation VR | Xiaomi MI VR | Oculus Quest 2 | Lenovo VR Classroom 2 |
Vive Pro/ | |||||||||||
Pro Eye | |||||||||||
Cost (USD) | 399 | 699/ | 99 | 599 | 99 | 10–50 | 69–149 | 299 | 199 | 299 | 399 |
1199/ | |||||||||||
1599 | |||||||||||
Hardware Requirements | High-End PC (>1000 USD) | High-End PC (>1000 USD) | High-End PC (>1000 USD) | High-End PC (>1000 USD) | High-End Samsung Phone (>600 USD) | Middle/Highend Android phone or iPhone (>299 USD) | High-End Android Phone (>499 USD) | PS4 (299 USD) or PS4 Pro (399 USD) | None | None | None |
(Interna l Snapdragon 821 processor) | (Internal Snapdragon XR2 processor) | (Internal Snapdrag on 835 processor) | |||||||||
Resolution | 2560 × 1440 | 2880 × 1660 | 2880 × 1660 | 2160 × 2160 (per eye) | 2560 × 1440 | Depends on the phone (minimum 1024 × 768) | Depends on the phone (minimum 1920 × 1080) | 1920 × 1080 | 2560 × 1440 | 2560 × 1920 (per eye) | 2160 × 1920 |
Refresh Rate | 80 Hz | 90 Hz | 120/144Hz | 90 Hz | 60 Hz | 60 Hz | 90 Hz minimum | 120 Hz | 72 Hz | 90 Hz | 75 Hz |
Field of View | 115 degrees | 110 degrees | 130 degrees | 114 degrees | 101 degrees | from 70 degrees | 96 degrees | 100 degrees | 90 degrees | 100 degrees | 110 degrees |
Body Tracking | High: head tracking (rotation) and volumetric tracking (full room size—15 × 15 ft—movement) | High: head tracking (rotation) and volumetric tracking (full room size—15 × 15 ft—movement) | High: head tracking (rotation) and volumetric tracking (full room size—15 × 15 ft—movement) | High: head tracking (rotation) and volumetric tracking (full room size—15 ×15 ft—movement) | Medium: head tracking (rotation) | Medium: head tracking (rotation) | Medium: head tracking (rotation) | Medium/High: head tracking (rotation) and positional tracking (forward/backward) | Medium: head tracking (rotation) | Medium/High: head tracking (rotation) and volumetric tracking (full room size—15 × 15 ft—movement) | Medium/High: head tracking (rotation) |
User Interaction with VR | High (using controllers) | Very High (using controllers and eye tracking) | High (using controllers) | High (using controllers) | Medium (using gaze, a built-in pad or joystick) | Low (using gaze or a button) | Medium (using gaze or a joystick) | High (using a joystick or controllers) | Medium (using gaze, a built-in pad or joystick) | High (using controllers or hand tracking) | Medium (using gaze, a built-in pad or joystick) |
Software Availability | Oculus Store | Steam Store | Steam Store | Steam Store and Windows Mixed Reality Store | Oculus Store | Google Play or IOS Store | Google Play | PlayStation Store | Oculus Store | Oculus Store | Google Play and Lenovo ThinkReality |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riva, G.; Serino, S. Virtual Reality in the Assessment, Understanding and Treatment of Mental Health Disorders. J. Clin. Med. 2020, 9, 3434. https://doi.org/10.3390/jcm9113434
Riva G, Serino S. Virtual Reality in the Assessment, Understanding and Treatment of Mental Health Disorders. Journal of Clinical Medicine. 2020; 9(11):3434. https://doi.org/10.3390/jcm9113434
Chicago/Turabian StyleRiva, Giuseppe, and Silvia Serino. 2020. "Virtual Reality in the Assessment, Understanding and Treatment of Mental Health Disorders" Journal of Clinical Medicine 9, no. 11: 3434. https://doi.org/10.3390/jcm9113434
APA StyleRiva, G., & Serino, S. (2020). Virtual Reality in the Assessment, Understanding and Treatment of Mental Health Disorders. Journal of Clinical Medicine, 9(11), 3434. https://doi.org/10.3390/jcm9113434