Hyponatremia in Patients with Hematologic Diseases
Abstract
:1. Introduction
2. Pathophysiology
3. Causes of Hyponatremia in Hematologic Patients
3.1. Pseudohyponatremia
3.2. SIADH
3.3. Hypovolemia
3.4. Hyponatremia Related to Infections in Hematology
3.5. Hyponatremia Due to Disorders of Endocrine System and Metabolism in Hematology
3.6. Hyponatremia Related to Kidney Injury in Patients with Hematologic Diseases
3.7. Hyponatremia Related to Cardiac Disorders in Hematologic Patients
3.8. Hyponatremia Related to Liver Diseases in Hematologic Patients
3.9. Hyponatremia Related to Pharmacological Agents Used in the Treatment of Blood Diseases
4. Evaluation of Hyponatremia
5. Treatment of Hyponatremia
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Upadhyay, A.; Jaber, B.L.; Madias, N.E. Incidence and prevalence of hyponatremia. Am. J. Med. 2006, 119, S30–S35. [Google Scholar] [CrossRef] [PubMed]
- Mohan, S.; Gu, S.; Parikh, A.; Radhakrishnan, J. Prevalence of hyponatremia and association with mortality: Results from NHANES. Am. J. Med. 2013, 126, 1127–1137.e1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sterns, R.H. Disorders of plasma sodium—Causes, consequences, and correction. N. Engl. J. Med. 2015, 372, 55–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verbalis, J.G.; Barsony, J.; Sugimura, Y.; Tian, Y.; Adams, D.J.; Carter, E.A.; Resnick, H.E. Hyponatremia-induced osteoporosis. J. Bone Miner. Res. 2010, 25, 554–563. [Google Scholar] [CrossRef] [Green Version]
- Burst, V. Etiology and epidemiology of hyponatremia. Front. Horm. Res. 2019, 52, 24–35. [Google Scholar] [CrossRef]
- Li, Y.; Chen, X.; Shen, Z.; Wang, Y.; Hu, J.; Xu, J.; Shen, B.; Ding, X. Electrolyte and acid-base disorders in cancer patients and its impact on clinical outcomes: Evidence from a real-world study in China. Ren. Fail. 2020, 42, 234–243. [Google Scholar] [CrossRef] [Green Version]
- Alconcher, L.F.; Coccia, P.A.; Suarez, A.D.C.; Monteverde, M.L.; Perez, Y.G.M.G.; Carlopio, P.M.; Missoni, M.L.; Balestracci, A.; Principi, I.; Ramírez, F.B.; et al. Hyponatremia: A new predictor of mortality in patients with Shiga toxin-producing Escherichia coli hemolytic uremic syndrome. Pediatr. Nephrol. 2018, 33, 1791–1798. [Google Scholar] [CrossRef]
- Janczar, S.; Zalewska-Szewczyk, B.; Mlynarski, W. Severe hyponatremia in a single-center series of 84 homogenously treated children with acute lymphoblastic leukemia. J. Pediatr. Hematol. Oncol. 2017, 39, e54–e58. [Google Scholar] [CrossRef]
- Kobayashi, R.; Iguchi, A.; Nakajima, M.; Sato, T.; Yoshida, M.; Kaneda, M.; Suzuki, Y.; Mino, E.; Kuroki, F.; Kobayashi, K. Hyponatremia and syndrome of inappropriate antidiuretic hormone secretion complicating stem cell transplantation. Bone Marrow Transplant. 2004, 34, 975–979. [Google Scholar] [CrossRef]
- Castillo, J.J.; Glezerman, I.G.; Boklage, S.H.; Chiodo, J., 3rd; Tidwell, B.A.; Lamerato, L.E.; Schulman, K.L. The occurrence of hyponatremia and its importance as a prognostic factor in a cross-section of cancer patients. BMC Cancer 2016, 16, 564. [Google Scholar] [CrossRef] [Green Version]
- Marroncini, G.; Fibbi, B.; Errico, A.; Grappone, C.; Maggi, M.; Peri, A. Effects of low extracellular sodium on proliferation and invasive activity of cancer cells in vitro. Endocrine 2020, 67, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Rech, J.S.; Yao, K.; Bachmeyer, C.; Bailleul, S.; Javier, O.; Grateau, G.; Lionnet, F.; Steichen, O. Prognostic value of hyponatremia during acute painful episodes in sickle cell disease. Am. J. Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Xiao, Y.; Yu, X.; Zhou, J.; Zhang, Y. Early onset of syndrome of inappropriate antidiuretic hormone secretion (SIADH) after allogeneic haematopoietic stem cell transplantation: Case report and review of the literature. J. Int. Med. Res. 2010, 38, 705–710. [Google Scholar] [CrossRef] [PubMed]
- Gillum, D.M.; Linas, S.L. Water intoxication in a psychotic patient with normal renal water excretion. Am. J. Med. 1984, 77, 773–774. [Google Scholar] [CrossRef]
- Sahay, M.; Sahay, R. Hyponatremia: A practical approach. Indian J. Endocrinol. Metab. 2014, 18, 760–771. [Google Scholar] [CrossRef]
- Liamis, G.; Milionis, H.J.; Elisaf, M. Endocrine disorders: Causes of hyponatremia not to neglect. Ann. Med. 2011, 43, 179–187. [Google Scholar] [CrossRef]
- Berl, T. Impact of solute intake on urine flow and water excretion. J. Am. Soc. Nephrol. 2008, 19, 1076–1078. [Google Scholar] [CrossRef]
- Filippatos, T.D.; Liamis, G.; Elisaf, M.S. Ten pitfalls in the proper management of patients with hyponatremia. Postgrad. Med. 2016, 128, 516–522. [Google Scholar] [CrossRef]
- Liamis, G.; Liberopoulos, E.; Barkas, F.; Elisaf, M. Spurious electrolyte disorders: A diagnostic challenge for clinicians. Am. J. Nephrol. 2013, 38, 50–57. [Google Scholar] [CrossRef]
- Yavasoglu, I.; Tombuloglu, M.; Kadikoylu, G.; Donmez, A.; Cagirgan, S.; Bolaman, Z. Cholesterol levels in patients with multiple myeloma. Ann. Hematol. 2008, 87, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Burnside, N.J.; Alberta, L.; Robinson-Bostom, L.; Bostom, A. Type III hyperlipoproteinemia with xanthomas and multiple myeloma. J. Am. Acad. Dermatol. 2005, 53, S281–S284. [Google Scholar] [CrossRef] [PubMed]
- Chudy-Onwugaje, K.; Anyadike, N.; Tsirlin, Y. Severe Hypercholesterolemia: A unique presentation of non-hodgkin’s lymphoma in a patient with neurofibromatosis type 1. Case Rep. Gastrointest. Med. 2014, 2014, 579352. [Google Scholar] [CrossRef] [PubMed]
- Zawitkowska, J.; Lejman, M.; Zaucha-Prazmo, A.; Sekula, N.; Greczkowska-Chmiel, T.; Drabko, K. Severe drug-induced hypertriglyceridemia treated with plasmapheresis in children with acute lymphoblastic leukemia. Transfus. Apher. Sci. 2019, 58, 634–637. [Google Scholar] [CrossRef] [PubMed]
- Kothari, J.; Thomas, A.; Goldstone, A. Pseudohyponatraemia due to L-asparaginase-associated dyslipidaemia in T-cell lymphoblastic lymphoma. BMJ Case Rep. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Conley, B.A.; Egorin, M.J.; Sridhara, R.; Finley, R.; Hemady, R.; Wu, S.; Tait, N.S.; van Echo, D.A. Phase I clinical trial of all-trans-retinoic acid with correlation of its pharmacokinetics and pharmacodynamics. Cancer Chemother. Pharmacol. 1997, 39, 291–299. [Google Scholar] [CrossRef]
- Inamoto, Y.; Teramoto, T.; Shirai, K.; Tsukamoto, H.; Sanda, T.; Miyamura, K.; Yamamori, I.; Hirabayashi, N.; Kodera, Y. Severe hypercholesterolemia associated with decreased hepatic triglyceride lipase activity and pseudohyponatremia in patients after allogeneic stem cell transplantation. Int. J. Hematol. 2005, 82, 362–366. [Google Scholar] [CrossRef]
- Joukhadar, R.; Chiu, K. Severe hypercholesterolemia in patients with graft-vs-host disease affecting the liver after stem cell transplantation. Endocr. Pract. 2012, 18, 90–97. [Google Scholar] [CrossRef]
- Li, J.; Wang, Q.; Zheng, W.; Ma, J.; Zhang, W.; Wang, W.; Tian, X. Hemophagocytic lymphohistiocytosis: Clinical analysis of 103 adult patients. Medicine 2014, 93, 100–105. [Google Scholar] [CrossRef]
- Jordan, M.B.; Allen, C.E.; Weitzman, S.; Filipovich, A.H.; McClain, K.L. How I treat hemophagocytic lymphohistiocytosis. Blood 2011, 118, 4041–4052. [Google Scholar] [CrossRef] [Green Version]
- Gupta, N.; Kaur, H.; Wajid, S. Renal amyloidosis: An update on diagnosis and pathogenesis. Protoplasma 2020. [Google Scholar] [CrossRef]
- Joven, J.; Villabona, C.; Vilella, E.; Masana, L.; Albertí, R.; Vallés, M. Abnormalities of lipoprotein metabolism in patients with the nephrotic syndrome. N. Engl. J. Med. 1990, 323, 579–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wheeler, D.C.; Bernard, D.B. Lipid abnormalities in the nephrotic syndrome: Causes, consequences, and treatment. Am. J. Kidney Dis. 1994, 23, 331–346. [Google Scholar] [CrossRef]
- Vaziri, N.D. Disorders of lipid metabolism in nephrotic syndrome: Mechanisms and consequences. Kidney Int. 2016, 90, 41–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Moshary, M.; Al-Mussaed, E.; Khan, A. Prevalence of transfusion transmitted infections and the quality of life in β-thalassemia major patients. Cureus 2019, 11, e6129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akhtar, S.; Nasir, J.A.; Hinde, A. The prevalence of hepatitis C virus infection in β-thalassemia patients in Pakistan: A systematic review and meta-analysis. BMC Public Health 2020, 20, 587. [Google Scholar] [CrossRef]
- Vo, H.; Gosmanov, A.R.; Garcia-Rosell, M.; Wall, B.M. Pseudohyponatremia in acute liver disease. Am. J. Med. Sci. 2013, 345, 62–64. [Google Scholar] [CrossRef]
- Liamis, G.; Filippatos, T.D.; Liontos, A.; Elisaf, M.S. Hyponatremia in patients with liver diseases: Not just a cirrhosis-induced hemodynamic compromise. Hepatol. Int. 2016, 10, 762–772. [Google Scholar] [CrossRef]
- Decaux, O.; Laurat, E.; Perlat, A.; Cazalets, C.; Jego, P.; Grosbois, B. Systemic manifestations of monoclonal gammopathy. Eur. J. Intern. Med. 2009, 20, 457–461. [Google Scholar] [CrossRef]
- Liamis, G.; Megapanou, E.; Elisaf, M.; Milionis, H. Hyponatremia-inducing drugs. Front. Horm. Res. 2019, 52, 167–177. [Google Scholar] [CrossRef]
- Goldwasser, P.; Ayoub, I.; Barth, R.H. Pseudohypernatremia and pseudohyponatremia: A linear correction. Nephrol. Dial. Transpl. 2015, 30, 252–257. [Google Scholar] [CrossRef] [Green Version]
- Dimeski, G.; Morgan, T.J.; Presneill, J.J.; Venkatesh, B. Disagreement between ion selective electrode direct and indirect sodium measurements: Estimation of the problem in a tertiary referral hospital. J. Crit. Care 2012, 27, 316–326.e329. [Google Scholar] [CrossRef]
- Ellison, D.H.; Berl, T. Clinical practice. The syndrome of inappropriate antidiuresis. N. Engl. J. Med. 2007, 356, 2064–2072. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, N.; Tanaka, S.; Watanabe, Y.; Tokuyama, W.; Hiruta, N.; Ohwada, C.; Sakaida, E.; Nakaseko, C.; Tatsuno, I. Syndrome of inappropriate antidiuretic hormone secretion in a patient with mucosa-associated lymphoid tissue lymphoma. Intern. Med. 2017, 56, 3225–3229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abraham, A.; Shafi, F.; Iqbal, M.; Kollipara, R.; Rouf, E. Syndrome of inappropriate antidiuretic hormone due to multiple myeloma. Mo. Med. 2011, 108, 377–379. [Google Scholar]
- Braden, G.L.; Mikolich, D.J.; White, C.F.; Germain, M.J.; Fitzgibbons, J.P. Syndrome of inappropriate antidiuresis in Waldenstrom’s macroglobulinemia. Am. J. Med. 1986, 80, 1242–1244. [Google Scholar] [CrossRef]
- Yamada, C.; Yoneda, C.; Ogino, J.; Fukushima, S.; Kodama, S.; Asano, C.; Masuda, M.; Horie-Tajima, K.; Toyonaga, A.; Hiroshima, K.; et al. An autopsy case of macroglobulinemia complicated with syndrome of inappropriate secretion of ADH (SIADH) like hyponatremia, hypopituitarism and AL amyloidosis. Endocr. J. 2014, 61, 417–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filippatos, T.D.; Milionis, H.J.; Elisaf, M.S. Alterations in electrolyte equilibrium in patients with acute leukemia. Eur. J. Haematol. 2005, 75, 449–460. [Google Scholar] [CrossRef] [PubMed]
- Joshi, H.; Nagumantry, S.; Pierres, F.; Oyibo, S.O.; Sagi, S.V. Difficult-to-treat syndrome of inappropriate antidiuretic hormone secretion in a patient with secondary central nervous system lymphoma. Cureus 2019, 11, e3905. [Google Scholar] [CrossRef] [Green Version]
- Swart, R.M.; Hoorn, E.J.; Betjes, M.G.; Zietse, R. Hyponatremia and inflammation: The emerging role of interleukin-6 in osmoregulation. Nephron. Physiol. 2011, 118, 45–51. [Google Scholar] [CrossRef]
- Malinowska, I.; Machaczka, M.; Popko, K.; Siwicka, A.; Salamonowicz, M.; Nasilowska-Adamska, B. Hemophagocytic syndrome in children and adults. Arch. Immunol. Ther. Exp. 2014, 62, 385–394. [Google Scholar] [CrossRef] [Green Version]
- Suarez, C.R.; Black, L.E., 3rd; Hurley, R.M. Elevated lead levels in a patient with sickle cell disease and inappropriate secretion of antidiuretic hormone. Pediatr. Emerg. Care 1992, 8, 88–90. [Google Scholar] [CrossRef] [PubMed]
- Domingos, I.F.; Pereira-Martins, D.A.; Sobreira, M.; Oliveira, R.T.D.; Alagbe, A.E.; Lanaro, C.; Albuquerque, D.M.; Blotta, M.; Araujo, A.S.; Costa, F.F.; et al. High levels of proinflammatory cytokines IL-6 and IL-8 are associated with a poor clinical outcome in sickle cell anemia. Ann. Hematol. 2020, 99, 947–953. [Google Scholar] [CrossRef]
- Valle Feijóo, M.L.; Bermúdez Sanjurjo, J.R.; González Vázquez, L.; Rey Martínez, M.; de la Fuente Aguado, J. Abdominal pain and syndrome of inappropriate antidiuretic hormone secretion as clinical presentation of acute intermittent porphyria. Rev. Clin. Esp. 2015, 215, 349–351. [Google Scholar] [CrossRef] [PubMed]
- Festuccia, F.; Polci, R.; Pugliese, F.; Gargiulo, A.; Cinotti, G.A.; Menè, P. Syndrome of inappropriate ADH secretion: A late complication of hemopoietic stem cell allograft. G Ital. Nefrol. 2002, 19, 353–360. [Google Scholar] [PubMed]
- Tsutsumi, Y.; Shiratori, S.; Nakata, A.; Kawamura, T.; Mashiko, S.; Ibata, M.; Mori, A.; Tanaka, J.; Asaka, M.; Imamura, M.; et al. Hyponatremia after administration of conditioning regimen in myelodysplastic syndrome with empty sella after glandula pituitaria surgery. Ann. Hematol. 2007, 86, 843–844. [Google Scholar] [CrossRef] [PubMed]
- Azuma, T.; Narumi, H.; Kojima, K.; Nawa, Y.; Hara, M. Hyponatremia during administration of tacrolimus in an allogeneic bone marrow transplant recipient. Int. J. Hematol. 2003, 78, 268–269. [Google Scholar] [CrossRef]
- Suzuki, Y.; Kobayashi, R.; Iguchi, A.; Sato, T.; Kaneda, M.; Kobayashi, K.; Ariga, T. The syndrome of inappropriate secretion of antidiuretic hormone associated with SCT: Clinical differences following SCT using cord blood and BM/peripheral blood. Bone Marrow Transplant. 2008, 42, 743–748. [Google Scholar] [CrossRef] [Green Version]
- Nagler, A.; Bishara, A.; Brautbar, C.; Barak, V. Dysregulation of inflammatory cytokines in unrelated bone marrow transplantation. Cytokines Cell Mol. Ther. 1998, 4, 161–167. [Google Scholar]
- Au, W.Y.; Ma, S.Y.; Cheng, V.C.; Ooi, C.G.; Lie, A.K. Disseminated zoster, hyponatraemia, severe abdominal pain and leukaemia relapse: Recognition of a new clinical quartet after bone marrow transplantation. Br. J. Dermatol. 2003, 149, 862–865. [Google Scholar] [CrossRef]
- McIlwaine, L.M.; Fitzsimons, E.J.; Soutar, R.L. Inappropriate antidiuretic hormone secretion, abdominal pain and disseminated varicella-zoster virus infection: An unusual and fatal triad in a patient 13 months post Rituximab and autologous stem cell transplantation. Clin. Lab. Haematol. 2001, 23, 253–254. [Google Scholar] [CrossRef]
- Szabó, F.; Horvath, N.; Seimon, S.; Hughes, T. Inappropriate antidiuretic hormone secretion, abdominal pain and disseminated varicella-zoster virus infection: An unusual triad in a patient 6 months post mini-allogeneic peripheral stem cell transplant for chronic myeloid leukemia. Bone Marrow Transplant. 2000, 26, 231–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rau, R.; Fitzhugh, C.D.; Baird, K.; Cortez, K.J.; Li, L.; Fischer, S.H.; Cowen, E.W.; Balow, J.E.; Walsh, T.J.; Cohen, J.I.; et al. Triad of severe abdominal pain, inappropriate antidiuretic hormone secretion, and disseminated varicella-zoster virus infection preceding cutaneous manifestations after hematopoietic stem cell transplantation: Utility of PCR for early recognition and therapy. Pediatr. Infect. Dis. J. 2008, 27, 265–268. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.P.; Welt, L.G.; Sims, E.A.; Orloff, J.; Needham, J. A salt-wasting syndrome associated with cerebral disease. Trans. Assoc. Am. Physicians 1950, 63, 57–64. [Google Scholar] [PubMed]
- Cerda-Esteve, M.; Cuadrado-Godia, E.; Chillaron, J.J.; Pont-Sunyer, C.; Cucurella, G.; Fernandez, M.; Goday, A.; Cano-Perez, J.F.; Rodriguez-Campello, A.; Roquer, J. Cerebral salt wasting syndrome: Review. Eur. J. Intern. Med. 2008, 19, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.C.; Binder, D.K.; Chien, B.; Maisel, A.; Manley, G.T. Cerebral salt wasting and elevated brain natriuretic peptide levels after traumatic brain injury: 2 case reports. Surg. Neurol. 2008, 69, 226–229. [Google Scholar] [CrossRef] [PubMed]
- Orlik, L.; Venzin, R.; Fehr, T.; Hohloch, K. Cerebral salt wasting in a patient with myeloproliferative neoplasm. BMC Neurol. 2019, 19, 169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeon, Y.J.; Lee, H.Y.; Jung, I.A.; Cho, W.K.; Cho, B.; Suh, B.K. Cerebral salt-wasting syndrome after hematopoietic stem cell transplantation in adolescents: 3 case reports. Ann. Pediatr. Endocrinol. Metab. 2015, 20, 220–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radel, E.G.; Kochen, J.A.; Finberg, L. Hyponatremia in sickle cell disease. A renal salt-losing state. J. Pediatr. 1976, 88, 800–805. [Google Scholar] [CrossRef]
- Della Corte, V.; Tuttolomondo, A.; Pecoraro, R.; Pinto, A. Chronic hyponatremia in a patient with renal salt wasting and without cerebral disease: Relationship between RSW, risk of fractures and cognitive impairment. Intern. Emerg. Med. 2018, 13, 1167–1171. [Google Scholar] [CrossRef]
- Ariizumi, H.; Sasaki, Y.; Harada, H.; Uto, Y.; Azuma, R.; Isobe, T.; Kishimoto, K.; Shiozawa, E.; Takimoto, M.; Ohike, N.; et al. Post-cytokine-release Salt Wasting as Inverse Tumor Lysis Syndrome in a Non-cerebral Natural Killer-cell Neoplasm. Intern. Med. 2017, 56, 1855–1861. [Google Scholar] [CrossRef] [Green Version]
- Cull, E.H.; Watts, J.M.; Tallman, M.S.; Kopp, P.; Frattini, M.; Rapaport, F.; Rampal, R.; Levine, R.; Altman, J.K. Acute myeloid leukemia presenting with panhypopituitarism or diabetes insipidus: A case series with molecular genetic analysis and review of the literature. Leuk. Lymphoma 2014, 55, 2125–2129. [Google Scholar] [CrossRef] [PubMed]
- Zenimaru, Y.; Yamada, M.; Suzuki, J.; Konoshita, T. Hypopituitarism and central diabetes insipidus caused by central nervous system lymphoma. Intern. Med. 2018, 57, 3335–3336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tharaux, P.L.; Hagège, I.; Placier, S.; Vayssairat, M.; Kanfer, A.; Girot, R.; Dussaule, J.C. Urinary endothelin-1 as a marker of renal damage in sickle cell disease. Nephrol. Dial. Transpl. 2005, 20, 2408–2413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carone, F.A.; Epstein, F.H. Nephrogenic diabetes insipidus caused by amyloid disease. Evidence in man of the role of the collecting ducts in concentrating urine. Am. J. Med. 1960, 29, 539–544. [Google Scholar] [CrossRef]
- Liamis, G.; Milionis, H.J.; Elisaf, M. Hyponatremia in patients with infectious diseases. J. Infect. 2011, 63, 327–335. [Google Scholar] [CrossRef]
- Polprasert, C.; Wongjitrat, C.; Wisedopas, N. Case report: Severe CMV colitis in a patient with follicular lymphoma after chemotherapy. J. Med. Assoc. Thail. 2011, 94, 498–500. [Google Scholar]
- Pongtanakul, B.; Narkbunnam, N.; Veerakul, G.; Sanpakit, K.; Viprakasit, V.; Tanphaichitr, V.T.; Suvatte, V. Dengue hemorrhagic fever in patients with thalassemia. J. Med. Assoc. Thai. 2005, 88 (Suppl. 8), S80–S85. [Google Scholar]
- Debuc, B.; Smadja, D.M. Is COVID-19 a new hematologic disease? Stem. Cell Rev. Rep. 2020. [Google Scholar] [CrossRef]
- Berni, A.; Malandrino, D.; Parenti, G.; Maggi, M.; Poggesi, L.; Peri, A. Hyponatremia, IL-6, and SARS-CoV-2 (COVID-19) infection: May all fit together? J. Endocrinol. Invest. 2020. [Google Scholar] [CrossRef]
- Castillo, J.J.; Mull, N.; Reagan, J.L.; Nemr, S.; Mitri, J. Increased incidence of non-Hodgkin lymphoma, leukemia, and myeloma in patients with diabetes mellitus type 2: A meta-analysis of observational studies. Blood 2012, 119, 4845–4850. [Google Scholar] [CrossRef] [Green Version]
- Noetzli, L.J.; Mittelman, S.D.; Watanabe, R.M.; Coates, T.D.; Wood, J.C. Pancreatic iron and glucose dysregulation in thalassemia major. Am. J. Hematol. 2012, 87, 155–160. [Google Scholar] [CrossRef]
- De Sanctis, V.; Soliman, A.T.; Elsedfy, H.; Pepe, A.; Kattamis, C.; El Kholy, M.; Yassin, M. Diabetes and glucose metabolism in thalassemia major: An update. Expert. Rev. Hematol. 2016, 9, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Soliman, A.; DeSanctis, V.; Yassin, M.; Elalaily, R.; Eldarsy, N.E. Continuous glucose monitoring system and new era of early diagnosis of diabetes in high risk groups. Indian J. Endocrinol. Metab. 2014, 18, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Gearhart, M.M.; Parbhoo, S.K. Hyperglycemia in the critically ill patient. AACN Clin. Issues 2006, 17, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Fuji, S.; Loffler, J.; Savani, B.N.; Einsele, H.; Kapp, M. Hyperglycemia as a possible risk factor for mold infections-the potential preventative role of intensified glucose control in allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2017, 52, 657–662. [Google Scholar] [CrossRef] [Green Version]
- Fuji, S.; Rovo, A.; Ohashi, K.; Griffith, M.; Einsele, H.; Kapp, M.; Mohty, M.; Majhail, N.S.; Engelhardt, B.G.; Tichelli, A.; et al. How do I manage hyperglycemia/post-transplant diabetes mellitus after allogeneic HSCT. Bone Marrow Transplant. 2016, 51, 1041–1049. [Google Scholar] [CrossRef] [Green Version]
- DeFilipp, Z.; Duarte, R.F.; Snowden, J.A.; Majhail, N.S.; Greenfield, D.M.; Miranda, J.L.; Arat, M.; Baker, K.S.; Burns, L.J.; Duncan, C.N.; et al. Metabolic syndrome and cardiovascular disease following hematopoietic cell transplantation: Screening and preventive practice recommendations from CIBMTR and EBMT. Bone Marrow Transplant. 2017, 52, 173–182. [Google Scholar] [CrossRef] [Green Version]
- Parthymos, I.; Liamis, G.; Dounousi, E.; Pentheroudakis, G.; Mauri, D.; Zarkavelis, G.; Florentin, M. Metabolic consequences of immune checkpoint inhibitors: A new challenge in clinical practice. Crit. Rev. Oncol. Hematol. 2020, 151, 102979. [Google Scholar] [CrossRef]
- Abdel-Hamid, N.; Jubori, T.A.; Farhan, A.; Mahrous, M.; Gouri, A.; Awad, E.; Breuss, J. Underlying pathways for interferon risk to type II diabetes mellitus. Curr. Diabetes Rev. 2013, 9, 472–477. [Google Scholar] [CrossRef]
- Chiasson, J.L.; Aris-Jilwan, N.; Belanger, R.; Bertrand, S.; Beauregard, H.; Ekoe, J.M.; Fournier, H.; Havrankova, J. Diagnosis and treatment of diabetic ketoacidosis and the hyperglycemic hyperosmolar state. Cmaj 2003, 168, 859–866. [Google Scholar]
- Bustamante, M.; Hasler, U.; Kotova, O.; Chibalin, A.V.; Mordasini, D.; Rousselot, M.; Vandewalle, A.; Martin, P.Y.; Féraille, E. Insulin potentiates AVP-induced AQP2 expression in cultured renal collecting duct principal cells. Am. J. Physiol. Ren. Physiol. 2005, 288, F334–F344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishikawa, S.; Saito, T.; Kasono, K. Pathological role of aquaporin-2 in impaired water excretion and hyponatremia. J. Neuroendocr. 2004, 16, 293–296. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, S.; Cheesman, E.; Jude, E.B. SIADH and partial hypopituitarism in a patient with intravascular large B-cell lymphoma: A rare cause of a common presentation. BMJ Case Rep. 2013, 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pekic, S.; Milicevic, S.; Colovic, N.; Colovic, M.; Popovic, V. Intravascular large B-cell lymphoma as a cause of hypopituitarism: Gradual and late reversal of hypopituitarism after long-term remission of lymphoma with immunochemotherapy. Endocrine 2008, 34, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.L.; Lu, Z.H.; Mu, Y.M.; Dou, J.T.; Lu, J.M.; Zhong, W.W.; Pan, C.Y. Diffuse large cell non-Hodgkin lymphoma with pituitary and bilateral adrenal involvement. Intern. Med. J. 2012, 42, 329–332. [Google Scholar] [CrossRef] [PubMed]
- An, P.; Chen, K.; Yang, G.Q.; Dou, J.T.; Chen, Y.L.; Jin, X.Y.; Wang, X.L.; Mu, Y.M.; Wang, Q.S. Diffuse large B cell lymphoma with bilateral adrenal and hypothalamic involvement: A case report and literature review. World J. Clin. Cases 2019, 7, 4075–4083. [Google Scholar] [CrossRef] [PubMed]
- Tallis, P.H.; Rushworth, R.L.; Torpy, D.J.; Falhammar, H. Adrenal insufficiency due to bilateral adrenal metastases—A systematic review and meta-analysis. Heliyon 2019, 5, e01783. [Google Scholar] [CrossRef] [Green Version]
- Mendoza, H.; Podoltsev, N.A.; Siddon, A.J.; Gnanapandithan, K. Acute myeloid leukemia presenting as bilateral adrenal hemorrhage. Ann. Hematol. 2019, 98, 2421–2423. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Nakamura, H.; Mamiya, Y.; Yamamoto, Y.; Tajika, K.; Sugihara, H.; Gomi, S.; Inokuchi, K.; Hasegawa, S.; Shibazaki, T.; et al. Acute lymphoblastic leukemia with isolated adrenocorticotropic hormone deficiency. Intern. Med. 1997, 36, 819–821. [Google Scholar] [CrossRef] [Green Version]
- Baldini, M.; Mancarella, M.; Cassinerio, E.; Marcon, A.; Ambrogio, A.G.; Motta, I. Adrenal insufficiency: An emerging challenge in thalassemia? Am. J. Hematol. 2017, 92, E119–E121. [Google Scholar] [CrossRef] [Green Version]
- Sobngwi, E.; Mbango, N.D.; Balti, E.V.; Sack, F.N.; Ama Moor, V.; Mbanya, J.C. Relative adrenal insufficiency in adults with sickle cell disease. Pan. Afr. Med. J. 2018, 29, 30. [Google Scholar] [CrossRef] [PubMed]
- Rensen, N.; Gemke, R.J.; van Dalen, E.C.; Rotteveel, J.; Kaspers, G.J. Hypothalamic-pituitary-adrenal (HPA) axis suppression after treatment with glucocorticoid therapy for childhood acute lymphoblastic leukaemia. Cochrane Database Syst. Rev. 2017, 11, Cd008727. [Google Scholar] [CrossRef] [Green Version]
- Miller, A.; Brooks, L.K.; Poola-Kella, S.; Malek, R. Posaconazole-induced adrenal insufficiency in a case of chronic myelomonocytic leukemia. Case Rep. Endocrinol. 2018, 2018, 2170484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trainer, H.; Hulse, P.; Higham, C.E.; Trainer, P.; Lorigan, P. Hyponatraemia secondary to nivolumab-induced primary adrenal failure. Endocrinol. Diabetes Metab. Case Rep. 2016, 2016. [Google Scholar] [CrossRef] [PubMed]
- Kastrisiou, M.; Kostadima, F.L.; Kefas, A.; Zarkavelis, G.; Kapodistrias, N.; Ntouvelis, E.; Petrakis, D.; Papadaki, A.; Vassou, A.; Pentheroudakis, G. Nivolumab-induced hypothyroidism and selective pituitary insufficiency in a patient with lung adenocarcinoma: A case report and review of the literature. ESMO Open 2017, 2, e000217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Follin, C.; Wiebe, T.; Moëll, C.; Erfurth, E.M. Moderate dose cranial radiotherapy causes central adrenal insufficiency in long-term survivors of childhood leukaemia. Pituitary 2014, 17, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Combs, S.; Berl, T. Dysnatremias in patients with kidney disease. Am. J. Kidney Dis. 2014, 63, 294–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howard, S.C.; McCormick, J.; Pui, C.H.; Buddington, R.K.; Harvey, R.D. Preventing and managing toxicities of high-dose methotrexate. Oncologist 2016, 21, 1471–1482. [Google Scholar] [CrossRef] [Green Version]
- Liamis, G.; Filippatos, T.D.; Elisaf, M.S. Electrolyte disorders associated with the use of anticancer drugs. Eur. J. Pharmacol. 2016, 777, 78–87. [Google Scholar] [CrossRef]
- Malyszko, J.; Kozlowska, K.; Kozlowski, L.; Malyszko, J. Nephrotoxicity of anticancer treatment. Nephrol. Dial. Transpl. 2017, 32, 924–936. [Google Scholar] [CrossRef]
- Li, Y.; Chen, X.; Wang, Y.; Hu, J.; Shen, Z.; Ding, X. Application of group LASSO regression based Bayesian networks in risk factors exploration and disease prediction for acute kidney injury in hospitalized patients with hematologic malignancies. BMC Nephrol. 2020, 21, 162. [Google Scholar] [CrossRef] [PubMed]
- Van Avondt, K.; Nur, E.; Zeerleder, S. Mechanisms of haemolysis-induced kidney injury. Nat. Rev. Nephrol. 2019, 15, 671–692. [Google Scholar] [CrossRef] [PubMed]
- Wanchoo, R.; Bayer, R.L.; Bassil, C.; Jhaveri, K.D. Emerging concepts in hematopoietic stem cell transplantation-associated renal thrombotic microangiopathy and prospects for new treatments. Am. J. Kidney Dis. 2018, 72, 857–865. [Google Scholar] [CrossRef]
- Kemmner, S.; Verbeek, M.; Heemann, U. Renal dysfunction following bone marrow transplantation. J. Nephrol. 2017, 30, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Yadav, P.; Cook, M.; Cockwell, P. Current trends of renal impairment in multiple myeloma. Kidney Dis. 2016, 1, 241–257. [Google Scholar] [CrossRef]
- Hogan, J.J.; Alexander, M.P.; Leung, N. Dysproteinemia and the kidney: Core curriculum 2019. Am. J. Kidney Dis. 2019, 74, 822–836. [Google Scholar] [CrossRef] [Green Version]
- Lommatzsch, S.E.; Bellizzi, A.M.; Cathro, H.P.; Rosner, M.H. Acute renal failure caused by renal infiltration by hematolymphoid malignancy. Ann. Diagn. Pathol. 2006, 10, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Basnayake, K.; Stringer, S.J.; Hutchison, C.A.; Cockwell, P. The biology of immunoglobulin free light chains and kidney injury. Kidney Int. 2011, 79, 1289–1301. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Umakanathan, M.; P’Ng, C.H.; Varikatt, W.; Kwok, F.; Lin, M.W.; Vucak-Dzumhur, M. Cryoglobulinemic glomerulonephritis associated with nodal and renal infiltration by T-Cell lymphoma of T-Follicular helper phenotype: A case report. Am. J. Kidney Dis. 2018, 72, 606–611. [Google Scholar] [CrossRef]
- Walsh, P.R.; Johnson, S. Treatment and management of children with haemolytic uraemic syndrome. Arch. Dis. Child. 2018, 103, 285–291. [Google Scholar] [CrossRef]
- Tsai, H.M. The kidney in thrombotic thrombocytopenic purpura. Minerva Med. 2007, 98, 731–747. [Google Scholar] [PubMed]
- Zafrani, L.; Azoulay, E. Acute renal failure is prevalent in patients with thrombotic thrombocytopenic purpura associated with low plasma ADAMTS13 activity: Reply. J. Thromb. Haemost. 2015, 13, 1526–1527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kokoris, S.I.; Gavriilaki, E.; Miari, A.; Travlou, A.; Kyriakou, E.; Anagnostopoulos, A.; Grouzi, E. Renal involvement in paroxysmal nocturnal hemoglobinuria: An update on clinical features, pathophysiology and treatment. Hematology 2018, 23, 558–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naik, R.P.; Derebail, V.K. The spectrum of sickle hemoglobin-related nephropathy: From sickle cell disease to sickle trait. Expert Rev. Hematol. 2017, 10, 1087–1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kato, G.J.; Piel, F.B.; Reid, C.D.; Gaston, M.H.; Ohene-Frempong, K.; Krishnamurti, L.; Smith, W.R.; Panepinto, J.A.; Weatherall, D.J.; Costa, F.F.; et al. Sickle cell disease. Nat. Rev. Dis. Primers. 2018, 4, 18010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vichinsky, E. Chronic organ failure in adult sickle cell disease. Hematol. Am. Soc. Hematol. Educ. Program. 2017, 2017, 435–439. [Google Scholar] [CrossRef] [Green Version]
- Filippatos, T.D.; Elisaf, M.S. Hyponatremia in patients with heart failure. World J. Cardiol. 2013, 5, 317–328. [Google Scholar] [CrossRef]
- Farmakis, D.; Triposkiadis, F.; Lekakis, J.; Parissis, J. Heart failure in haemoglobinopathies: Pathophysiology, clinical phenotypes, and management. Eur. J. Heart Fail. 2017, 19, 479–489. [Google Scholar] [CrossRef] [Green Version]
- Ocel, J.J.; Edwards, W.D.; Tazelaar, H.D.; Petrovic, L.M.; Edwards, B.S.; Kamath, P.S. Heart and liver disease in 32 patients undergoing biopsy of both organs, with implications for heart or liver transplantation. Mayo Clin. Proc. 2004, 79, 492–501. [Google Scholar] [CrossRef]
- Tukenova, M.; Guibout, C.; Oberlin, O.; Doyon, F.; Mousannif, A.; Haddy, N.; Guerin, S.; Pacquement, H.; Aouba, A.; Hawkins, M.; et al. Role of cancer treatment in long-term overall and cardiovascular mortality after childhood cancer. J. Clin. Oncol. 2010, 28, 1308–1315. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, X.; Bawa-Khalfe, T.; Lu, L.S.; Lyu, Y.L.; Liu, L.F.; Yeh, E.T. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat. Med. 2012, 18, 1639–1642. [Google Scholar] [CrossRef] [PubMed]
- Armenian, S.H.; Gelehrter, S.K.; Vase, T.; Venkatramani, R.; Landier, W.; Wilson, K.D.; Herrera, C.; Reichman, L.; Menteer, J.D.; Mascarenhas, L.; et al. Screening for cardiac dysfunction in anthracycline-exposed childhood cancer survivors. Clin. Cancer Res. 2014, 20, 6314–6323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardinale, D.; Colombo, A.; Bacchiani, G.; Tedeschi, I.; Meroni, C.A.; Veglia, F.; Civelli, M.; Lamantia, G.; Colombo, N.; Curigliano, G.; et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation 2015, 131, 1981–1988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhakta, N.; Liu, Q.; Yeo, F.; Baassiri, M.; Ehrhardt, M.J.; Srivastava, D.K.; Metzger, M.L.; Krasin, M.J.; Ness, K.K.; Hudson, M.M.; et al. Cumulative burden of cardiovascular morbidity in paediatric, adolescent, and young adult survivors of Hodgkin’s lymphoma: An analysis from the St Jude Lifetime Cohort Study. Lancet Oncol. 2016, 17, 1325–1334. [Google Scholar] [CrossRef] [Green Version]
- Salz, T.; Zabor, E.C.; de Nully Brown, P.; Dalton, S.O.; Raghunathan, N.J.; Matasar, M.J.; Steingart, R.; Vickers, A.J.; Svenssen Munksgaard, P.; Oeffinger, K.C.; et al. Preexisting cardiovascular risk and subsequent heart failure among non-hodgkin lymphoma survivors. J. Clin. Oncol. 2017, 35, 3837–3843. [Google Scholar] [CrossRef] [PubMed]
- Pai, V.B.; Nahata, M.C. Cardiotoxicity of chemotherapeutic agents: Incidence, treatment and prevention. Drug Saf. 2000, 22, 263–302. [Google Scholar] [CrossRef] [PubMed]
- Labianca, R.; Beretta, G.; Clerici, M.; Fraschini, P.; Luporini, G. Cardiac toxicity of 5-fluorouracil: A study on 1083 patients. Tumori 1982, 68, 505–510. [Google Scholar] [CrossRef]
- Orphanos, G.S.; Ioannidis, G.N.; Ardavanis, A.G. Cardiotoxicity induced by tyrosine kinase inhibitors. Acta Oncol. 2009, 48, 964–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamal, F.A.; Khaled, S.K. The cardiovascular complications of chimeric antigen receptor T cell therapy. Curr. Hematol. Malig. Rep. 2020, 15, 130–132. [Google Scholar] [CrossRef]
- Ganatra, S.; Neilan, T.G. Immune checkpoint inhibitor-associated myocarditis. Oncologist 2018, 23, 879–886. [Google Scholar] [CrossRef] [Green Version]
- Murakami, J.; Shimizu, Y. Hepatic manifestations in hematological disorders. Int. J. Hepatol. 2013, 2013, 484903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wanless, I.R.; Peterson, P.; Das, A.; Boitnott, J.K.; Moore, G.W.; Bernier, V. Hepatic vascular disease and portal hypertension in polycythemia vera and agnogenic myeloid metaplasia: A clinicopathological study of 145 patients examined at autopsy. Hepatology 1990, 12, 1166–1174. [Google Scholar] [CrossRef] [PubMed]
- Jarasvaraparn, C.; Imran, H.; Siddiqui, A.; Wilson, F.; Gremse, D.A. Association of autoimmune hepatitis type 1 in a child with Evans syndrome. World J. Hepatol. 2017, 9, 1008–1012. [Google Scholar] [CrossRef] [PubMed]
- Tomasian, A.; Sandrasegaran, K.; Elsayes, K.M.; Shanbhogue, A.; Shaaban, A.; Menias, C.O. Hematologic malignancies of the liver: Spectrum of disease. Radiographics 2015, 35, 71–86. [Google Scholar] [CrossRef] [PubMed]
- Berghmans, T. Hyponatremia related to medical anticancer treatment. Support Care Cancer 1996, 4, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Hammond, I.W.; Ferguson, J.A.; Kwong, K.; Muniz, E.; Delisle, F. Hyponatremia and syndrome of inappropriate anti-diuretic hormone reported with the use of Vincristine: An over-representation of Asians? Pharmacoepidemiol Drug Saf. 2002, 11, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Ravikumar, T.S.; Grage, T.B. The syndrome of inappropriate ADH secretion secondary to vinblastine-bleomycin therapy. J. Surg. Oncol. 1983, 24, 242–245. [Google Scholar] [CrossRef]
- Moriyama, B.; Henning, S.A.; Leung, J.; Falade-Nwulia, O.; Jarosinski, P.; Penzak, S.R.; Walsh, T.J. Adverse interactions between antifungal azoles and vincristine: Review and analysis of cases. Mycoses 2012, 55, 290–297. [Google Scholar] [CrossRef]
- Kamaluddin, M.; McNally, P.; Breatnach, F.; O’Marcaigh, A.; Webb, D.; O’Dell, E.; Scanlon, P.; Butler, K.; O’Meara, A. Potentiation of vincristine toxicity by itraconazole in children with lymphoid malignancies. Acta Paediatr. 2001, 90, 1204–1207. [Google Scholar] [CrossRef]
- Dixon, B.N.; Daley, R.J.; Buie, L.W.; Hsu, M.; Park, J.H.; Brentjens, R.J.; Purdon, T.J.; Latcha, S. Correlation of IL-6 secretion and hyponatremia with the use of CD19+ chimeric antigen receptor T-cells. Clin. Nephrol. 2020, 93, 42–46. [Google Scholar] [CrossRef]
- Frahm, H.; von Hulst, M. Increased secretion of vasopressin and edema formation in high dosage methotrexate therapy. Z Gesamte Inn. Med. 1988, 43, 411–414. [Google Scholar] [PubMed]
- Lee, Y.C.; Park, J.S.; Lee, C.H.; Bae, S.C.; Kim, I.S.; Kang, C.M.; Kim, G.H. Hyponatraemia induced by low-dose intravenous pulse cyclophosphamide. Nephrol. Dial. Transpl. 2010, 25, 1520–1524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sweet, K.; Komrokji, R.; Padron, E.; Cubitt, C.L.; Turner, J.G.; Zhou, J.; List, A.F. Phase I clinical trial of selinexor in combination with daunorubicin and cytarabine in previously untreated poor-risk acute myeloid leukemia. Clin. Cancer Res. 2020, 26, 54–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burger, J.A.; Barr, P.M.; Robak, T.; Owen, C.; Ghia, P. Long-term efficacy and safety of first-line ibrutinib treatment for patients with CLL/SLL: 5 years of follow-up from the phase 3 RESONATE-2 study. Leukemia 2020, 34, 787–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tscherning, C.; Rubie, H.; Chancholle, A.; Claeyssens, S.; Robert, A.; Fabre, J.; Bouissou, F. Recurrent renal salt wasting in a child treated with carboplatin and etoposide. Cancer 1994, 73, 1761–1763. [Google Scholar] [CrossRef]
- Lee, Y.K.; Shin, D.M. Renal salt wasting in patients treated with high-dose cisplatin, etoposide, and mitomycin in patients with advanced non-small cell lung cancer. Korean J. Intern. Med. 1992, 7, 118–121. [Google Scholar] [CrossRef]
- Yamada, Y.; Higuchi, K.; Nishikawa, K.; Gotoh, M.; Fuse, N.; Sugimoto, N.; Nishina, T.; Amagai, K.; Chin, K.; Niwa, Y.; et al. Phase III study comparing oxaliplatin plus S-1 with cisplatin plus S-1 in chemotherapy-naive patients with advanced gastric cancer. Ann. Oncol. 2015, 26, 141–148. [Google Scholar] [CrossRef]
- Arakawa, Y.; Tamura, M.; Sakuyama, T.; Aiba, K.; Eto, S.; Yuda, M.; Tanaka, Y.; Matsumoto, A.; Nishikawa, K. Early measurement of urinary N-acetyl-beta-glucosaminidase helps predict severe hyponatremia associated with cisplatin-containing chemotherapy. J. Infect. Chemother. 2015, 21, 502–506. [Google Scholar] [CrossRef]
- Daphnis, E.; Stylianou, K.; Alexandrakis, M.; Xylouri, I.; Vardaki, E.; Stratigis, S.; Kyriazis, J. Acute renal failure, translocational hyponatremia and hyperkalemia following intravenous immunoglobulin therapy. Nephron. Clin. Pract. 2007, 106, c143–c148. [Google Scholar] [CrossRef]
- Liapis, K.; Apostolidis, J.; Charitaki, E.; Panitsas, F.; Harhalakis, N.; Nikiforakis, E. Syndrome of inappropriate secretion of antidiuretic hormone associated with imatinib. Ann. Pharmacother. 2008, 42, 1882–1886. [Google Scholar] [CrossRef]
- Hill, J.; Shields, J.; Passero, V. Tyrosine kinase inhibitor-associated syndrome of inappropriate secretion of anti-diuretic hormone. J. Oncol. Pharm. Pract. 2016, 22, 729–732. [Google Scholar] [CrossRef] [PubMed]
- Sarret, D.; Le Berre, J.P.; Zemraoui, N. Tramadol-induced hyponatremia. Am. J. Kidney Dis. 2008, 52, 1026. [Google Scholar] [CrossRef] [PubMed]
- Gilbar, P.J.; Richmond, J.; Wood, J.; Sullivan, A. Syndrome of inappropriate antidiuretic hormone secretion induced by a single dose of oral cyclophosphamide. Ann. Pharmacother. 2012, 46, e23. [Google Scholar] [CrossRef]
- Glezerman, I.G. Successful treatment of ifosfamide-induced hyponatremia with AVP receptor antagonist without interruption of hydration for prevention of hemorrhagic cystitis. Ann. Oncol. 2009, 20, 1283–1285. [Google Scholar] [CrossRef] [PubMed]
- Kirch, C.; Gachot, B.; Germann, N.; Blot, F.; Nitenberg, G. Recurrent ifosfamide-induced hyponatraemia. Eur. J. Cancer 1997, 33, 2438–2439. [Google Scholar] [CrossRef]
- Burke, J.M.; Shustov, A.; Essell, J.; Patel-Donnelly, D.; Yang, J.; Chen, R.; Ye, W.; Shi, W.; Assouline, S.; Sharman, J. An open-label, phase ii trial of entospletinib (GS-9973), a selective spleen tyrosine kinase inhibitor, in diffuse large B-cell lymphoma. Clin. Lymphoma Myeloma Leuk. 2018, 18, e327–e331. [Google Scholar] [CrossRef] [Green Version]
- Diskin, C.; Dansby, L.M.; Radcliff, L.; Carter, T.B.; Graves, E.; Graves, A. Recurrent hyponatremia after intrathecal methotrexate not related to antidiuretic hormone: Is a natriuretic peptide activated? Am. J. Med. Sci. 2006, 331, 37–39. [Google Scholar] [CrossRef]
- Sanchez-Fructuoso, A.I.; Santin Cantero, J.M.; Perez Flores, I.; Valero San Cecilio, R.; Calvo Romero, N.; Vilalta Casas, R. Changes in magnesium and potassium homeostasis after conversion from a calcineurin inhibitor regimen to an mTOR inhibitor-based regimen. Transpl. Proc. 2010, 42, 3047–3049. [Google Scholar] [CrossRef]
- O’Brien, S.; Rizzieri, D.A.; Vey, N.; Ravandi, F.; Krug, U.O.; Sekeres, M.A.; Dennis, M.; Venditti, A.; Berry, D.A.; Jacobsen, T.F.; et al. Elacytarabine has single-agent activity in patients with advanced acute myeloid leukaemia. Br. J. Haematol. 2012, 158, 581–588. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, N.; Tani, M.; Tanaka, Y.; Kurata, M.; Matsushita, A.; Maeda, A.; Nagai, K.; Takahashi, T. Severe hyponatremia with consciousness disturbance caused by hydroxyurea in a patient with chronic myeloid leukemia. Rinsho. Ketsueki. 2004, 45, 243–246. [Google Scholar]
- Middleton, G.; Brock, K.; Savage, J.; Mant, R.; Summers, Y.; Connibear, J.; Shah, R.; Ottensmeier, C.; Shaw, P.; Lee, S.M.; et al. Pembrolizumab in patients with non-small-cell lung cancer of performance status 2 (PePS2): A single arm, phase 2 trial. Lancet Respir. Med. 2020. [Google Scholar] [CrossRef]
- Tan, M.H.; Iyengar, R.; Mizokami-Stout, K.; Yentz, S.; MacEachern, M.P.; Shen, L.Y.; Redman, B.; Gianchandani, R. Spectrum of immune checkpoint inhibitors-induced endocrinopathies in cancer patients: A scoping review of case reports. Clin. Diabetes Endocrinol. 2019, 5, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuscano, J.M.; Dutia, M.; Chee, K.; Brunson, A.; Reed-Pease, C.; Abedi, M.; Welborn, J.; O’Donnell, R.T. Lenalidomide plus rituximab can produce durable clinical responses in patients with relapsed or refractory, indolent non-Hodgkin lymphoma. Br. J. Haematol. 2014, 165, 375–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruno, J.J.; Canada, T.W. Possible pentostatin-induced symptomatic hyponatremia. Pharmacotherapy 2007, 27, 164–169. [Google Scholar] [CrossRef]
- de Kort, E.A.; de Lil, H.S.; Bremmers, M.E.J.; van Groningen, L.F.J.; Blijlevens, N.M.A.; Huls, G.; Bruggemann, R.J.M. Cyclosporine a trough concentrations are associated with acute GvHD after non-myeloablative allogeneic hematopoietic cell transplantation. PLoS ONE 2019, 14, e0213913. [Google Scholar] [CrossRef]
- Stoof, S.C.; Cnossen, M.H.; de Maat, M.P.; Leebeek, F.W.; Kruip, M.J. Side effects of desmopressin in patients with bleeding disorders. Haemophilia 2016, 22, 39–45. [Google Scholar] [CrossRef]
- Sharma, R.; Stein, D. Hyponatremia after desmopressin (DDAVP) use in pediatric patients with bleeding disorders undergoing surgeries. J. Pediatr. Hematol. Oncol. 2014, 36, e371–e375. [Google Scholar] [CrossRef] [Green Version]
- O’Connor-Byrne, N.; Glavey, S.; Tudor, R.; Murphy, P.; Thompson, C.J.; Quinn, J. Bortezomib-induced hyponatremia: Tolvaptan therapy permits continuation of lenalidomide, bortezomib and dexamethasone therapy in relapsed myeloma. Exp. Hematol. Oncol. 2019, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Quesada, J.R.; Talpaz, M.; Rios, A.; Kurzrock, R.; Gutterman, J.U. Clinical toxicity of interferons in cancer patients: A review. J. Clin. Oncol. 1986, 4, 234–243. [Google Scholar] [CrossRef]
- Greenbaum-Lefkoe, B.; Rosenstock, J.G.; Belasco, J.B.; Rohrbaugh, T.M.; Meadows, A.T. Syndrome of inappropriate antidiuretic hormone secretion. A complication of high-dose intravenous melphalan. Cancer 1985, 55, 44–46. [Google Scholar] [CrossRef]
- Singh, T.D.; Fugate, J.E.; Rabinstein, A.A. Central pontine and extrapontine myelinolysis: A systematic review. Eur. J. Neurol. 2014, 21, 1443–1450. [Google Scholar] [CrossRef] [PubMed]
- Maesaka, J.K.; Imbriano, L.; Mattana, J.; Gallagher, D.; Bade, N.; Sharif, S. Differentiating SIADH from cerebral/renal salt wasting: Failure of the volume approach and need for a new approach to hyponatremia. J. Clin. Med. 2014, 3, 1373–1385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leonard, J.; Garrett, R.E.; Salottolo, K.; Slone, D.S.; Mains, C.W.; Carrick, M.M.; Bar-Or, D. Cerebral salt wasting after traumatic brain injury: A review of the literature. Scand J. Trauma Resusc. Emerg. Med. 2015, 23, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maesaka, J.K.; Imbriano, L.J.; Miyawaki, N. Determining fractional urate excretion rates in hyponatremic conditions and improved methods to distinguish cerebral/renal salt wasting from the syndrome of inappropriate secretion of antidiuretic hormone. Front. Med. 2018, 5, 319. [Google Scholar] [CrossRef] [PubMed]
- Liamis, G.; Filippatos, T.D.; Liontos, A.; Elisaf, M.S. Management of endocrine disease: Hypothyroidism-associated hyponatremia: Mechanisms, implications and treatment. Eur. J. Endocrinol. 2017, 176, R15–R20. [Google Scholar] [CrossRef] [Green Version]
- Verbalis, J.G.; Goldsmith, S.R.; Greenberg, A.; Korzelius, C.; Schrier, R.W.; Sterns, R.H.; Thompson, C.J. Diagnosis, evaluation, and treatment of hyponatremia: Expert panel recommendations. Am. J. Med. 2013, 126, S1–S42. [Google Scholar] [CrossRef] [PubMed]
- Spasovski, G.; Vanholder, R.; Allolio, B.; Annane, D.; Ball, S.; Bichet, D.; Decaux, G.; Fenske, W.; Hoorn, E.J.; Ichai, C.; et al. Clinical practice guideline on diagnosis and treatment of hyponatraemia. Nephrol. Dial. Transpl. 2014, 29 (Suppl. 2), i1–i39. [Google Scholar] [CrossRef] [Green Version]
- Filippatos, T.; Elisaf, M. Pharmacological management of hyponatremia. Expert Opin. Pharmacother. 2018, 19, 1337–1344. [Google Scholar] [CrossRef]
- Ayus, J.C.; Caputo, D.; Bazerque, F.; Heguilen, R.; Gonzalez, C.D.; Moritz, M.L. Treatment of hyponatremic encephalopathy with a 3% sodium chloride protocol: A case series. Am. J. Kidney Dis. 2015, 65, 435–442. [Google Scholar] [CrossRef] [Green Version]
- Moritz, M.L.; Ayus, J.C. 100 cc 3% sodium chloride bolus: A novel treatment for hyponatremic encephalopathy. Metab. Brain Dis. 2010, 25, 91–96. [Google Scholar] [CrossRef]
- Liamis, G.; Filippatos, T.D.; Elisaf, M.S. Correction of hypovolemia with crystalloid fluids: Individualizing infusion therapy. Postgrad. Med. 2015, 127, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Seay, N.W.; Lehrich, R.W.; Greenberg, A. Diagnosis and management of disorders of body tonicity-hyponatremia and hypernatremia: Core curriculum 2020. Am. J. Kidney Dis. 2020, 75, 272–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Type of Hyponatremia | Causes | Associated Conditions |
---|---|---|
Pseudohyponatremia (isotonic hyponatremia: serum osmolality 280–295 mOsm/kg) | Hyperglobulinemia | MM, other paraproteinemias, POEMS syndrome, Castleman’s disease, post-transplant monoclonal gammopathies, NHL, CLL, cryoglobulinemia, cold agglutinin disease, Gaucher disease, HCV or HIV infection, cirrhosis drugs: IVIG, interferon. |
Hypertriglyceridemia | HLH, uncontrolled diabetes mellitus drugs: L-asparaginase, ATRA. Interferon. | |
Hypercholesterolemia | Allogeneic stem cell transplantation, MM, NHL. | |
Mixed dyslipidemia | Nephrotic syndrome (secondary causes include: HL, monoclonal gammopathy, cryoglobulinemia, POEMS syndrome, leukemia, glycogen storage diseases, sickle cell disease, MDS, GVHD, infections). | |
Hypertonic hyponatremia: (serum osmolality >295 mOsm/kg) | Hyperglycemia | Diabetes mellitus: preexisting or related to hemochromatosis, thalassemia, and HSCT. Infections. Drugs: glucocorticoids, interferon, tacrolimus, immune checkpoint inhibitors. |
Hypotonic hyponatremia (serum osmolality <280 mOsm/kg) | Hypervolemic (edematous hyponatremia) | Cirrhosis. Nephrotic syndrome. Renal insufficiency: chemotherapy, contrast media, NSAIDs, infections, post-HSCT, PNH, sickle cell disease and other hemoglobinopathies, MM, lymphomas, paraproteinemia, TTP, HUS, TLS Heart failure: cardiomyopathy due to hemochromatosis, hemoglobinopathies, amyloidosis, or paraproteinemias. Drug-induced heart failure (e.g., anthracyclines, alkylating agents, fluopyrimidines, TKIs), CAR T- cell therapy, thoracic radiation therapy, immune checkpoint inhibitors-induced myocarditis. POEMS syndrome. (Extravascular volume overload is among the minor criteria of the syndrome). |
Euvolemic hyponatremia | SIADH: lymphomas, paraproteinemias, HLH, post-HSCT, sickle cell disease, porphyria. Pain and nausea. Pulmonary and CNS infections. Drugs: vinca alkaloids, cyclophosphamide, platinum compound drugs, melphalan, busulfan, interferon, bortezomib, TKIs, methotrexate, tacrolimus, cyclosporine A, CAR T-cells therapy, carbamazepine, SSRIs. | |
Hypovolemic hyponatremia | Adrenal insufficiency: adrenal metastases or CNS invasion by lymphomas, AML, ALL, hemoglobinopathies. Infections: CNS infections (e.g., tuberculosis), systemic fungal infections. Bilateral cranial radiation therapy. Drugs: steroids, immune checkpoint inhibitors. Extra-renal salt loss: infection mediated. Renal salt loss: myeloproliferative diseases, LAHS, sickle cell disease. Post-HSCT with CNS complications. Drugs: methotrexate, hydroxyurea, platinum compounds, etc. Adrenal hemorrhage: e.g., coagulopathy. |
Drug | Disease | Mechanism |
---|---|---|
Cyclophosphamide, ifosfamide [152,163,164,165] | Multiple myeloma, lymphomas | SIADH, hypotonic fluids to prevent hemorrhagic cystitis |
Imatinib and other TKIs [160,161] | CML, ALL | SIADH |
Entospletinib [166] | In development | SIADH |
Vincristine [145,146,147] | Lymphomas, ALL | SIADH |
Methotrexate [167] | Lymphomas, ALL | SIADH and CSWS |
mTOR inhibitors (everolimus) [168] | In development | Aldosterone resistance |
Tacrolimus [56] | Post AlloSCT | SIADH |
Selinexor [153] | In development | Unknown |
Cytarabine, Elacytarabine [169] | Lymphomatous meningitis, AML | Unknown |
Hydroxyurea [170] | Myeloproliferative neoplasms, sickle cell disease | CSWS |
Ibrutinib [154] | CLL, mantle cell lymphoma, Waldenstöm’s macroglobulinemia | Unknown |
Nivolumab, Pembrolizumab [104,171,172] | Hodgkin lymphoma | Primary adrenal insufficiency, Diabetes mellitus |
Rituximab plus lenalidomide [173] | Follicular lymphoma | Unknown |
Pentostatin [174] | HCL | Unknown |
Cyclosporine A [175] | Immunosuppression post AlloSCT | SIADH |
Desmopressin [176,177] | Bleeding disorders | Unknown |
Intravenous immunoglobulin (IVIG) [159] | ITP | Translocational effect of the osmotic load of sucrose and IVIG nephropathy |
Bortezomib [178] | Multiple myeloma | SIADH |
CD19+ chimeric antigen receptor (CAR) T-cells [150] | ALL, DLBCL, PMBCL | Elevated IL-6→ SIADH |
Platinum compounds (cisplatin, carboplatin, oxaliplatin) [145,155,156] | Relapsed or refractory lymphomas | SIADH, CSWS, hypotonic fluids |
Interferon [179] | HCL, CML, multiple myeloma, follicular lymphoma | SIADH |
Melphalan [180] | Multiple myeloma | SIADH |
Busulfan [109] | Prior to SCT | SIADH |
|
|
|
|
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koumpis, E.; Florentin, M.; Hatzimichael, E.; Liamis, G. Hyponatremia in Patients with Hematologic Diseases. J. Clin. Med. 2020, 9, 3721. https://doi.org/10.3390/jcm9113721
Koumpis E, Florentin M, Hatzimichael E, Liamis G. Hyponatremia in Patients with Hematologic Diseases. Journal of Clinical Medicine. 2020; 9(11):3721. https://doi.org/10.3390/jcm9113721
Chicago/Turabian StyleKoumpis, Epameinondas, Matilda Florentin, Eleftheria Hatzimichael, and George Liamis. 2020. "Hyponatremia in Patients with Hematologic Diseases" Journal of Clinical Medicine 9, no. 11: 3721. https://doi.org/10.3390/jcm9113721
APA StyleKoumpis, E., Florentin, M., Hatzimichael, E., & Liamis, G. (2020). Hyponatremia in Patients with Hematologic Diseases. Journal of Clinical Medicine, 9(11), 3721. https://doi.org/10.3390/jcm9113721