Impact of Pseudomonas aeruginosa Infection on Patients with Chronic Inflammatory Airway Diseases
Abstract
:1. Introduction
2. Pseudomonas aeruginosa. Microbiology and Pathogenicity
3. Pseudomonas aeruginosa in Cystic Fibrosis
3.1. Prevalence and Risk Factors for Infection
3.2. Detection of Infection
3.3. Adaptation in the Airways
3.4. Impact of Infection
4. Pseudomonas aeruginosa in Non-Cystic Fibrosis Bronchiectasis
4.1. Primary Infection. Impact on the Clinical Picture and Prognosis
4.2. Chronic Bronchial Infection. Clinical Impact, Lung Function, Quality of Life, Mortality and Other Factors
4.2.1. Clinical Impact
4.2.2. Impact on Lung Function
4.2.3. Impact on the Quality of Life
4.2.4. Impact on Mortality
4.2.5. Other Factors
4.3. Responses to the Treatment of Primary Chronic Bronchial Infection in People with Bronchiectasis
5. Pseudomonas aeruginosa in COPD
6. Pseudomonas aeruginosa and Asthma
7. Future Challenges
Author Contributions
Funding
Conflicts of Interest
References
- Faure, E.; Kwong, K.; Nguyen, D. Pseudomonas aeruginosa in Chronic Lung Infections: How to Adapt Within the Host? Front. Immunol. 2018, 9, 2416. [Google Scholar] [CrossRef] [Green Version]
- Moore, J.E.; Mastoridis, P. Clinical implications ofPseudomonas aeruginosalocation in the lungs of patients with cystic fibrosis. J. Clin. Pharm. Ther. 2017, 42, 259–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, W.D.; Bardin, E.; Cameron, L.; Edmondson, C.L.; Farrant, K.V.; Martin, I.; Murphy, R.A.; Soren, O.; Turnbull, A.R.; Wierre-Gore, N.; et al. Current and future therapies for Pseudomonas aeruginosa infection in patients with cystic fibrosis. FEMS Microbiol. Lett. 2017, 364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finch, S.; McDonnell, M.J.; Abo-Leyah, H.; Aliberti, S.; Chalmers, J.D. A Comprehensive Analysis of the Impact of Pseudomonas aeruginosa Colonization on Prognosis in Adult Bronchiectasis. Ann. Am. Thorac. Soc. 2015, 12, 1602–1611. [Google Scholar] [CrossRef] [Green Version]
- Araújo, D.; Shteinberg, M.; Aliberti, S.; Goeminne, P.C.; Hill, A.T.; Fardon, T.C.; Obradović, D.; Stone, G.; Trautmann, M.; Davis, A.; et al. The independent contribution of Pseudomonas aeruginosa infection to long-term clinical outcomes in bronchiectasis. Eur. Respir. J. 2018, 51, 1701953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leung, J.M.; Tiew, P.Y.; Mac Aogáin, M.; Budden, K.F.; Yong, V.F.L.; Thomas, S.S.; Pethe, K.; Hansbro, P.M.; Chotirmall, S.H. The role of acute and chronic respiratory colonization and infections in the pathogenesis of COPD. Respirology 2017, 22, 634–650. [Google Scholar] [CrossRef]
- Murphy, T.F. Pseudomonas aeruginosa in adults with chronic obstructive pulmonary disease. Curr. Opin. Pulm. Med. 2009, 15, 138–142. [Google Scholar] [CrossRef]
- Eklöf, J.V.; Sørensen, R.; Ingebrigtsen, T.; Sivapalan, P.; Achir, I.; Boel, J.; Bangsborg, J.; Ostergaard, C.; Dessau, R.; Jensen, J.; et al. Pseudomonas aeruginosa and risk of death and exacerbations in patients with chronic obstructive pulmonary disease: An observational cohort study of 22 053 patients. Clin. Microbiol. Infect. 2020, 26, 227–234. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, D.M.; Ochs-Balcom, H.M.; Noyes, K.; Zhao, J.; Leung, W.Y.; Pu, C.Y.; Murphy, T.F.; Sethi, S. Impact of Pseudomonas aeruginosa Isolation on Mortality and Outcomes in an Outpatient Chronic Obstructive Pulmonary Disease Cohort. Open Forum Infect. Dis. 2020, 7, ofz546. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Illing, R.; Hui, C.K.; Downey, K.; Carr, D.; Stearn, M.; Alshafi, K.; Menzies-Gow, A.; Zhong, N.-S.; Chung, F. Bacteria in sputum of stable severe asthma and increased airway wall thickness. Respir. Res. 2012, 13, 35. [Google Scholar] [CrossRef] [Green Version]
- Mao, B.; Yang, J.-W.; Lu, H.-W.; Xu, J.-F. Asthma and bronchiectasis exacerbation. Eur. Respir. J. 2016, 47, 1680–1686. [Google Scholar] [CrossRef] [PubMed]
- Gellatly, S.L.; Hancock, R.E. Pseudomonas aeruginosa: New insights into pathogenesis and host defenses. Pathog. Dis. 2013, 67, 159–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantón, R.; Máiz, L.; Escribano, A.; Olveira, G.; Oliver, A.; Asensio, O.; Gärtner, S.; Romá, E.; Quintana-Gallego, E.; Salcedo, A.; et al. Spanish Consensus on the Prevention and Treatment of Pseudomonas aeruginosa Bronchial Infections in Cystic Fibrosis Patients. Arch. Bronconeumol. 2015, 51, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Maurice, N.M.; Bedi, B.; Sadikot, R.T. Pseudomonas aeruginosaBiofilms: Host Response and Clinical Implications in Lung Infections. Am. J. Respir. Cell Mol. Biol. 2018, 58, 428–439. [Google Scholar] [CrossRef] [PubMed]
- Cramer, N.; Wiehlmann, L.; Tümmler, B. Clonal epidemiology of Pseudomonas aeruginosa in cystic fibrosis. Int. J. Med. Microbiol. 2010, 300, 526–533. [Google Scholar] [CrossRef]
- Marvig, R.L.; Sommer, L.M.M.; Jelsbak, L.; Molin, S.; Johansen, H.K. Evolutionary insight from whole-genome sequencing ofPseudomonas aeruginosafrom cystic fibrosis patients. Future Microbiol. 2015, 10, 599–611. [Google Scholar] [CrossRef] [Green Version]
- Parkins, M.D.; Somayaji, R.; Waters, V. Epidemiology, Biology, and Impact of ClonalPseudomonas aeruginosaInfections in Cystic Fibrosis. Clin. Microbiol. Rev. 2018, 31, e00019-18. [Google Scholar] [CrossRef] [Green Version]
- Oliver, A.; Mulet, X.; López-Causapé, C.; Juan, C. The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resist. Updates 2015, 22, 41–59. [Google Scholar] [CrossRef]
- Evans, T.J. Small colony variants ofPseudomonas aeruginosain chronic bacterial infection of the lung in cystic fibrosis. Future Microbiol. 2015, 10, 231–239. [Google Scholar] [CrossRef]
- Bianconi, I.; D’Arcangelo, S.; Esposito, A.; Benedet, M.; Piffer, E.; Dinnella, G.; Gualdi, P.; Schinella, M.; Baldo, E.; Donati, C.; et al. Persistence and Microevolution of Pseudomonas aeruginosa in the Cystic Fibrosis Lung: A Single-Patient Longitudinal Genomic Study. Front. Microbiol. 2019, 9, 3242. [Google Scholar] [CrossRef] [Green Version]
- Kung, V.L.; Ozer, E.A.; Hauser, A.R. The Accessory Genome of Pseudomonas aeruginosa. Microbiol. Mol. Biol. Rev. 2010, 74, 621–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dettman, J.R.; Rodrigue, N.; Aaron, S.D.; Kassen, R. Evolutionary genomics of epidemic and nonepidemic strains of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 2013, 110, 21065–21070. [Google Scholar] [CrossRef] [Green Version]
- Botelho, J.; Grosso, F.; Peixe, L. Antibiotic resistance in Pseudomonas aeruginosa. Mechanisms, epidemiology and evolution. Drug Resist. Updates 2019, 44, 100640. [Google Scholar] [CrossRef] [PubMed]
- Oliver, A. Mutators in cystic fibrosis chronic lung infection: Prevalence, mechanisms, and consequences for antimicrobial therapy. Int. J. Med. Microbiol. 2010, 300, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Ferroni, A.; Guillemot, D.; Moumile, K.; Bernede, C.; Le Bourgeois, M.; Waernessyckle, S.; Descamps, P.; Sermet-Gaudelus, I.; Lenoir, G.; Berche, P.; et al. Effect of mutator P. aeruginosaon antibiotic resistance acquisition and respiratory function in cystic fibrosis. Pediatr. Pulmonol. 2009, 44, 820–825. [Google Scholar] [CrossRef]
- Maselli, J.H.; Sontag, M.K.; Norris, J.M.; MacKenzie, T.; Wagener, J.S.; Accurso, F.J. Risk factors for initial acquisition ofPseudomonas aeruginosa in children with cystic fibrosis identified by newborn screening. Pediatr. Pulmonol. 2003, 35, 257–262. [Google Scholar] [CrossRef]
- West, S.E.H.; Zeng, L.; Lee, B.L.; Kosorok, M.R.; Laxova, A.; Rock, M.J.; Splaingard, M.; Farrell, P.M. Respiratory Infections With Pseudomonas aeruginosa in Children With Cystic Fibrosis. JAMA 2002, 287, 2958–2967. [Google Scholar] [CrossRef] [Green Version]
- Stutman, H.R.; Lieberman, J.M.; Nussbaum, E.; Marks, M.I. Antibiotic prophylaxis in infants and young children with cystic fibrosis: A randomized controlled trial. J. Pediatr. 2002, 140, 299–305. [Google Scholar] [CrossRef]
- Armstrong, D.S.; Grimwood, K.; Carlin, J.B.; Olinsky, A.; Phelan, P.D. Bronchoalveolar lavage or oropharyngeal cultures to identify lower respiratory pathogens in infants with cystic fibrosis. Pediatr. Pulmonol. 1996, 21, 267–275. [Google Scholar] [CrossRef]
- Gutierrez, J.; Grimwood, K.; Armstrong, D.; Carlin, J.B.; Carzino, R.; Olinsky, A.; Robertson, C.; Phelan, P. Interlobar differences in bronchoalveolar lavage fluid from children with cystic fibrosis. Eur. Respir. J. 2001, 17, 281–286. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, M.; Emerson, J.; Accurso, F.; Armstrong, D.; Castile, R.; Grimwood, K.; Hiatt, P.; McCoy, K.; Mn, S.M.; Ramsey, B.; et al. Diagnostic accuracy of oropharyngeal cultures in infants and young children with cystic fibrosis. Pediatr. Pulmonol. 1999, 28, 321–328. [Google Scholar] [CrossRef]
- Ballmann, M.; Rabsch, P.; Von Der Hardt, H. Long term follow up of changes in FEV1 and treatment intensity during Pseudomonas aeruginosa colonisation in patients with cystic fibrosis. Thorax 1998, 53, 732–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nixon, G.M.; Armstrong, D.S.; Carzino, R.; Carlin, J.B.; Olinsky, A.; Robertson, C.F.; Grimwood, K. Clinical outcome after early Pseudomonas aeruginosa infection in cystic fibrosis. J. Pediatr. 2001, 138, 699–704. [Google Scholar] [CrossRef] [PubMed]
- Kosorok, M.R.; Zeng, L.; West, S.E.; Rock, M.J.; Splaingard, M.L.; Laxova, A.; Green, C.G.; Collins, J.; Farrell, P.M. Acceleration of lung disease in children with cystic fibrosis after Pseudomonas aeruginosa acquisition. Pediatr. Pulmonol. 2001, 32, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Douglas, T.A.; Brennan, S.; Gard, S.; Berry, L.; Gangell, C.; Stick, S.M.; Clements, B.S.; Sly, P.D. Acquisition and eradication of P. aeruginosa in young children with cystic fibrosis. Eur. Respir. J. 2008, 33, 305–311. [Google Scholar] [CrossRef] [Green Version]
- Burns, J.L.; Gibson, R.L.; McNamara, S.; Yim, D.; Emerson, J.; Rosenfeld, M.; Hiatt, P.; McCoy, K.; Castile, R.; Smith, A.L.; et al. Longitudinal Assessment ofPseudomonas aeruginosain Young Children with Cystic Fibrosis. J. Infect. Dis. 2001, 183, 444–452. [Google Scholar] [CrossRef] [Green Version]
- Mayer-Hamblett, N.; Kloster, M.; Rosenfeld, M.; Gibson, R.L.; Retsch-Bogart, G.Z.; Emerson, J.; Thompson, V.; Ramsey, B.W. Impact of Sustained Eradication of NewPseudomonas aeruginosaInfection on Long-term Outcomes in Cystic Fibrosis. Clin. Infect. Dis. 2015, 61, 707–715. [Google Scholar] [CrossRef]
- Chmiel, J.F.; Aksamit, T.R.; Chotirmall, S.H.; Dasenbrook, E.C.; Elborn, J.S.; Lipuma, J.J.; Ranganathan, S.C.; Waters, V.J.; Ratjen, F. Antibiotic Management of Lung Infections in Cystic Fibrosis. I. The Microbiome, Methicillin-ResistantStaphylococcus aureus, Gram-Negative Bacteria, and Multiple Infections. Ann. Am. Thorac. Soc. 2014, 11, 1120–1129. [Google Scholar] [CrossRef] [Green Version]
- Caverly, L.J.; Zhao, J.; Lipuma, J.J. Cystic fibrosis lung microbiome: Opportunities to reconsider management of airway infection. Pediatr. Pulmonol. 2015, 50, S31–S38. [Google Scholar] [CrossRef]
- Caverly, L.J.; Lipuma, J.J. Cystic fibrosis respiratory microbiota: Unraveling complexity to inform clinical practice. Expert Rev. Respir. Med. 2018, 12, 857–865. [Google Scholar] [CrossRef]
- Lipuma, J.J. The Changing Microbial Epidemiology in Cystic Fibrosis. Clin. Microbiol. Rev. 2010, 23, 299–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malhotra, S.; Hayes, D.; Wozniak, D.J. Cystic Fibrosis and Pseudomonas aeruginosa: The Host-Microbe Interface. Clin. Microbiol. Rev. 2019, 32, 00138-18. [Google Scholar] [CrossRef] [PubMed]
- Coburn, B.; Wang, P.W.; Caballero, J.D.; Clark, S.T.; Brahma, V.; Donaldson, S.; Zhang, Y.; Surendra, A.; Gong, Y.; Tullis, D.E.; et al. Lung microbiota across age and disease stage in cystic fibrosis. Sci. Rep. 2015, 5, 10241. [Google Scholar] [CrossRef] [PubMed]
- Acosta, N.; Heirali, A.; Somayaji, R.; Surette, M.; Workentine, M.; Sibley, C.D.; Rabin, H.R.; Parkins, M.D. Sputum microbiota is predictive of long-term clinical outcomes in young adults with cystic fibrosis. Thorax 2018, 73, 1016–1025. [Google Scholar] [CrossRef] [PubMed]
- Cuthbertson, L.; Walker, A.W.; Oliver, A.E.; Rogers, G.B.; Rivett, D.W.; Hampton, T.H.; Ashare, A.; Elborn, S.J.; De Soyza, A.; Carroll, M.P.; et al. Lung function and microbiota diversity in cystic fibrosis. Microbiome 2020, 8, 45. [Google Scholar] [CrossRef] [PubMed]
- Cystic Fibrosis Foundation. Cystic Fibrosis Foundation Patient Registry 2018. Annual Data Report Bethesda, Maryland ©2019. Available online: https://www.ecfs.eu/ecfspr (accessed on 20 November 2020).
- Caballero, J.D.D.; Del Campo, R.; Royuela, A.; Solé, A.; Máiz, L.; Olveira, G.; Quintana-Gallego, E.; De Gracia, J.; Cobo, M.; De La Pedrosa, E.G.G.; et al. Bronchopulmonary infection–colonization patterns in Spanish cystic fibrosis patients: Results from a national multicenter study. J. Cyst. Fibros. 2016, 15, 357–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Causapé, C.; Caballero, J.D.D.; Cobo, M.; Escribano, A.; Asensio, O.; Oliver, A.; Del Campo, R.; Cantón, R.; Solé, A.; Cortell, I.; et al. Antibiotic resistance and population structure of cystic fibrosis Pseudomonas aeruginosa isolates from a Spanish multi-centre study. Int. J. Antimicrob. Agents 2017, 50, 334–341. [Google Scholar] [CrossRef]
- Emerson, J.; Rosenfeld, M.; McNamara, S.; Ramsey, B.; Gibson, R.L. Pseudomonas aeruginosa and other predictors of mortality and morbidity in young children with cystic fibrosis. Pediatr. Pulmonol. 2002, 34, 91–100. [Google Scholar] [CrossRef]
- Rosenfeld, M.; Emerson, J.; Mn, S.M.; Joubran, K.; Retsch-Bogart, G.; Graff, G.R.; Gutierrez, H.H.; Kanga, J.F.; Lahiri, T.; Noyes, B.; et al. Baseline Characteristics and Factors Associated With Nutritional and Pulmonary Status at Enrollment in the Cystic Fibrosis EPIC Observational Cohort. Pediatr. Pulmonol. 2010, 45, 934–944. [Google Scholar] [CrossRef]
- Avendaño-Ortiz, J.; Llanos-González, E.; Toledano, V.; Del Campo, R.; Cubillos-Zapata, C.; Lozano-Rodríguez, R.; Ismail, A.F.; Prados, C.; Gómez-Campelo, P.; Aguirre, L.A.; et al. Pseudomonas aeruginosa colonization causes PD-L1 overexpression on monocytes, impairing the adaptive immune response in patients with cystic fibrosis. J. Cyst. Fibros. 2019, 18, 630–635. [Google Scholar] [CrossRef]
- Stylemans, D.; Verbanck, S.; Vincken, S.; Vincken, W.; De Wachter Vanderhelst, E. Pulmonary function patterns and their association with genotype and phenotype in adult cystic fibrosis patients. Acta Clin. Belg. 2019, 74, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Somayaji, R.; Lam, J.C.; Surette, M.G.; Waddell, B.; Rabin, H.R.; Sibley, C.D.; Purighalla, S.; Parkins, M.D. Long-term clinical outcomes of ‘Prairie Epidemic Strain’Pseudomonas aeruginosainfection in adults with cystic fibrosis. Thorax 2016, 72, 333–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zemanick, E.T.; Harris, J.K.; Wagner, B.D.; Robertson, C.E.; Sagel, S.D.; Stevens, M.J.; Accurso, F.J.; Laguna, T.A. Inflammation and Airway Microbiota during Cystic Fibrosis Pulmonary Exacerbations. PLoS ONE 2013, 8, e62917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayer-Hamblett, N.; Rosenfeld, M.; Gibson, R.L.; Ramsey, B.W.; Kulasekara, H.D.; Retsch-Bogart, G.Z.; Morgan, W.; Wolter, D.J.; Pope, C.E.; Houston, L.S.; et al. Pseudomonas aeruginosa in vitroPhenotypes Distinguish Cystic Fibrosis Infection Stages and Outcomes. Am. J. Respir. Crit. Care Med. 2014, 190, 289–297. [Google Scholar] [CrossRef] [Green Version]
- Ramsey, K.A.; Ranganathan, S.; Park, J.; Skoric, B.; Adams, A.-M.; Simpson, S.J.; Robins-Browne, R.M.; Franklin, P.J.; De Klerk, N.H.; Sly, P.D.; et al. Early Respiratory Infection Is Associated with Reduced Spirometry in Children with Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 2014, 190, 1111–1116. [Google Scholar] [CrossRef] [Green Version]
- Zemanick, E.T.; Emerson, J.; Thompson, V.; McNamara, S.; Morgan, W.; Gibson, R.L.; Rosenfeld, M.; EPIC Study Group. Clinical outcomes after initial pseudomonas acquisition in cystic fibrosis. Pediatr. Pulmonol. 2014, 50, 42–48. [Google Scholar] [CrossRef]
- Dill, E.J.; Dawson, R.; Sellers, D.E.; Robinson, W.M.; Sawicki, G.S. Longitudinal Trends in Health-Related Quality of Life in Adults With Cystic Fibrosis. Chest 2013, 144, 981–989. [Google Scholar] [CrossRef] [Green Version]
- Folescu, T.W.; Marques, A.; Boechat, M.C.; Daltro, P.; Higa, L.Y.; Cohen, R.W. High-resolution computed tomography scores in cystic fibrosis patients colonized with Pseudomonas aeruginosa or Staphylococcus aureus. J. Bras. Pneumol. 2012, 38, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Mott, L.S.; Park, J.; Murray, C.P.; Gangell, C.L.; de Klerk, N.H.; Robinson, P.J.; Robertson, C.F.; Ranganathan, S.C.; Sly, P.D.; Stick, S.M.; et al. Progression of early structural lung disease in young children with cystic fibrosis assessed using computed tomography. Thorax 2012, 67, 509–516. [Google Scholar] [CrossRef] [Green Version]
- Ren, C.L.; Rosenfeld, M.; Mayer, O.H.; Davis, S.D.; Kloster, M.; Castile, R.G.; Hiatt, P.W.; Hart, M.; Johnson, R.; Jones, P.; et al. Analysis of the associations between lung function and clinical features in preschool children with Cystic Fibrosis. Pediatr. Pulmonol. 2011, 47, 574–581. [Google Scholar] [CrossRef]
- Taylor-Robinson, D.; Whitehead, M.; Diderichsen, F.; Olesen, H.V.; Pressler, T.; Smyth, R.L.; Diggle, P. Understanding the natural progression in %FEV1 decline in patients with cystic fibrosis: A longitudinal study. Thorax 2012, 67, 860–866. [Google Scholar] [CrossRef] [Green Version]
- Sawicki, G.S.; Signorovitch, J.E.; Zhang, J.; Latremouille-Viau, D.; Von Wartburg, M.; Wu, E.Q.; Shi, L. Reduced mortality in cystic fibrosis patients treated with tobramycin inhalation solution. Pediatr. Pulmonol. 2011, 47, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Ashish, A.; Shaw, M.; McShane, J.; Ledson, M.J.; Walshaw, M.J. Health-related quality of life in Cystic Fibrosis patients infected with transmissible Pseudomonas aeruginosa strains: Cohort study. JRSM Short Rep. 2012, 3, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konstan, M.W.; Wagener, J.S.; Vandevanter, D.R.; Pasta, D.J.; Yegin, A.; Rasouliyan, L.; Morgan, W.J. Risk factors for rateo f decline in FEV1 in adults with cystic fibrosis. J. Cyst. Fibros. 2012, 11, 405–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pillarisetti, N.; Williamson, E.; Linnane, B.; Skoric, B.; Robertson, C.F.; Robinson, P.; Massie, J.; Hall, G.L.; Sly, P.; Stick, S.; et al. Infection, Inflammation, and Lung Function Decline in Infants with Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 2011, 184, 75–81. [Google Scholar] [CrossRef]
- Gangell, C.; Gard, S.; Douglas, T.; Park, J.; De Klerk, N.; Keil, T.; Brennan, S.; Ranganathan, S.; Robins-Browne, R.; Sly, P.D.; et al. Inflammatory Responses to Individual Microorganisms in the Lungs of Children With Cystic Fibrosis. Clin. Infect. Dis. 2011, 53, 425–432. [Google Scholar] [CrossRef] [Green Version]
- Robinson, T.E.; Leung, A.N.; Chen, X.; Moss, R.B.; Emond, M. Cystic fibrosis HRCT scores correlate strongly with pseudomonas infection. Pediatr. Pulmonol. 2009, 44, 1107–1117. [Google Scholar] [CrossRef]
- Konstan, M.W.; Morgan, W.J.; Butler, S.M.; Pasta, D.J.; Craib, M.L.; Silva, S.J.; Stokes, D.C.; Wohl, M.E.B.; Wagener, J.S.; Regelmann, W.E.; et al. Risk Factors For Rate of Decline in Forced Expiratory Volume in One Second in Children and Adolescents with Cystic Fibrosis. J. Pediatr. 2007, 151, 134–139. [Google Scholar] [CrossRef]
- Courtney, J.; Bradley, J.; McCaughan, J.; O’Connor, T.M.; Shortt, C.; Bredin, C.P.; Bradbury, I.; Elborn, J.S. Predictors of mortality in adults with cystic fibrosis. Pediatr. Pulmonol. 2007, 42, 525–532. [Google Scholar] [CrossRef]
- Taccetti, G.; Campana, S.; Festini, F.; Mascherini, M.; Döring, G. Early eradication therapy against Pseudomonas aeruginosa in cystic fibrosis patients. Eur. Respir. J. 2005, 26, 458–461. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Kosorok, M.R.; Farrell, P.M.; Laxova, A.; West, S.E.H.; Green, C.G.; Collins, J.; Rock, M.J.; Splaingard, M.L. Longitudinal Development of Mucoid Pseudomonas aeruginosa Infection and Lung Disease Progression in Children With Cystic Fibrosis. JAMA 2005, 293, 581–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navarro, J.; Rainisio, M.; Harms, H.; Hodson, M.; Koch, C.; Mastella, G.; Strandvik, B.; McKenzie, S. Factors associated with poor pulmonary function: Cross-sectional analysis of data from the ERCF. Eur. Respir. J. 2001, 18, 298–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hudson, V.L.; Wielinski, C.L.; Regelmann, W.E. Prognostic implications of initial oropharyngeal bacterial flora in patients with cystic fibrosis diagnosed before the age of two years. J. Pediatr. 1993, 122, 854–860. [Google Scholar] [CrossRef]
- Henry, R.L.; Mellis, C.M.; Petrovic, L. MucoidPseudomonas aeruginosa is a marker of poor survival in cystic fibrosis. Pediatr. Pulmonol. 1992, 12, 158–161. [Google Scholar] [CrossRef] [PubMed]
- Pamukcu, A.; Bush, A.; Buchdahl, R. Effects ofPseudomonas aeruginosa colonization on lung function and anthropometric variables in children with cystic fibrosis. Pediatr. Pulmonol. 1995, 19, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Kerem, E.; Corey, M.; Gold, R.; Levison, H. Pulmonary function and clinical course in patients with cystic fibrosis after pulmonary colonization with Pseudomonas aeruginosa. J. Pediatr. 1990, 116, 714–719. [Google Scholar] [CrossRef]
- Banerjee, D.; Stableforth, D. The treatment of respiratory pseudomonas infection in cystic fibrosis: What drug and which way? Drugs 2000, 60, 1053–1064. [Google Scholar] [CrossRef]
- Ren, C.L.; Konstan, M.W.; Yegin, A.; Rasouliyan, L.; Trzaskoma, B.; Morgan, W.J.; Regelmann, W. Multiple antibiotic-resistant Pseudomonas aeruginosa and lung function decline in patients with cystic fibrosis. J. Cyst. Fibros. 2012, 11, 293–299. [Google Scholar] [CrossRef] [Green Version]
- Sawicki, G.S.; Rassouliyan, L.; McMullen, A.H.; Wagener, J.S.; McColley, S.A.; Pasta, D.J.; Quittner, A.L. Longitudinal assessment of health-related quality of life in an observational cohort of patients with cystic fibrosis. Pediatr. Pulmonol. 2011, 46, 36–44. [Google Scholar] [CrossRef]
- Loeve, M.; Gerbrands, K.; Hop, W.C.; Rosenfeld, M.; Hartmann, I.C.; Tiddens, H.A. Bronchiectasis and Pulmonary Exacerbations in Children and Young Adults with Cystic Fibrosis. Chest 2011, 140, 178–185. [Google Scholar] [CrossRef]
- Nixon, G.M.; Armstrong, D.S.; Carzino, R.; Carlin, J.B.; Olinsky, A.; Robertson, C.F.; Grimwood, K. Early airway infection, inflammation, and lung function in cystic fibrosis. Arch. Dis. Child. 2002, 87, 306–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Rahim, R.H.; Manji, J.; Wilcox, P.G.; Javer, A.R.; Buxton, J.A.; Quon, S.B. A Systematic Review of Factors Associated with Health-Related Quality of Life in Adolescents and Adults with Cystic Fibrosis. Ann. Am. Thorac. Soc. 2015, 12, 420–428. [Google Scholar]
- Quittner, A.L.; Modi, A.C.; Wainwright, C.; Otto, K.; Kirihara, J.; Montgomery, A.B. Determination of the Minimal Clinically Important Difference Scores for the Cystic Fibrosis Questionnaire-Revised Respiratory Symptom Scale in Two Populations of Patients With Cystic Fibrosis and Chronic Pseudomonas aeruginosa Airway Infection. Chest 2009, 135, 1610–1618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olveira, G.; Olveira, G.; Gaspar, I.; Cruz, I.; Dorado, A.; Pérez-Ruiz, E.; Porras, N.; Soriguer, F. Validation of the Spanish Version of the Revised Cystic Fibrosis Quality of Life Questionnaire in Adolescents and Adults (CFQR 14+ Spain). Arch. Bronconeumol. 2010, 46, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Bradbury, R.S.; Champion, A.; Reid, D.W. Poor clinical outcomes associated with a multi-drug resistant clonal strain of Pseudomonas aeruginosain the Tasmanian cystic fibrosis population. Respirology 2008, 13, 886–892. [Google Scholar] [CrossRef] [PubMed]
- Heirali, A.A.; Workentine, M.L.; Acosta, N.; Poonja, A.; Storey, D.G.; Somayaji, R.; Rabin, H.R.; Whelan, F.J.; Surette, M.G.; Parkins, M.D. The effects of inhaled aztreonam on the cystic fibrosis lung microbiome. Microbiome 2017, 5, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Greally, P.; Whitaker, P.; Peckham, D. Challenges with current inhaled treatments for chronic Pseudomonas aeruginosa infection in patients with cystic fibrosis. Curr. Med. Res. Opin. 2012, 28, 1059–1067. [Google Scholar] [CrossRef]
- Tramper-Stranders, G.A.; Van Der Ent, C.K.; Wolfs, T.F.W.; Kimpen, J.L.L.; Fleer, A.; Johansen, U.; Johansen, H.K.; Høiby, N.; Tramper-Stranders, G.A. Pseudomonas aeruginosa diversity in distinct paediatric patient groups. Clin. Microbiol. Infect. 2008, 14, 935–941. [Google Scholar] [CrossRef] [Green Version]
- Demko, C.A.; Byard, P.J.; Davis, P.B. Gender differences in cystic fibrosis: Pseudomonas aeruginosa infection. J. Clin. Epidemiol. 1995, 48, 1041–1049. [Google Scholar] [CrossRef]
- Döring, G.; Flume, P.; Heijerman, H.; Elborn, J.S.; Consensus Study Group. Treatment of lung infection in patients with cystic fibrosis: Current and future strategies. J. Cyst. Fibros. 2012, 11, 461–479. [Google Scholar] [CrossRef] [Green Version]
- Maiz, L.; Girón, R.M.; Olveira, C.; Quintana, E.; Lamas, A.; Pastor, D.; Cantón, R.; Mensa, J. Inhaled antibiotics for the treatment of chronic bronchopulmonary Pseudomonas aeruginosa infection in cystic fibrosis: Systematic review of randomized controlled trials. Expert Opin. Pharm. 2013, 14, 1135–1149. [Google Scholar] [CrossRef] [PubMed]
- Ratjen, F.A.; Munck, A.; Kho, P.; Angyalosi, G.; ELITE Study Group. Treatment of early Pseudomonas aeruginosa infection in patients with cystic fibrosis: The ELITE trial. Thorax 2010, 65, 286–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, C.; Pressler, T.; Høiby, N. Early aggressive eradication therapy for intermittent Pseudomonas aeruginosa airway colonization in cystic fibrosis patients: 15 years experience. J. Cyst. Fibros. 2008, 7, 523–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fauvart, M.; De Groote, V.N.; Michiels, J. Role of persister cells in chronic infections: Clinical relevance and perspectives on anti-persister therapies. J. Med. Microbiol. 2011, 60, 699–709. [Google Scholar] [CrossRef]
- Valerius, N.; Koch, C.; Høiby, N. Prevention of chronic Pseudomonas aeruginosa colonisation in cystic fibrosis by early treatment. Lancet 1991, 338, 725–726. [Google Scholar] [CrossRef]
- Frederiksen, B.; Koch, C.; Høiby, N. Antibiotic treatment of initial colonization withPseudomonas aeruginosa postpones chronic infection and prevents deterioration of pulmonary function in cystic fibrosis. Pediatr. Pulmonol. 1997, 23, 330–335. [Google Scholar] [CrossRef]
- Nikonova, V.; Zhekayte, E.; Kapranov, N. 390 Efficacy and safety of colistin for inhalation in children 5 years old and younger with cystic fibrosis with Pseudomonas aeruginosa infection. J. Cyst. Fibros. 2011, 10, S100. [Google Scholar] [CrossRef] [Green Version]
- Ratjen, F.; Moeller, A.; McKinney, M.L.; Asherova, I.; Alon, N.; Maykut, R.; Angyalosi, G.; Bede, O.; Bolbas, K.; Bulatov, V.; et al. Eradication of early P. aeruginosa infection in children <7 years of age with cystic fibrosis: The early study. J. Cyst. Fibros. 2019, 18, 78–85. [Google Scholar] [CrossRef]
- Proesmans, M.; Vermeulen, F.; Boulanger, L.; Verhaegen, J.; De Boeck, K. Comparison of two treatment regimens for eradication of Pseudomonas aeruginosa infection in children with cystic fibrosis. J. Cyst. Fibros. 2013, 12, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Taccetti, G.; Bianchini, E.; Cariani, L.; Buzzetti, R.; Costantini, D.; Trevisan, F.; Zavataro, L.; Campana, S. Early antibiotic treatment forPseudomonas aeruginosaeradication in patients with cystic fibrosis: A randomised multicentre study comparing two different protocols. Thorax 2012, 67, 853–859. [Google Scholar] [CrossRef] [Green Version]
- Tiddens, H.A.; De Boeck, K.; Clancy, J.P.; Fayon, M.; Arets, H.G.M.; Bresnik, M.; Derchak, A.; Lewis, S.A.; Oermann, C.M. ALPINE study investigators. Open label study of in- haled aztreonam for Pseudomonas eradication in children with cystic fibrosis: The ALPINE study. J. Cyst. Fibros. 2015, 14, 111–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hewer, S.C.L.; Smyth, A.R. Antibiotic strategies for eradicating Pseudomonas aeruginosa in people with cystic fibrosis. Cochrane Database Syst. Rev. 2017, 4, CD004197. [Google Scholar] [CrossRef]
- Littlewood, J.; Miller, M.; Ghoneim, A.; Ramsden, C. Nebulised colomycin for early pseudomonas colonisation in cystic fibrosis. Lancet 1985, 325, 865. [Google Scholar] [CrossRef]
- Rosenfeld, M.; Ramsey, B.W.; Gibson, R.L. Pseudomonas acquisition in young patients with cystic fibrosis: Pathophysiology, diagnosis, and management. Curr. Opin. Pulm. Med. 2003, 9, 492–497. [Google Scholar] [CrossRef] [PubMed]
- Frederiksen, B.; Koch, C.; Hoiby, N. Changing epidemiology on Pseudomonas aeruginosa infection in Danish cystic fibrosis patients (1974–1995). Pediatr. Pulmonol. 1999, 8, 59–66. [Google Scholar]
- Döring, G.; Conway, S.; Heijerman, H.; Hodson, M.; Høiby, N.; Smyth, A.; Touw, D.J. Antibiotic therapy against Pseudomonas aeruginosa in cystic fibrosis: A European consensus. Eur. Respir. J. 2000, 16, 749–767. [Google Scholar] [CrossRef]
- Steinkamp, G.; Tummler, B.; Gappa, M.; Albus, A.; Potel, J.; Doring, G.; von der Hardt, H. Long-term tobramycin aerosoltherapy in cystic fibrosis. Pediatr. Pulmonol. 1989, 6, 91–98. [Google Scholar] [CrossRef]
- Jensen, T.; Pedersen, S.S.; Garne, S.; Heilmann, C.; Høiby, N.; Koch, C. Colistin inhalation ther- apy in cystic fibrosis patients with chronic Pseudomonas aeruginosa lung infection. J. Antimicrob. Chemother. 1987, 19, 831–838. [Google Scholar] [CrossRef]
- Day, A.J.; Williams, J.; McKeown, C.; Bruton, A.; Weller, P.H. Evaluation of Inhaled Colomycin in Children with Cystic Fibrosis (abstract). In Proceedings of the 10th International Cystic Fibrosis Congress, Sydney, Australia, 5–10 March 1988; p. 106. [Google Scholar]
- Ramsey, B.W.; Dorkin, H.L.; Eisenberg, J.D.; Gibson, R.L.; Harwood, I.R.; Kravitz, R.M.; Schidlow, D.V.; Wilmott, R.W.; Astley, S.J.; McBurnie, M.A.; et al. Efficacy of Aerosolized Tobramycin in Patients with Cystic Fibrosis. N. Engl. J. Med. 1993, 328, 1740–1746. [Google Scholar] [CrossRef]
- Ramsey, B.W.; Pepe, M.S.; Quan, J.M.; Otto, K.L.; Montgomery, A.B.; Williams-Warren, J.; Vasiljev-K, M.; Borowitz, D.; Bowman, C.M.; Marshall, B.C.; et al. Intermittent Administration of Inhaled Tobramycin in Patients with Cystic Fibrosis. N. Engl. J. Med. 1999, 340, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Høiby, N.; Frederiksen, B.; Pressler, T. Eradication of early Pseudomonas aeruginosa infection. J. Cyst. Fibros. 2005, 4, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Schuster, A.; Haliburn, C.; Döring, G.; Goldman, M.H.; Freedom Study Group. Safety, efficacy and convenience of colistimethate sodium dry pow- der for inhalation (Colobreathe DPI) in patients with cystic fibrosis: A randomised study. Thorax 2013, 68, 344–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodson, M.; Gallagher, C.; Govan, J. A randomised clinical trial of nebulised tobramycin or colistin in cystic fibrosis. Eur. Respir. J. 2002, 20, 658–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallego, E.Q.; Pecellínc, I.D.; Acuña, C.C. Infección bronquial crónica en pa-cientes con fibrosis quística. Monogr. Arch. Bronconeumol. 2014, 1, 86–91. [Google Scholar]
- Retsch-Bogart, G.Z.; Quittner, A.L.; Gibson, R.L.; Oermann, C.M.; McCoy, K.S.; Montgomery, A.B.; Cooper, P.J. Efficacy and Safety of Inhaled Aztreonam Lysine for Airway Pseudomonas in Cystic Fibrosis. Chest 2009, 135, 1223–1232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCoy, K.S.; Quittner, A.L.; Oermann, C.M.; Gibson, R.L.; Retsch-Bogart, G.Z.; Montgomery, A.B. Inhaled aztreonam lysine for chronic airway Pseudomonas aeruginosa in cystic fibrosis. Am. J. Respir Crit. Care Med. 2008, 178, 921–928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wainwright, C.E.; Quittner, A.; Geller, D.; Nakamura, C.; Wooldridge, J.; Gibson, R.; Lewis, S.; Montgomery, A. Aztreonam for inhalation solution (AZLI) in patients with cystic fibrosis, mild lung impairment, and P. aeruginosa. J. Cyst. Fibros. 2011, 10, 234–242. [Google Scholar] [CrossRef] [Green Version]
- Assael, B.M.; Pressler, T.; Bilton, D.; Fayon, M.; Fischer, R.; Chiron, R.; LaRosa, M.; Knoop, C.; McElvaney, N.; Lewis, S.A.; et al. Inhaled aztreonam lysine vs. inhaled tobramycin in cystic fibrosis: A comparative efficacy trial. J. Cyst. Fibros. 2013, 12, 130–140. [Google Scholar] [CrossRef] [Green Version]
- Ryan, G.; Singh, M.; Dwan, K. Inhaled antibiotics for long-term therapy in cystic fibrosis. Cochrane Database Syst. Rev. 2011, 3, CD001021. [Google Scholar] [CrossRef]
- Geller, D.E.; Flume, P.; Staab, D.; Fischer, R.L.; Loutit, J.S.; Conrad, D.J. Levofloxacin Inhalation Solution (MP-376) in Patients with Cystic Fibrosis withPseudomonas aeruginosa. Am. J. Respir. Crit. Care Med. 2011, 183, 1510–1516. [Google Scholar] [CrossRef]
- Clancy, J.P.; Dupont, L.; Konstan, M.W.; Billings, J.; Fustik, S.; Goss, C.H.; Arikace Study Group. Phase II studies of nebulised Arikace in CF patients with Pseudomonas aeruginiosa infection. Thorax 2013, 68, 818–825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elborn, S.J.; Geller, D.; Conrad, D.; Aaron, S.; Smyth, A.; Fischer, R.; Kerem, E.; Bell, S.C.; Loutit, J.S.; Dudley, M.N.; et al. A phase 3, open-label, ran- domized trial to evaluate the safety and efficacy of levofloxacin inhalation solution (APT- 1026) versus tobramycin inhalation solution in stable cystic fibrosis patients. J. Cyst. Fibros. 2015, 14, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.J.; Rowbotham, N.J.; Regan, K.H. Inhaled anti-pseudomonal antibiotics for long-term therapy in cystic fibrosis. Cochrane Database Syst. Rev. 2018, 3, CD001021. [Google Scholar] [CrossRef] [PubMed]
- Elborn, J.; Bell, S. Pulmonary exacerbations in cystic fibrosis and bronchiectasis. Thorax 2007, 62, 288–290. [Google Scholar] [CrossRef] [Green Version]
- Woo, T.E.; Lim, R.; Surette, M.G.; Waddell, B.; Joel, C.B.; Somayaji, R.; Duong, J.; Mody, C.H.; Rabin, H.R.; Storey, G.D.; et al. Epidemiology and natural history of Pseudomonas aeruginosa airway infections in non-cystic fibrosis bronchiectasis. ERJ Open Res. 2018, 4, 00162-2017. [Google Scholar] [CrossRef] [Green Version]
- Aaron, S.D.; Ramotar, K.; Ferris, W.; Vandemheen, K.; Saginur, R.; Tullis, E.; Haase, D.; Kottachchi, D.; Denis, M.S.; Chan, F. Adult Cystic Fibrosis Exacerbations and New Strains ofPseudomonas aeruginosa. Am. J. Respir. Crit. Care Med. 2004, 169, 811–815. [Google Scholar] [CrossRef]
- De Soyza, A.; Perry, A.; Hall, A.J.; Sunny, S.S.; Walton, K.E.; Mustafa, N.; Turton, J.; Kenna, D.T.; Winstanley, C. Molecular epidemiological analysis suggests cross-infection with Pseudomonas aeruginosa is rare in non-cystic fibrosis bronchiectasis. Eur. Respir. J. 2013, 43, 900–903. [Google Scholar] [CrossRef] [Green Version]
- Williams, D.; Evans, B.; Haldenby, S.; Walshaw, M.J.; Brockhurst, M.A.; Winstanley, C.; Paterson, S. Divergent, Coexisting Pseudomonas aeruginosaLineages in Chronic Cystic Fibrosis Lung Infections. Am. J. Respir. Crit. Care Med. 2015, 191, 775–785. [Google Scholar] [CrossRef] [Green Version]
- Martínez-García, M.Á.; de Gracia, J.; Relat, M.V.; Girón, R.; Olveira, G.; Máiz-Carro, L.; De La Rosa, D. Multidimensional approach to non-cystic fibrosis bronchiectasis: The FACED score. Eur. Respir. J. 2014, 43, 1357–1367. [Google Scholar] [CrossRef]
- Martínez-García, M.A.; Soler-Cataluña, J.-J.; Perpiñá-Tordera, M.; Román-Sánchez, P.; Soriano, J.B. Factors Associated With Lung Function Decline in Adult Patients with Stable Non-Cystic Fibrosis Bronchiectasis. Chest 2007, 132, 1565–1572. [Google Scholar] [CrossRef]
- Martinez-García, M.A.; Oscullo, G.; Posadas, T.; Zaldivar, E.; Villa, C.; Dobarganes, Y.; Girón, R.; Olveira, C.; Maíz, L.; García-Clemente, M.; et al. Pseudomonas aeruginosa and lung function decline in patients with bronchiectasis. Clin. Microbiol. Infect. 2020. [Google Scholar] [CrossRef]
- Evans, S.; Turner, S.; Bosch, B.; Hardy, C.; Woodhead, M. Lung function in bronchiectasis: The influence of Pseudomonas aeruginosa. Eur. Respir. J. 1996, 9, 1601–1604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, P.L.; Chan, K.-N.; Ip, M.S.M.; Lam, W.-K.; Ho, C.-S.; Yuen, K.-Y.; Tsang, K.W. The Effect of Pseudomonas aeruginosa Infection on Clinical Parameters in Steady-State Bronchiectasis. Chest 1998, 114, 1594–1598. [Google Scholar] [CrossRef] [PubMed]
- Davies, G.; Wells, A.U.; Doffman, S.; Watanabe, S.; Wilson, R. The effect of Pseudomonas aeruginosa on pulmonary function in patients with bronchiectasis. Eur. Respir. J. 2006, 28, 974–979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, C.B.; Jones, P.W.; O’Leary, C.J.; Hansell, D.M.; Cole, P.J.; Wilson, R. Effect of sputum bacteriology on the quality of life of patients with bronchiectasis. Eur. Respir. J. 1997, 10, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Loebinger, M.R.; Wells, A.U.; Hansell, D.M.; Chinyanganya, N.; Devaraj, A.; Meister, M.; Wilson, R. Mortlaity in bronchiectasis: A long-term study assessing the factors influencing survivial. Eur. Respir. J. 2009, 34, 843–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-García, M.A. Pseudomonas aeruginosa infection and exacerbations in bronchiectasis: More questions than answers. Eur. Respir. J. 2018, 51, 1702497. [Google Scholar] [CrossRef] [Green Version]
- Wilson, R.; Aksamit, T.; Aliberti, S.; De Soyza, A.; Elborn, J.S.; Goeminne, P.; Hill, A.T.; Menéndez, R.; Polverino, E. Challenges in managing Pseudomonas aeruginosa in non-cystic fibrosis bronchiectasis. Respir. Med. 2016, 117, 179–189. [Google Scholar] [CrossRef] [Green Version]
- Chalmers, J.D.; Smith, M.P.; McHugh, B.J.; Doherty, C.; Govan, J.R.; Hill, A.T. Short- and Long-Term Antibiotic Treatment Reduces Airway and Systemic Inflammation in Non–Cystic Fibrosis Bronchiectasis. Am. J. Respir. Crit. Care Med. 2012, 186, 657–665. [Google Scholar] [CrossRef]
- De La Rosa, D.; Martínez-Garcia, M.-A.; Olveira, C.; Girón, R.; Máiz, L.; Prados, C. Annual direct medical costs of bronchiectasis treatment: Impact of severity, exacerbations, chronic bronchial colonization and chronic obstructive pulmonary disease coexistence. Chronic Respir. Dis. 2016, 13, 361–371. [Google Scholar] [CrossRef]
- Hernández, C.; Abreu, J.; Jiménez, A.; Fernández, R.; Martín, C. Función pulmonar y calidad de vida en relación con la colonización bronquial en adultos con bronquiectasias no debidas a fibrosis quística [Pulmonary function and quality of life in relation to bronchial colonization in adults with bronchiectasis not caused by cystic fibrosis]. Med. Clin. 2002, 118, 130–134. [Google Scholar] [CrossRef]
- Chalmers, J.D.; Goeminne, P.; Aliberti, S.; McDonnell, M.J.; Lonni, S.; Davidson, J.; Poppelwell, L.; Salih, W.; Pesci, A.; Dupont, L.J.; et al. The Bronchiectasis Severity Index. An International Derivation and Validation Study. Am. J. Respir. Crit. Care Med. 2014, 189, 576–585. [Google Scholar] [CrossRef]
- Goeminne, P.; Nawrot, T.; Ruttens, D.; Seys, S.; Dupont, L. Mortality in non-cystic fibrosis bronchiectasis: A prospective cohort analysis. Respir. Med. 2014, 108, 287–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonnell, M.J.; Jary, H.R.; Perry, A.; Macfarlane, J.G.; Hester, K.L.; Small, T.; Molyneux, C.; Perry, J.D.; Walton, K.E.; De Soyza, A. Non cystic fibrosis bronchiectasis: A longitudinal retrospective observational cohort study of Pseudomonas persistence and resistance. Respir. Med. 2015, 109, 716–726. [Google Scholar] [CrossRef] [Green Version]
- Aliberti, S.; Lonni, S.; Dore, S.; McDonnell, M.J.; Goeminne, P.C.; Dimakou, K.; Fardon, T.C.; Rutherford, R.; Pesci, A.; Restrepo, M.I.; et al. Clinical phenotypes in adult patients with bronchiectasis. Eur. Respir. J. 2016, 47, 1113–1122. [Google Scholar] [CrossRef] [Green Version]
- De La Rosa, D.; Athanazio, R.; Moreno, R.M.G.; Carro, L.M.; Olveira, C.; De Gracia, J.; Vendrell, M.; Sánchez, C.P.; Gramblicka, G.; Pereira, M.C.; et al. The annual prognostic ability of FACED and E-FACED scores to predict mortality in patients with bronchiectasis. ERJ Open Res. 2018, 4, 00139-2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araújo, D.; Shteinberg, M.; Aliberti, S.; Goeminne, P.C.; Hill, A.T.; Fardon, T.; Obradovic, D.; Dimakou, K.; Polverino, E.; De Soyza, A.; et al. Standardised classification of the aetiology of bronchiectasis using an objective algorithm. Eur. Respir. J. 2017, 50, 1701289. [Google Scholar] [CrossRef] [Green Version]
- Ryall, B.; Davies, J.C.; Wilson, R.; Shoemark, A.; Williams, H.D. Pseudomonas aeruginosa, cyanide accumulation and lung function in CF and non-CF bronchiectasis patients. Eur. Respir. J. 2008, 32, 740–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loukides, S.; Bouros, D.; Papatheodorou, G.; Lachanis, S.; Panagou, P.; Siafakas, N.M. Exhaled H(2)O(2) in steady-state bronchiectasis: Relationship with cellular composition in induced sputum, spirometry, and extent and severity of disease. Chest 2002, 121, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Angrill, J.; Agusti, C.; De Celis, R.; Filella, X.; Rañó, A.; Elena, M.; De La Bellacasa, J.P.; Xaubet, A.; Torres, A. Bronchial Inflammation and Colonization in Patients with Clinically Stable Bronchiectasis. Am. J. Respir. Crit. Care Med. 2001, 164, 1628–1632. [Google Scholar] [CrossRef]
- Martinez-Garcia, M.A.; Máiz, L.; Olveira, C.; Girón, R.M.; De La Rosa, D.; Blanco, M.; Cantón, R.; Vendrell, M.; Polverino, E.; De Gracia, J.; et al. Spanish Guidelines on Treatment of Bronchiectasis in Adults. Normativa sobre el tratamiento de las bronquiectasias en el adulto. Arch. Bronconeumol. 2018, 54, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Polverino, E.; Goeminne, P.C.; McDonnell, M.J.; Aliberti, S.; Marshall, S.E.; Loebinger, M.R.; Murris-Espin, M.; Cantón, R.; Torres, A.; Dimakou, K.; et al. European Respiratory Society guidelines for the management of adult bronchiectasis. Eur. Respir. J. 2017, 50, 1700629. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.T.; Sullivan, A.L.; Chalmers, J.D.; De Soyza, A.; Elborn, S.J.; Floto, A.R.; Grillo, L.; Gruffydd-Jones, K.; Harvey, A.; Haworth, C.S.; et al. British Thoracic Society Guideline for bronchiectasis in adults. Thorax 2019, 74 (Suppl. 1), 1–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-García, M.A.; Villa, C.; Dobarganes, Y.; Girón, R.; Maíz, L.; García-Clemente, M.; Sibila, O.; Golpe, R.; Rodríguez, J.; Barreiro, E.; et al. RIBRON: The spanish Online Bronchiectasis Registry. Characterization of the First 1912 Patients. Arch. Bronconeumol. 2020. [Google Scholar] [CrossRef]
- King, P.T.; Holdsworth, S.R.; Freezer, N.J.; Villanueva, E.; Holmes, P.W. Microbiologic follow-up study in adult bronchiectasis. Respir. Med. 2007, 101, 1633–1638. [Google Scholar] [CrossRef] [Green Version]
- Chalmers, J.D. Bronchiectasis: Phenotyping a Complex Disease. COPD J. Chronic Obstr. Pulm. Dis. 2017, 14, S12–S18. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Garcia, M.A.; Vendrell, M.; Girón, R.; Máiz-Carro, L.; de la Rosa Carrillo, D.; De Gracia, J.; Olveira, G. The Multiple Faces of Non–Cystic Fibrosis Bronchiectasis. A Cluster Analysis Approach. Ann. Am. Thorac. Soc. 2016, 13, 1468–1475. [Google Scholar] [CrossRef]
- Guan, W.-J.; Jiang, M.; Gao, Y.-H.; Li, H.-M.; Xu, G.; Zheng, J.-P.; Chen, R.-C.; Zhong, N.-S. Unsupervised learning technique identifies bronchiectasis phenotypes with distinct clinical characteristics. Int. J. Tuberc. Lung Dis. 2016, 20, 402–410. [Google Scholar] [CrossRef]
- Chalmers, J.D.; Aliberti, S.; Filonenko, A.; Shteinberg, M.; Goeminne, P.C.; Hill, A.T.; Fardon, T.C.; Obradovic, D.; Gerlinger, C.; Sotgiu, G.; et al. Characterization of the “Frequent Exacerbator Phenotype” in Bronchiectasis. Am. J. Respir. Crit. Care Med. 2018, 197, 1410–1420. [Google Scholar] [CrossRef]
- Martinez-Garcia, M.A.; Athanazio, R.; Gramblicka, G.; Corso, M.; Lundgren, F.C.; De Figueiredo, M.F.; Arancibia, F.; Rached, S.; Girón, R.; Carro, L.M.; et al. Prognostic Value of Frequent Exacerbations in Bronchiectasis: The Relationship With Disease Severity. Arch. Bronconeumol. 2019, 55, 81–87. [Google Scholar] [CrossRef]
- Martinez-Garcia, M.A.; Agustí, A. Heterogeneidad y complejidad del síndrome bronquiectasias: A pending challenge. Heterogeneidad y complejidad del síndrome bronquiectasias: Un reto pendiente. Arch. Bronconeumol. 2019, 55, 187–188. [Google Scholar] [CrossRef] [PubMed]
- Chai, Y.-H.; Xu, J.-F. How does Pseudomonas aeruginosa affect the progression of bronchiectasis? Clin. Microbiol. Infect. 2020, 26, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Olveira, C.; Padilla, A.; Martínez-García, M.A.; De La Rosa, D.; Girón, R.-M.; Vendrell, M.; Máiz, L.; Borderías, L.; Polverino, E.; Martínez-Moragón, E.; et al. Etiology of Bronchiectasis in a Cohort of 2047 Patients. An Analysis of the Spanish Historical Bronchiectasis Registry. Etiología de las bronquiectasias en una cohorte de 2.047 pacientes. Análisis del registro histórico español. Arch. Bronconeumol. 2017, 53, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Girón, R.M.; Martínez-Vergara, A.; Yépez, G.O.; Martinez-García, M.A. Las bronquiectasias como enfermedad compleja. Open Respir. Arch. 2020, 2, 226–234. [Google Scholar] [CrossRef]
- Bulcun, E.; Arslan, M.; Oguzturk, O.; Ekici, M. Quality of Life and Bronchial Hyper-Responsiveness in Subjects with Bronchiectasis: Validation of the Seattle Obstructive Lung Disease Questionnaire in Bronchiectasis. Respir. Care 2015, 60, 1616–1623. [Google Scholar] [CrossRef] [Green Version]
- Olveira, C.; Olveira, G.; Gaspar, I.; Dorado, A.; Cruz, I.; Soriguer, F.; Quittner, A.L.; Espildora, F. Depression and anxiety symptoms in bronchiectasis: Associations with health-related quality of life. Qual. Life Res. 2012, 22, 597–605. [Google Scholar] [CrossRef]
- Moreno, R.M.G.; Vasconcelos, G.F.; Cisneros, C.; Gómez-Punter, R.M.; Segrelles, G.; Ancochea, J. Presence of anxiety and depression in patients with bronchiectasis unrelated to cystic fibrosis. Arch. Bronconeumol. 2013, 49, 415–420. [Google Scholar] [CrossRef]
- Park, J.; Kim, S.; Lee, Y.J.; Cho, Y.-J.; Yoon, H.I. Factors associated with radiologic progression of non-cystic fibrosis bronchiectasis during long-term follow-up. Respirology 2016, 21, 1049–1054. [Google Scholar] [CrossRef] [Green Version]
- Cantón, R.; Cobos, N.; De Gracia, J.; Baquero, F.; Honorato, J.; Gartner, S.; Alvarez, A.; Salcedo, A.; Oliver, A.; García-Quetglas, E. Antimicrobial therapy for pulmonary pathogenic colonisation and infection by Pseudomonas aeruginosa in cystic fibrosis patients. Clin. Microbiol. Infect. 2005, 11, 690–703. [Google Scholar] [CrossRef] [Green Version]
- Barker, A.F.; Couch, L.; Fiel, S.B.; Gotfried, M.H.; Ilowite, J.; Meyer, K.C.; O’Donnell, A.; Sahn, S.A.; Smith, L.J.; Stewart, J.O.; et al. Tobramycin Solution for Inhalation Reduces SputumPseudomonas aeruginosaDensity in Bronchiectasis. Am. J. Respir. Crit. Care Med. 2000, 162, 481–485. [Google Scholar] [CrossRef] [Green Version]
- White, L.; Mirrani, G.; Grover, M.; Rollason, J.; Malin, A.; Suntharalingam, J. Outcomes of Pseudomonas eradication therapy in patients with non-cystic fibrosis bronchiectasis. Respir. Med. 2012, 106, 356–360. [Google Scholar] [CrossRef] [Green Version]
- Scheinberg, P.; Shore, E. A pilot study of the safety and efficacy of tobramycin solution for inhalation in patients with severe bronchiectasis. Chest 2005, 127, 1420–1426. [Google Scholar] [CrossRef]
- Steinfort, D.P.; Steinfort, C. Effect of long-term nebulized colistin on lung function and quality of life in patients with chronic bronchial sepsis. Intern. Med. J. 2007, 37, 495–498. [Google Scholar] [CrossRef] [PubMed]
- Dhar, R.; Anwar, G.A.; Bourke, S.C.; Doherty, L.; Middleton, P.; Ward, C.; Rutherford, R.M. Efficacy of nebulised colomycin in patients with non-cystic fibrosis bronchiectasis colonised with Pseudomonas aeruginosa. Thorax 2010, 65, 553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orriols, R.; Hernando, R.; Ferrer, A.; Terradas, S.; Montoro, B. Eradication Therapy against Pseudomonas aeruginosa in Non-Cystic Fibrosis Bronchiectasis. Respiration 2015, 90, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Aparicio, M.; Canosa, J.L.S.; López, P.V.; Egaña, M.T.M.; García, I.V.; Martínez, C.M. Eradication of Pseudomonas aeruginosa with inhaled colistin in adults with non-cystic fibrosis bronchiectasis. Chronic Respir. Dis. 2019, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Couch, L.A. Treatment with Tobramycin Solution for Inhalation in Bronchiectasis Patients With Pseudomonas aeruginosa. Chest 2001, 120, 114S–117S. [Google Scholar] [CrossRef]
- Deeks, E.D.; Waugh, J.; Noble, S. Inhaled Tobramycin (TOBI): A review of its use in the management of Pseudomonas aeruginosa infections in patients with cystic fibrosis. Drugs 2003, 63, 2501–2520. [Google Scholar] [CrossRef]
- Drobnic, M.E.; Suñé, P.; Montoro, J.B.; Ferrer, A.; Orriols, R. Inhaled Tobramycin in Non—Cystic Fibrosis Patients with Bronchiectasis and Chronic Bronchial Infection with Pseudomonas Aeruginosa. Ann. Pharmacother. 2005, 39, 39–44. [Google Scholar] [CrossRef]
- Murray, M.P.; Govan, J.R.W.; Doherty, C.J.; Simpson, A.J.; Wilkinson, T.S.; Chalmers, J.D.; Greening, A.P.; Haslett, C.; Hill, A.T. A Randomized Controlled Trial of Nebulized Gentamicin in Non–Cystic Fibrosis Bronchiectasis. Am. J. Respir. Crit. Care Med. 2011, 183, 491–499. [Google Scholar] [CrossRef] [Green Version]
- Huguet, E.T.; Alaña, P.G.; Basañez, R.A.; Gil, A.H.; Garay, J.G.; Igarza, J.L.A. Tratamiento inhalado con colistina a largo plazo en pacientes ancianos con infección crónica por Pseudomonas aeruginosa y bronquiectasias. Revista Española de Geriatría y Gerontología 2015, 50, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Haworth, C.S.; Foweraker, J.E.; Wilkinson, P.; Kenyon, R.F.; Bilton, D. Inhaled Colistin in Patients with Bronchiectasis and ChronicPseudomonas aeruginosaInfection. Am. J. Respir. Crit. Care Med. 2014, 189, 975–982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berlana, D.; Llop, J.M.; Manresa, F.; Jodar, R. Outpatient treatment of Pseudomonas aeruginosa bronchial colonization with long-term inhaled colistin, tobramycin, or both in adults without cystic fibrosis. Pharmacotherapy 2010, 31, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Bilton, D.; Henig, N.; Morrissey, B.; Gotfried, M. Addition of Inhaled Tobramycin to Ciprofloxacin for Acute Exacerbations of Pseudomonas aeruginosa Infection in Adult Bronchiectasis. Chest 2006, 130, 1503–1510. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.U.; Hong, S.W.; Ko, J.-H. Efficacy of inhaled ciprofloxacin agents for the treatment of bronchiectasis: A systematic review and meta-analysis of randomized controlled trials. Ther. Adv. Respir. Dis. 2019, 13, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.-J.; Dai, B. Inhaled antibiotics therapy for stable non-cystic fibrosis bronchiectasis: A meta-analysis. Ther. Adv. Respir. Dis. 2020, 14, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Haworth, C.S.; Bilton, D.; Chalmers, J.D.; Davis, A.M.; Froehlich, J.; Gonda, I.; Thompson, B.; Wanner, A.; O’Donnell, A.E. Inhaled liposomal ciprofloxacin in patients with non-cystic fibrosis bronchiectasis and chronic lung infection with Pseudomonas aeruginosa (ORBIT-3 and ORBIT-4): Two phase 3, randomised controlled trials. Lancet Respir. Med. 2019, 7, 213–226. [Google Scholar] [CrossRef] [Green Version]
- Serisier, D.J.; Bilton, D.; De Soyza, A.; Thompson, P.J.; Kolbe, J.; Greville, H.W.; Cipolla, D.; Bruinenberg, P.; Gonda, I.; ORBIT-2 investigators. Inhaled, dual release liposomal ciprofloxacin in non-cystic fibrosis bronchiectasis (ORBIT-2): A randomised, double-blind, placebo-controlled trial. Thorax 2013, 68, 812–817. [Google Scholar] [CrossRef] [Green Version]
- Wilson, R.; Welte, T.; Polverino, E.; De Soyza, A.; Greville, H.; O’Donnell, A.; Alder, J.; Reimnitz, P.; Hampel, B. Ciprofloxacin dry powder for inhalation in non-cystic fibrosis bronchiectasis: A phase II randomised study. Eur. Respir. J. 2012, 41, 1107–1115. [Google Scholar] [CrossRef] [Green Version]
- Aksamit, T.; De Soyza, A.; Bandel, T.J.; Criollo, M.; Elborn, J.S.; Operschall, E.; Polverino, E.; Roth, K.; Winthrop, K.L.; Wilson, R. RESPIRE 2: A phase III placebo-controlled randomised trial of ciprofloxacin dry powder for inhalation in non-cystic fibrosis bronchiectasis. Eur. Respir. J. 2018, 51, 1702053. [Google Scholar] [CrossRef] [Green Version]
- De Soyza, A.; Aksamit, T.; Bandel, T.J.; Criollo, M.; Elborn, J.S.; Operschall, E.; Polverino, E.; Roth, K.; Winthrop, K.L.; Wilson, R. RESPIRE 1: A phase III placebo-controlled randomised trial of ciprofloxacin dry powder for inhalation in non-cystic fibrosis bronchiectasis. Eur. Respir. J. 2018, 51, 1702052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matkovic, Z.; Miravitlles, M. Chronic bronchial infection in COPD. Is there an infective phenotype? Respir. Med. 2013, 107, 10–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novosad, S.A.; Barker, A.F. Chronic obstructive pulmonary disease and bronchiectasis. Curr. Opin. Pulm. Med. 2013, 19, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Gallego, M.; Pomares, X.; Espasa, M.; Castaner, E.; Sole, M.; Suarez, D.; Monso, E.; Monton, C. Pseudomonas aeruginosa isolates in severe chronic obstructive pulmonary disease: Characterization and risk factors. BMC Pulm. Med. 2014, 14, 103. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Garcia, M.A.; Faner, R.; Oscullo, G.; De La Rosa, D.; Soler-Cataluña, J.-J.; Ballester, M.; Agusti, A. Inhaled Steroids, Circulating Eosinophils, Chronic Airway Infection, and Pneumonia Risk in Chronic Obstructive Pulmonary Disease. A Network Analysis. Am. J. Respir. Crit. Care Med. 2020, 201, 1078–1085. [Google Scholar] [CrossRef] [PubMed]
- Drannik, A.G.; Pouladi, M.A.; Robbins, C.S.; Goncharova, S.I.; Kianpour, S.; Stämpfli, M.R. Impact of Cigarette Smoke on Clearance and Inflammation afterPseudomonas aeruginosaInfection. Am. J. Respir. Crit. Care Med. 2004, 170, 1164–1171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boutou, A.; Raste, Y.; Reid, J.; Alshafi, K.; Polkey, M.I.; Hopkinson, N.S. Does a single Pseudomonas aeruginosa isolation predict COPD mortality? Eur. Respir. J. 2014, 44, 794–797. [Google Scholar] [CrossRef] [Green Version]
- Rosell, A.; Monsó, E.; Soler, N.; Torres, F.; Angrill, J.; Riise, G.; Zalacaín, R.; Morera, J.; Torres, A. Microbiologic Determinants of Exacerbation in Chronic Obstructive Pulmonary Disease. Arch. Intern. Med. 2005, 165, 891–897. [Google Scholar] [CrossRef]
- Murphy, T.F. The many faces of Pseudomonas aeruginosa in chronic obstructive pulmonary disease. Clin. Infect. Dis. 2008, 47, 1534–1536. [Google Scholar] [CrossRef] [Green Version]
- Almagro, P.; Salvadó, M.; Garcia-Vidal, C.; Rodríguez-Carballeira, M.; Cuchi, E.; Torres, J.; Heredia, J.L.I. Pseudomonas aeruginosaand Mortality after Hospital Admission for Chronic Obstructive Pulmonary Disease. Respiration 2012, 84, 36–43. [Google Scholar] [CrossRef]
- Lode, H.M.; Allewelt, M.; Balk, S.; De Roux, A.; Mauch, H.; Niederman, M.; Schmidt-Ioanas, M. A Prediction Model for Bacterial Etiology in Acute Exacerbations of COPD. Infection 2007, 35, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Montero, M.; Dominguez, M.; Orozco-Levi, M.; Salvado, M.; Knobel, H. Mortality of COPD Patients Infected with Multi-Resistant Pseudomonas aeruginosa: A Case and Control Study. Infection 2008, 37, 16–19. [Google Scholar] [CrossRef] [PubMed]
- Vitacca, M.; Marino, S.; Comini, L.; Fezzardi, L.; Paneroni, M. Bacterial Colonization in COPD Patients Admitted to a Rehabilitation Respiratory Unit and Impact on Length of Stay: A Real-Life Study. COPD 2018, 15, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Solano, L.; Macia, M.D.; Fajardo, A.; Oliver, A.; Martinez, J.L. Chronic pseudomonas aeruginosa infection in chronic obstructive pulmonary disease. Clin. Infect. Dis. 2008, 47, 1526–1533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Vidal, C.; Almagro, P.; Romani, V.; Rodriguez-Carballeira, M.; Cuchí, E.; Canales, L.; Blasco, D.; Heredia, J.L.; Garau, J. Pseudomonas aeruginosa in patients hospitalised for COPD exacerbation: A prospective study. Eur. Respir. J. 2009, 34, 1072–1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigo-Troyano, A.; Suarez-Cuartin, G.; Peiró, M.; Barril, S.; Castillo, D.; Sánchez-Reus, F.; Plaza, V.; Restrepo, M.I.; Chalmers, J.D.; Sibila, O. Pseudomonas aeruginosaresistance patterns and clinical outcomes in hospitalized exacerbations of COPD. Respirology 2016, 21, 1235–1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rakhimova, E.; Wiehlmann, L.; Brauer, A.L.; Sethi, S.; Murphy, T.F.; Tümmler, B. Pseudomonas aeruginosaPopulation Biology in Chronic Obstructive Pulmonary Disease. J. Infect. Dis. 2009, 200, 1928–1935. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.; Yang, B.; Nam, H.; Kyoung, D.-S.; Sim, Y.S.; Park, H.Y.; Lee, J.S.; Lee, S.W.; Oh, Y.-M.; Ra, S.W.; et al. Population-based prevalence of bronchiectasis and associated comorbidities in South Korea. Eur. Respir. J. 2019, 54, 1900194. [Google Scholar] [CrossRef]
- Crimi, C.; Ferri, S.; Campisi, R.; Crimi, N. The Link between Asthma and Bronchiectasis: State of the Art. Respiration 2020, 99, 463–476. [Google Scholar] [CrossRef]
- Paganin, F.; Seneterre, E.; Chanez, P.; Daures, J.P.; Bruel, J.M.; Michel, F.B.; Bousquet, J. Computed tomography of the lungs in asthma: Influence of disease severity and etiology. Am. J. Respir. Crit. Care Med. 1996, 153, 110–114. [Google Scholar] [CrossRef]
- Park, J.W.; Hong, Y.K.; Kim, C.W.; Kim, D.K.; Choe, K.O.; Hong, C.S. High-resolution computed tomography in patients with bronchial asthma: Correlation with clinical features, pulmonary functions and bronchial hyperresponsiveness. J. Investig. Allergol. Clin. Immunol. 1997, 7, 186–192. [Google Scholar] [PubMed]
- Gupta, S.; Siddiqui, S.; Haldar, P.; Raj, J.V.; Entwisle, J.J.; Wardlaw, A.J.; Bradding, P.; Pavord, I.D.; Green, R.H.; Brightling, C.E. Qualitative Analysis of High-Resolution CT Scans in Severe Asthma. Chest 2009, 136, 1521–1528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menzies, D.; Holmes, L.; McCumesky, G.; Prys-Picard, C.; Niven, R. Aspergillus sensitization is associated with airflow limitation and bronchiectasis in severe asthma. Allergy 2011, 66, 679–685. [Google Scholar] [CrossRef] [PubMed]
- Dimakou, K.; Gousiou, A.; Toumbis, M.; Kaponi, M.; Chrysikos, S.; Thanos, L.; Triantafillidou, C. Investigation of bronchiectasis in severe uncontrolled asthma. Clin. Respir. J. 2017, 12, 1212–1218. [Google Scholar] [CrossRef]
- Coman, I.; Pola-Bibián, B.; Barranco, P.; Vila-Nadal, G.; Dominguez-Ortega, J.; Romero, D.; Villasante, C.; Quirce, S. Bronchiectasis in severe asthma. Ann. Allergy Asthma Immunol. 2018, 120, 409–413. [Google Scholar] [CrossRef]
- Padilla-Galo, A.; Olveira, C.; De Rota-Garcia, L.F.; Marco-Galve, I.; Plata, A.J.; Alvarez, A.; Rivas-Ruiz, F.; Carmona-Olveira, A.; Cebrian-Gallardo, J.J.; Martinez-Garcia, M.A. Factors associated with bronchiectasis in patients with uncontrolled asthma; the NOPES score: A study in 398 patients. Respir. Res. 2018, 19, 43. [Google Scholar] [CrossRef] [Green Version]
- Green, B.J.; Wiriyachaiporn, S.; Grainge, C.; Rogers, G.B.; Kehagia, V.; Lau, L.; Carroll, M.P.; Bruce, K.D.; Howarth, P.H. Potentially Pathogenic Airway Bacteria and Neutrophilic Inflammation in Treatment Resistant Severe Asthma. PLoS ONE 2014, 9, e100645. [Google Scholar] [CrossRef]
- Welp, A.L.; Bomberger, J.M. Bacterial Community Interactions During Chronic Respiratory Disease. Front. Cell. Infect. Microbiol. 2020, 10, 213. [Google Scholar] [CrossRef]
- Durack, J.; Lynch, S.V.; Nariya, S.; Bhakta, N.R.; Beigelman, A.; Castro, M.; Dyer, A.-M.; Israel, E.; Kraft, M.; Martin, R.J.; et al. Features of the bronchial bacterial microbiome associated with atopy, asthma, and responsiveness to inhaled corticosteroid treatment. J. Allergy Clin. Immunol. 2017, 140, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Muñoz, G.; Lopez-De-Andrés, A.; Jiménez-García, R.; Hernández-Barrera, V.; Pedraza-Serrano, F.; Puente-Maestu, L.; De Miguel-Díez, J. Trend from 2001 to 2015 in the prevalence of bronchiectasis among patients hospitalized for asthma and effect of bronchiectasis on the in-hospital mortality. J. Asthma 2020, 1–10. [Google Scholar] [CrossRef]
- Gao, Y.-H.; Guan, W.-J.; Chen, R.-C.; Zhang, G. Asthma and risk of bronchiectasis exacerbation: We still need more evidence. Eur. Respir. J. 2016, 48, 1246–1247. [Google Scholar] [CrossRef] [PubMed]
- Mao, B.; Yang, J.-W.; Lu, H.-W.; Xu, J.-F. Asthma and risk of bronchiectasis exacerbation: We still need more evidence. Eur. Respir. J. 2016, 48, 1247–1248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomomatsu, K.; Oguma, T.; Baba, T.; Toyoshima, M.; Komase, Y.; Taniguchi, M.; Asano, K.; Japan ABPM Research Program. Effectiveness and Safety of Omalizumab in Patients with Allergic Bronchopulmonary Aspergillosis Complicated by Chronic Bacterial Infection in the Airways. Int. Arch. Allergy Immunol. 2020, 181, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Ishiguro, T.; Takayanagi, N.; Baba, Y.; Takaku, Y.; Kagiyama, N.; Sugita, Y. Pulmonary Nontuberculous Mycobacteriosis and Chronic Lower Respiratory Tract Infections in Patients with Allergic Bronchopulmonary Mycosis without Cystic Fibrosis. Intern. Med. 2016, 55, 1067–1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stockwell, R.E.; Chin, M.; Johnson, G.; Wood, M.E.; Sherrard, L.J.; Ballard, E.; O’Rourke, P.; Ramsay, K.; Kidd, T.J.; Jabbour, N.; et al. Transmission of bacteria in bronchiectasis and chronic obstructive pulmonary disease: Low burden of cough aerosols. Respirology 2019, 24, 980–987. [Google Scholar] [CrossRef] [Green Version]
- Knibbs, L.D.; Johnson, G.R.; Kidd, T.J.; Cheney, J.; Grimwood, K.; Kattenbelt, J.A.; O’Rourke, P.K.; Ramsay, K.A.; Sly, P.D.; Wainwright, C.E.; et al. Viability ofPseudomonas aeruginosain cough aerosols generated by persons with cystic fibrosis. Thorax 2014, 69, 740–745. [Google Scholar] [CrossRef] [Green Version]
- Bendiak, G.; Ratjen, F. The Approach toPseudomonas aeruginosain Cystic Fibrosis. Semin. Respir. Crit. Care Med. 2009, 30, 587–595. [Google Scholar] [CrossRef]
- Zhang, Q.; Cox, M.; Liang, Z.; Brinkmann, F.; Cardenas, P.A.; Duff, R.; Bhavsar, P.; Cookson, W.; Moffatt, M.; Chung, K.F. Airway Microbiota in Severe Asthma and Relationship to Asthma Severity and Phenotypes. PLoS ONE 2016, 11, e0152724. [Google Scholar] [CrossRef] [Green Version]
Gene | Product/Function |
---|---|
aceE | Pyruvate dehydrogenase, quorum sensing |
algU | Stress sigma factor regulating alginate production, biofilm formation |
ampC | β-lactamase precursor, elongation, cell division |
exoS | Effector protein, cytotoxic and antiphagocytic effects |
fim | Fimbrial formation, motility, adhesion/attachment, receptor recognition |
ftsI | Penicillin-binding protein, elongation, cell division |
fusA1 | Elongation factor G |
gyrA | DNA gyrase subunit A, cell division |
gyrB | DNA gyrase subunit B, cell division |
lasR | Transcriptional regulator, quorum sensing |
mexA | Multidrug efflux membrane fusion protein precursor |
mexB | Multidrug efflux transporter |
mexSp | Oxidoreductase involved in the regulation of multidrug efflux pump |
mexY | Multidrug efflux transporter |
mexZ | Transcriptional regulator of multidrug efflux pump |
muc | Alginate production, biofilm formation |
nalD | Transcriptional repressor of multidrug efflux pump |
oprD | Outer membrane porin |
phz | Phenazine synthesis, virulence factor regulator, quorum sensing |
pvdA | Pioverdine, antibacterial effect, biofilm formation |
pelA | Polysaccharide deacetylase |
pil | Pili formation, motility, adhesion/attachment, receptor recognition |
rhl | Elastase synthesis, quorum sensing |
rsml | Rhamnolips synthesis, quorum sensing |
rbdA | Protein with c-di-GMP cyclase and phosphodiesterase domain |
yecS | L-cysteine transporter of ABC system |
Author/Year | Analysis | No. | Type of Study | Main Finding |
---|---|---|---|---|
Cuthbertson [45] 2020 | Diversity of microbiome and lung function | Sputum samples from 299 people with CF in the USA and Europe | Transversal | The less the diversity in the microbiota, the worse the lung function. As lung function declines, recognized pathogens, particularly PA, predominate in CF. PA is associated with poorer lung function. |
Avendaño-Ortiz [51] 2019 | Immune response | 32 people with CF, 19 with PA, 15 healthy | Case/control | Infection by PA gives rise to a reduced monocyte response to various stimuli. |
Styleman [52] 2019 | Lung function patterns | 60 CF >16 years | Transversal | Infection by PA is associated with greater obstruction. |
Acosta [44] 2018 | Microbiota, factors associated with progression | Sputum sample from 104 people with CF aged from 18 to 22 years | Longitudinal | Reduced diversity and a greater presence of PA give rise to a more rapid decline in lung function and greater progression to severe forms leading to a transplant or death. No other microorganism increased the risk of progression. |
Somayaji [53] 2017 | Impact of PA Prairie Epidemic Strain (PES) on morbidity-mortality | 274 adults with CF | Longitudinal 1980–2014 | Infection by PES was associated with increased patient morbidity over three decades, manifested by a greater risk of respiratory death and/or lung transplant. |
López-Causapé [48] 2017 | Characterization of isolations of PA in Spain | 24 CF units in Spain Sputum samples from 341 people with CF | Transversal | The PA isolations are very diverse and genetically unrelated in Spain, with multiple combinations of virulence factors and high levels of resistance to antimicrobial drugs (apart from colistin). |
Zemanick [54] 2013 | Consequences of primary infection by PA | 838 people with CF <12 years, with no isolations of PA prior to inclusion | Longitudinal: EPIC, followed up from 2004 to 2006 | The acquisition of PA was associated with a significant increase in the rates of exacerbations and crackles and wheezing. |
De Dios-Caballero [47] 2016 | Patterns of infection-colonization in people with CF in Spain | 24 CF units in Spain Sputum samples from 341 people with CF | Transversal | Chronic bronchial infection by PA in 46% of people (29% in children and 63% in adults). Chronic bronchial infection by PA and methicillin-resistant S. aureus is associated with poorer lung function. |
Mayer-Hamblett [55] 2014 | Influence of PA phenotypes on severe exacerbations | 649 children with CF primary PA infection 2594 isolations | Longitudinal: EPIC, 5.4 years of follow-up | Mucoid and altered motility phenotypes predicted the appearance of severe exacerbation. |
Ramsey [56] 2014 | Lung function, CT, inflammation by BAL | 68 people with CF 48 healthy controls | Longitudinal 3 to 7 years Case/control | People with CF had poorer lung function. Bronchial infection by various microorganisms like PA was associated with poorer lung function. |
Zemanick 2015 [57] | Relationship of microbiota, inflammation and lung function in exacerbations | 21 people with CF. Sputum, FRT, and blood pre- and post- exacerbation | Transversal | Anaerobes identified in sputum via sequencing were associated with less inflammation and better lung function compared to PA in an early exacerbation. |
Dill 2013 [58] | Quality of life and PA | 333 adults with CF | Longitudinal | In the presence of S. Aureus, Burkholderia and PA were not predictors of any of the physical domains of quality of life. |
Folescu [59] 2012 | CT in people with PA | 41 people with CF, 26 with chronic PA infection | Transversal, retrospective | The higher radiological scores in the PA group showed evidence of greater deterioration in lung function. |
Mott [60] 2012 | Progression in CT | 143 people with CF from a screening program | Longitudinal 1 year | The radiological progression of bronchiectasis and air entrapment were associated with the severe CFTR genotype, worse neutrophilic inflammation and lung infection. |
Ren [61] 2012 | Lung function | 93 pre-school children with CF | Longitudinal 2 years | Previous PA infection was associated with a higher rate of reduction in the FEF 25–75 z-score and mild thoracic-abdominal asynchrony in pre-school children with CF. |
Taylor-Robinson [62] 2012 | Decline in lung function | 479 people with CF | Longitudinal 1969–2010 | Infection by PA was associated with a significant increase in the rate of lung function decline (around 0.5%/year). |
Sawicki [63] 2012 | Treatment of chronic PA infection with inhaled tobramycin | 12,740 people with CF | Longitudinal 6 years | Positive cultures for PA and Burkholderia were associated with increased mortality. The use of inhaled tobramycin reduced mortality. |
Ashish [64] 2012 | Impact of chronic infection by PA and LES-PA on quality of life (CFQ) | 157 people with CF 43 with chronic PA, 93 with chronic LES-PA, and 20 with no PA | Transversal | People with LES-PA presented a poorer quality of life in most domains of the CFQ. People infected by PA only presented poorer scores than those not infected in the domain of bodily perception. |
Konstan [65] 2012 | Decline in lung function | 4161 adults with CF | Longitudinal Follow-up of 3 to 25 years | The mean rates of reductions in the FEV1 were −1.92 from 18 to 24 years of age and −145 ≥ 25 years. In the 18–24-year-old group, B. cepacia, the use of pancreatic enzymes, multi-resistant PA, mucoid PA, and female gender predicted a greater decline in lung function. |
Pillarisetti [66] 2011 | Decline in lung function associated with inflammation and infection | 37 lactating people with CF in screening program FRT/BAL | Longitudinal | The more neutrophil elastase in BAL, the poorer the lung function. Greater decline in lung function in people infected by S. aureus and PA. |
Gangell [67] 2011 | PA and inflammation | 653 samples 215 people with CF aged up to 7 years | Prospective BAL | PA and Aspergillus were associated with higher levels of inflammation, particularly PA. |
Rosenfeld [50] 2010 | Factors associated with the early acquisition of PA in young children with CF | 1117 children with CF but no PA (PA-Never) 583 children with CF and eradicated PA (PA-Past) | Longitudinal: EPIC, follow-up from 2004 to 2006 | The PA-Never people had better lung function and fewer respiratory symptoms than those with a remote history of infection by PA. |
Robinson [68] 2009 | PA and CT | 25 children with mild–moderate CF CT, FRT, cultures | Transversal | The CT scores had a high correlation with the acquisition of PA, which is a clinically significant measure of the progression of lung disease. |
Konstan [69] 2007 | Decline in lung function | 4866 children and adolescents with CF | Longitudinal Follow-up of 3 to 6 years | Colonization by PA was associated with an increase in the rate of FEV1 loss (0.31% per year in the group aged 6–8 years and 0.22% in the 9–12 group). |
Courtney [70] 2007 | Microbiology, genetics, and lung function | 183 adults with CF | Longitudinal 1995–2005 | People infected with PA and Burkholderia presented higher mortality, and these pathogens were the main predictors of mortality. |
Taccetti [71] 2005 | Early eradication of PA | Ciprofloxacin plus colistin to eradicate PA in 47 adults with CF | Case/control | After early antibiotic therapy: Period free of PA of 18 (4–80) months. Delayed deterioration of lung function in comparison with people with chronic infection. Prevention of appearance of strains of PA resistant to antibiotics. New acquisition with different genotypes of PA in 73%. |
Li [72] 2005 | Relationship of mucous PA with morbidity, symptoms, antibodies, X-R and FRT | 56 adults with CF | Longitudinal from birth to 16 years (1985 to 2004) | The transition time of non-mucoid PA was relatively long (mean, 10.9 years). The deterioration in cough scores and X-R and the decline in lung function correlated with the transition from non-mucoid to mucoid PA. |
Coburn [43] 2015 | Microbiome: Sequencing of ribosomal RNA | Sputum samples from 269 people with CF | Transversal | Greater diversity in the microbiome at a lower age. Less diversity correlated with poorer lung function. Greater prevalence and relative abundance of PA and Burkholderia in older people. PA was associated with poorer lung function. |
West [27] 2002 | Cultures and antibodies against PA | 68 children screened for CF | Longitudinal 1985–2000 | In CF screening, the antibodies against PA were present 6 to 12 months before any isolation in respiratory secretions. |
Nixon [33] 2001 | Relationship between inflammation and infection with symptoms and lung function | CF children aged under 3 years BAL Lung function | Neonatal screening | Infection of the lower airways by various microorganisms as demonstrated by BAL was associated with a 10% reduction in the FEV (0.5) compared to subjects with no infection. |
Emerson [49] 2002 | PA as a prognostic factor for morbidity and mortality | 3323 people with CF from the CFF-PR | Longitudinal 1990–1998 | People with positive cultures for PA had a 2.6 times higher risk of death at 8 years and they presented a lower percentage of FEV1 and weight percentile, as well as a greater risk of hospitalization and respiratory exacerbation in the follow-up. |
Nixon [33] 2001 | Impact of early primary infection by PA. BAL | 56 people with CF screened from 1990 to 1992 | Longitudinal Follow-up of up to 7 years | Four children infected with mucoid, multi-resistant PA died under the age of 7. Infection by PA was associated with more morbidity, greater lung function decline, longer hospitalizations, and higher mortality. |
Navarro [73] 2001 | Lung function | European CF Registry. 7010 people with CF | Follow-up of 6 years | PA was associated with lower FEV1. |
Kosorok [34] 2001 | Impact of PA Radiological score FEV1 | 56 children from CF screening program | Longitudinal | The rate of lowering of the radiological score increased after the acquisition of PA (from 0.45 to 1.40 points/year; p < 0.001). Lung function decline speeded up after the acquisition of PA, (previous FEV1/FVC decline of 1.29%/year; subsequently it was 1.81%; p = 0.001). |
Hudson [74] 1993 | Early infection by PA and prognosis | 81 children with CF aged under 2 years at the start | Longitudinal Follow-up of 5.4 to 13 years | Initial PA at 2 years or under was associated with increased morbidity (lower radiological score and poorer lung function). Detection of PA and S. aureus in cultures was associated with a higher mortality rate in the first 10 years after the diagnosis. |
Henry [75] 1992 | Impact on survival of mucoid isolates of PA | 81 children with CF Sputum samples Lung function | Longitudinal 8 years or mortality | FEV1 was the main prognostic factor for mortality. The identification of mucoid forms of PA was an unfavorable prognostic factor. |
Pamucku [76] 1995 | Infection by PA and lung function | 192 children with CF | Longitudinal 1982–1992 | FEV1 loss was more significant in people colonized by PA than those who were not. |
Kerem [77] 1990 | Infection by PA and evolution of la lung function | 895 children with CF | Longitudinal from 1975 to 1998 | Prevalence of PA of 82%. At the age of 7 years, the mean percentage of predicted FEV1 was 10% lower in those children already colonized by PA, compared to those who were not (p < 0.01). |
Authors Date | Study Design | Site/Year of Study | Mean Age in Years | People Included | % of Colonization by P. aeruginosa | Years of Follow-Up | Results |
---|---|---|---|---|---|---|---|
Hernandez 2002 [143] | Prospective Cohort | Spain 1999–2000 | 56 | 70 | 20 | Transversal | QoL, FEV1, FVC |
Martinez-García 2007 [132] | Prospective | Spain 2003 | 69.9 | 76 | 19.7 | 2 years | FEV1 loss |
Loebinger 2009 [138] | Longitudinal | UK 1994–2009 | 51.7 | 91 | 22 | 13 | Mortality |
Chalmers 2014 [144] | Prospective Cohort | UK | Pulmonary exacerbations, FEV1, FVC, QoL, radiographical severity, hospitalizations, mortality | ||||
2008–12 | 67 | 608 | 11.5 | 4 | |||
2011–14 | 68 | 289 | 14 | 3 | |||
Martinez-García 2014 [131] | Retrospective Multi-center | Spain Prior to 2005 | 58.7 | 819 | 31.8 | 5 | Mortality |
Goeminne 2014 [145] | Prospective Cohort | Belgium 2006–12 | 68 | 253 | 7.9 | 5.18 | Pulmonary exacerbations, FEV1, FVC, radiographical severity, hospitalizations, mortality |
Mc Donnell 2015 [146] | Retrospective | UK 2007–9 | 63 | 212 | 16 | 5 | Pulmonary exacerbations, hospitalization, FEV1, FVC, radiographical severity, mortality |
Finch 2015 [4] | Systematic review of 21 studies | Italy, UK, Belgium, Spain, Australia, Ireland, China 1990–2014 | 51.7–68 | 3683 | 21.4 | Transversal 13 years | Pulmonary exacerbations, FEV1, FVC, QoL, radiographical severity, hospitalization, mortality |
Aliberti 2016 [147] | Prospective Cohort | 5 European countries | 60 | 1145 | 16 | 3 | Clusters, pulmonary exacerbations, QoL, mortality |
De La Rosa 2018 [148] | Retrospective Multi-center | Spain | 67 | 456 | 37.2 | Costs | |
Araujo 2017 [149] | Prospective Multi-center | Europe Israel | 67 | 2596 | 15 | 5 | Mortality Pulmonary exacerbations QoL |
Martínez-Garcia 2020 [133] | Prospective RIBRON | Spain | 69.1 | 849 | 25.7 | 1–4 | FEV1 loss |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Clemente, M.; de la Rosa, D.; Máiz, L.; Girón, R.; Blanco, M.; Olveira, C.; Canton, R.; Martinez-García, M.A. Impact of Pseudomonas aeruginosa Infection on Patients with Chronic Inflammatory Airway Diseases. J. Clin. Med. 2020, 9, 3800. https://doi.org/10.3390/jcm9123800
Garcia-Clemente M, de la Rosa D, Máiz L, Girón R, Blanco M, Olveira C, Canton R, Martinez-García MA. Impact of Pseudomonas aeruginosa Infection on Patients with Chronic Inflammatory Airway Diseases. Journal of Clinical Medicine. 2020; 9(12):3800. https://doi.org/10.3390/jcm9123800
Chicago/Turabian StyleGarcia-Clemente, Marta, David de la Rosa, Luis Máiz, Rosa Girón, Marina Blanco, Casilda Olveira, Rafael Canton, and Miguel Angel Martinez-García. 2020. "Impact of Pseudomonas aeruginosa Infection on Patients with Chronic Inflammatory Airway Diseases" Journal of Clinical Medicine 9, no. 12: 3800. https://doi.org/10.3390/jcm9123800
APA StyleGarcia-Clemente, M., de la Rosa, D., Máiz, L., Girón, R., Blanco, M., Olveira, C., Canton, R., & Martinez-García, M. A. (2020). Impact of Pseudomonas aeruginosa Infection on Patients with Chronic Inflammatory Airway Diseases. Journal of Clinical Medicine, 9(12), 3800. https://doi.org/10.3390/jcm9123800