Prognostic Factors of COVID-19 Infection in Elderly Patients: A Multicenter Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Standard Protocol Approvals, Registrations, and Patient Consent
2.3. Data Collection and Definition
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Wang, C.; Horby, P.W.; Hayden, F.G.; Gao, G.F. A novel coronavirus outbreak of global health concern. Lancet 2020, 395, 470–473. [Google Scholar] [CrossRef] [Green Version]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Coronavirus Disease 2019 (COVID-19) Situation Report-128. Available online: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200527-covid-19-sitrep-128.pdf?sfvrsn=11720c0a_2 (accessed on 27 May 2020).
- Korea Disease Control and Prevention, A. Coronavirus Disease-19, Republic of Korea. Available online: http://ncov.mohw.go.kr/ (accessed on 1 October 2020).
- Daegu City. Corona-19 in Daegu City. Available online: http://covid19.daegu.go.kr/00936642View1.html (accessed on 1 October 2020).
- Remuzzi, A.; Remuzzi, G. COVID-19 and Italy: What next? Lancet 2020, 395, 1225–1228. [Google Scholar] [CrossRef]
- Livingston, E.; Bucher, K. Coronavirus Disease 2019 (COVID-19) in Italy. JAMA 2020, 323, 1335. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. WHO Coronavirus Disease (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 1 October 2020).
- Centers for Disease Control and Prevention. CDC COVID Data Tracker: Maps, Charts, and Data Provided by the CDC. Available online: https://covid.cdc.gov/covid-data-tracker/#cases_casesinlast7days (accessed on 1 October 2020).
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Gandhi, R.T.; Lynch, J.B.; del Rio, C. Mild or moderate covid-19. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef]
- Onder, G.; Rezza, G.; Brusaferro, S. Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. JAMA 2020, 323, 1775–1776. [Google Scholar] [CrossRef]
- Zheng, Z.; Peng, F.; Xu, B.; Zhao, J.; Liu, H.; Peng, J.; Li, Q.; Jiang, C.; Zhou, Y.; Liu, S.; et al. Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis. J. Infect. 2020, 81, e16–e25. [Google Scholar] [CrossRef]
- Nogueira, P.J.; de Nobre, M.A.; Costa, A.; Ribeiro, R.M.; Furtado, C.; Nicolau, L.B.; Camarinha, C.; Luis, M.; Abrantes, R.; Vaz Carneiro, A. The Role of Health Preconditions on COVID-19 Deaths in Portugal: Evidence from Surveillance Data of the First 20293 Infection Cases. J. Clin. Med. 2020, 9, 2368. [Google Scholar] [CrossRef]
- Sung, H.K.; Kim, J.Y.; Heo, J.; Seo, H.; Jang, Y.s.; Kim, H.; Koh, B.R.; Jo, N.; Oh, H.S.; Baek, Y.M.; et al. Clinical Course and Outcomes of 3,060 Patients with Coronavirus Disease 2019 in Korea, January–May 2020. J. Korean Med. Sci. 2020, 35, e280. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Li, M.; Dong, Y.; Zhou, H.; Zhang, Z.; Tian, C.; Qin, R.; Wang, H.; Shen, Y.; Du, K.; et al. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes Metab. Res. Rev. 2020, e3319. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; He, W.; Yu, X.; Hu, D.; Bao, M.; Liu, H.; Zhou, J.; Jiang, H. Coronavirus disease 2019 in elderly patients: Characteristics and prognostic factors based on 4-week follow-up. J. Infect. 2020, 80, 639–645. [Google Scholar] [CrossRef]
- Liu, K.; Chen, Y.; Lin, R.; Han, K. Clinical features of COVID-19 in elderly patients: A comparison with young and middle-aged patients. J. Infect. 2020, 80, e14–e18. [Google Scholar] [CrossRef] [Green Version]
- Belmin, J.; Um-Din, N.; Donadio, C.; Magri, M.; Nghiem, Q.D.; Oquendo, B.; Pariel, S.; Lafuente-Lafuente, C. Coronavirus disease 2019 outcomes in French nursing homes that implemented staff confinement with residents. JAMA Netw. Open 2020, 3, e2017533. [Google Scholar] [CrossRef] [PubMed]
- McMichael, T.M.; Currie, D.W.; Clark, S.; Pogosjans, S.; Kay, M.; Schwartz, N.G.; Lewis, J.; Baer, A.; Kawakami, V.; Lukoff, M.D.; et al. Epidemiology of covid-19 in a long-term care facility in King county, Washington. N. Engl. J. Med. 2020, 382, 2005–2011. [Google Scholar] [CrossRef] [PubMed]
- Werner, R.M.; Hoffman, A.K.; Coe, N.B. Long-term care policy after covid-19–solving the nursing home crisis. N. Engl. J. Med. 2020, 383, 903–905. [Google Scholar] [CrossRef]
- Ouslander, J.G.; Grabowski, D.C. COVID-19 in nursing homes: Calming the perfect storm. J. Am. Geriatr. Soc. 2020, 68, 2153–2162. [Google Scholar] [CrossRef]
- Kim, S.W.; Lee, K.S.; Kim, K.; Lee, J.J.; Kim, J.Y. A Brief Telephone Severity Scoring System and Therapeutic Living Centers Solved Acute Hospital-Bed Shortage during the COVID-19 Outbreak in Daegu, Korea. J. Korean Med. Sci. 2020, 35, e152. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Clinical Management of Severe Acute Respiratory Infection (SARI) When COVID-19 Disease Is Suspected: Interim Guidance, 13 March 2020; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72/314 Cases from the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, H.A.; Huh, K.; Hyun, M.; Rhee, J.-Y.; Jang, S.; Kim, J.-Y.; Peck, K.R.; Chang, H.-H. Risk factors for mortality and respiratory support in elderly patients hospitalized with COVID-19 in Korea. J. Korean Med. Sci. 2020, 35, e223. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.Y.; Xu, X.X.; Yin, H.S.; Hu, Q.M.; Xiong, T.; Tang, Y.Y.; Yang, A.Y.; Yu, B.P.; Huang, Z.P. Clinical characteristics of patients with 2019 coronavirus disease in a non-Wuhan area of Hubei Province, China: A retrospective study. BMC Infect. Dis. 2020, 20, 311. [Google Scholar] [CrossRef] [PubMed]
- Poblador-Plou, B.; Carmona-Pirez, J.; Ioakeim-Skoufa, I.; Poncel-Falco, A.; Bliek-Bueno, K.; Cano-Del Pozo, M.; Gimeno-Feliu, L.A.; Gonzalez-Rubio, F.; Aza-Pascual-Salcedo, M.; Bandres-Liso, A.C.; et al. Baseline chronic comorbidity and mortality in laboratory-confirmed COVID-19 cases: Results from the PRECOVID study in Spain. Int. J. Environ. Res. Public Health 2020, 17, 5171. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Y.; You, Z.; Wang, Q.; Zhou, Z.J.; Qiu, Y.; Luo, R.; Ge, X.Y. The epidemic of 2019-novel-coronavirus (2019-nCoV) pneumonia and insights for emerging infectious diseases in the future. Microbes Infect. 2020, 22, 80–85. [Google Scholar] [CrossRef]
- Tadic, M.; Cuspidi, C.; Sala, C. COVID-19 and diabetes: Is there enough evidence? J. Clin. Hypertens. 2020, 22, 943–948. [Google Scholar] [CrossRef]
- Gupta, R.; Hussain, A.; Misra, A. Diabetes and COVID-19: Evidence, current status and unanswered research questions. Eur. J. Clin. Nutr. 2020, 74, 864–870. [Google Scholar] [CrossRef]
- Du, R.H.; Liang, L.R.; Yang, C.Q.; Wang, W.; Cao, T.Z.; Li, M.; Guo, G.Y.; Du, J.; Zheng, C.L.; Zhu, Q.; et al. Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: A prospective cohort study. Eur. Respir. J. 2020, 55, 2000524. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.M.; Bai, P.; He, W.; Wu, F.; Liu, X.F.; Han, D.M.; Liu, S.; Yang, J.K. Gender differences in patients with COVID-19: Focus on severity and mortality. Front. Public Health 2020, 8, 152. [Google Scholar] [CrossRef]
- Leung, C. Risk factors for predicting mortality in elderly patients with COVID-19: A review of clinical data in China. Mech. Ageing Dev. 2020, 188, 111255. [Google Scholar] [CrossRef]
- Pollán, M.; Pérez-Gómez, B.; Pastor-Barriuso, R.; Oteo, J.; Hernán, M.A.; Pérez-Olmeda, M.; Sanmartín, J.L.; Fernández-García, A.; Cruz, I.; de Larrea, N.F.; et al. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): A nationwide, population-based seroepidemiological study. Lancet 2020, 396, 535–544. [Google Scholar] [CrossRef]
- Vaduganathan, M.; Vardeny, O.; Michel, T.; McMurray, J.J.V.; Pfeffer, M.A.; Solomon, S.D. Renin–angiotensin–aldosterone system inhibitors in patients with Covid-19. N. Engl. J. Med. 2020, 382, 1653–1659. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Jiang, Q.; Xia, X.; Liu, K.; Yu, Z.; Tao, W.; Gong, W.; Han, J.J. Individual variation of the SARS-CoV-2 receptor ACE2 gene expression and regulation. Aging Cell 2020, 19, e13168. [Google Scholar] [CrossRef] [PubMed]
- Young, B.E.; Ong, S.W.X.; Kalimuddin, S.; Low, J.G.; Tan, S.Y.; Loh, J.; Ng, O.T.; Marimuthu, K.; Ang, L.W.; Mak, T.M.; et al. Epidemiologic Features and Clinical Course of Patients Infected with SARS-CoV-2 in Singapore. JAMA 2020, 323, 1488–1494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Zheng, K.I.; Liu, S.; Yan, Z.; Xu, C.; Qiao, Z. Plasma CRP level is positively associated with the severity of COVID-19. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 18. [Google Scholar] [CrossRef]
- Wang, G.; Wu, C.; Zhang, Q.; Wu, F.; Yu, B.; Lv, J.; Li, Y.; Li, T.; Zhang, S.; Wu, C.; et al. C-Reactive Protein Level May Predict the Risk of COVID-19 Aggravation. Open Forum Infect. Dis. 2020, 7, ofaa153. [Google Scholar] [CrossRef]
- Ali, N. Elevated level of C-reactive protein may be an early marker to predict risk for severity of COVID-19. J. Med Virol. 2020, 92, 2409–2411. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Preparing for COVID-19 in Nursing Homes. Available online: https://www.cdc.gov/coronavirus/2019-ncov/hcp/long-term-care.html#core-practices (accessed on 25 June 2020).
- World Health Organization. Infection Prevention and Control Guidance for Long-Term Care Facilities in the Context of COVID-19: Interim Guidance, 21 March 2020; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Guo, T.; Shen, Q.; Guo, W.; He, W.; Li, J.; Zhang, Y.; Wang, Y.; Zhou, Z.; Deng, D.; Ouyang, X.; et al. Clinical characteristics of elderly patients with COVID-19 in Hunan Province, China: A multicenter, retrospective study. Gerontology 2020, 66, 467–475. [Google Scholar] [CrossRef]
Characteristics | Severe Pneumonia (n = 119) | Mild Pneumonia (n = 219) | p-Value | Deceased (n = 51) | Survival (n = 289) | p-Value |
---|---|---|---|---|---|---|
Age, years | 77.32 (7.25) | 74.39 (6.70) | <0.001 | 79.08 (7.81) | 74.76 (6.70) | <0.001 |
Sex, male, n (%) | 61 (51.3) | 68 (31.1) | <0.001 | 29 (56.9) | 101 (34.9) | 0.003 |
Days from symptom onset to diagnosis | 2.92 (1.98–3.87) | 2.69 (2.01–3.38) | 0.704 | 2.85 (1.47–4.22) | 2.74 (2.14–3.35) | 0.895 |
Days from symptom onset to admission | 5.05 (3.47–6.63) | 8.40 (7.33–9.47) | <0.001 | 3.82 (1.45–6.2) | 7.90 (6.94–8.85) | 0.002 |
Days from diagnosis to admission | 2.88 (1.75–4.01) | 5.84 (5.10–6.59) | <0.001 | 1.55 (−0.20–3.30) | 5.42 (4.76–6.08) | <0.001 |
Total hospital days | 27.89 (25.2–30.59) | 24.47 (22.49–26.44) | 0.050 | 16.57 (12.50–20.63) | 27.10 (25.42–28.78) | <0.001 |
Nursing facility living | 19 (16.0) | 21 (9.6) | 0.083 | 11 (21.6) | 29 (10.0) | 0.018 |
ADL impairment | 56 (47.1) | 26 (11.9) | <0.001 | 35 (68.6) | 49 (17.0) | <0.001 |
Smoking | 8 (6.1) | 13 (13.7) | 0.051 | 6 (13.6) | 15 (8.1) | 0.253 |
Comorbidity | 0.001 | <0.001 | ||||
2 | 60 (50.4) | 65 (29.7) | 34 (66.7) | 92 (31.8) | ||
1 | 33 (27.7) | 84 (38.4) | 10 (19.6) | 108 (37.4) | ||
0 | 26 (21.8) | 70 (32.0) | 7 (13.7) | 89 (30.8) | ||
DM | 49 (41.5) | 56 (25.7) | 0.003 | 28 (54.9) | 78 (27.2) | <0.001 |
HTN | 74 (62.7) | 113 (51.8) | 0.055 | 34 (66.7) | 154 (53.7) | 0.085 |
CHF/CAD | 14 (11.9) | 26 (11.9) | 0.987 | 7 (13.7) | 34 (11.9) | 0.705 |
Lung disease | 11 (9.2) | 14 (6.4) | 0.345 | 8 (15.7) | 17 (5.9) | 0.036 |
CKD | 7 (5.9) | 4 (1.8) | 0.044 | 4 (7.8) | 7 (2.4) | 0.067 |
Malignant disorder | 11 (9.3) | 10 (4.6) | 0.089 | 6 (11.8) | 15 (5.2) | 0.107 |
Dementia | 24 (20.3) | 25 (11.5) | 0.028 | 13 (25.5) | 36 (12.5) | 0.016 |
Body mass index, kg/m2 | 23.58 (22.86–24.31) | 23.07 (22.48–23.66) | 0.280 | 23.35 (22.17–24.52) | 23.26 (22.76–23.76) | 0.895 |
Initial systolic BP, mmHg | 135.32 (131.44–139.19) | 145.82 (142.95–148.69) | <0.001 | 133.32 (127.13–139.51) | 143.58 (141.07–146.10) | 0.003 |
Initial diastolic BP, mmHg | 75.86 (73.57–78.14) | 83.04 (81.35–84.73) | <0.001 | 75.71 (72.02–79.40) | 81.30 (79.80–82.80) | 0.006 |
Initial HR, per min | 90.06 (87.04–93.09) | 87.37 (85.12–89.61) | 0.160 | 91.33 (86.56–96.10) | 87.81 (85.87–89.75) | 0.182 |
Initial RR, per min | 22.84 (22.22–23.46) | 19.81 (19.36–20.26) | <0.001 | 23.37 (22.33–24.40) | 20.47 (20.06–20.88) | <0.001 |
Initial body temperature, °C | 37.11 (36.99–37.23) | 36.80 (36.71–36.89) | <0.001 | 37.08 (36.89–37.27) | 36.88 (36.80–36.96) | 0.059 |
CXR infiltration at admission | 98 (82.4) | 129 (58.9) | <0.001 | 43 (86.0) | 185 (64.0) | 0.002 |
Symptoms | Pneumonia | Death | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Severe Pneumonia (n = 119) | Mild Pneumonia (n = 219) | OR | 95% CI | p-Value | Deceased (n = 51) | Survival (n = 289) | OR | 95% CI | p-Value | |
Fever | 97 (81.5) | 75 (34.2) | 8.54 | 4.92–14.81 | <0.001 | 43 (87.8) | 129 (44.6) | 8.62 | 3.52–21.11 | <0.001 |
Cough | 51 (43.6) | 78 (35.8) | 1.64 | 1.01–2.64 | 0.004 | 112 (39.0) | 17 (34.0) | 0.98 | 0.51–1.88 | 0.947 |
Sputum | 39 (33.3) | 60 (27.5) | 1.67 | 1.00–2.79 | 0.051 | 83 (28.9) | 16 (32.0) | 1.63 | 0.82–3.24 | 0.168 |
Sore throat | 12 (10.3) | 25 (11.5) | 1.12 | 0.53–2.37 | 0.775 | 34 (11.9) | 3 (6.0) | 0.65 | 0.19–2.26 | 0.495 |
Rhinorrhea | 11 (9.4) | 29 (13.3) | 0.72 | 0.34–1.52 | 0.386 | 36 (12.5) | 4 (8.0) | 0.66 | 0.22–1.99 | 0.456 |
Chest pain | 7 (6.0) | 7 (3.2) | 2.14 | 0.71–6.44 | 0.175 | 11 (3.8) | 4 (8.0) | 2.73 | 0.79–9.43 | 0.112 |
Myalgia | 24 (20.5) | 56 (25.7) | 0.93 | 0.53–1.63 | 0.799 | 75 (26.1) | 6 (12.0) | 0.52 | 0.21–1.30 | 0.159 |
Fatigue | 8 (6.8) | 2 (0.9) | 7.89 | 1.59–39.07 | 0.011 | 5 (10.0) | 5 (1.7) | 6.14 | 1.59–23.66 | 0.008 |
Dyspnea | 65 (55.6) | 33 (15.1) | 7.71 | 4.48–13.29 | <0.001 | 70 (24.4) | 28 (56.0) | 4.16 | 2.18–7.92 | <0.001 |
Headache | 11 (9.4) | 49 (22.5) | 0.44 | 0.21–0.89 | 0.022 | 58 (20.2) | 3 (6.0) | 0.35 | 0.10–1.20 | 0.095 |
Nausea/vomiting | 3 (2.6) | 6 (2.8) | 0.98 | 0.23–4.10 | 0.975 | 3 (6.0) | 7 (2.4) | 3.20 | 0.75–13.71 | 0.116 |
Diarrhea | 11 (9.4) | 23 (10.6) | 1.01 | 0.47–2.20 | 0.976 | 33 (11.5) | 2 (4.0) | 0.39 | 0.09–1.70 | 0.208 |
Variables | Univariate | Multivariate | ||||
---|---|---|---|---|---|---|
Adjusted OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
Age | 1.06 | 1.03–1.10 | <0.001 | |||
Sex | 2.38 | 1.49–3.81 | <0.001 | |||
Nursing facility living | 0.67 | 0.34–1.33 | 0.255 | |||
ADL impairment | 5.84 | 3.27–10.42 | <0.001 | 5.33 | 2.42–11.73 | <0.001 |
Comorbidity | 2.15 | 1.34–3.44 | 0.002 | 1.97 | 0.96–4.01 | 0.064 |
Dementia | 1.38 | 0.71–2.66 | 0.340 | |||
Fever | 8.54 | 4.92–14.81 | <0.001 | 3.20 | 1.52–6.74 | 0.002 |
Initial CXR infiltration | 3.37 | 1.94–5.85 | <0.001 | 2.32 | 1.02–5.27 | 0.044 |
Initial CRP | 1.45 | 1.33–1.58 | <0.001 | 1.33 | 1.21–1.45 | <0.001 |
Variables | Univariate | Multivariate | ||||
---|---|---|---|---|---|---|
Adjusted OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
Age | 1.09 | 1.04–1.14 | <0.001 | 1.06 | 1.00–1.13 | 0.063 |
Sex | 2.58 | 1.38–4.81 | 0.003 | |||
Nursing facility living | 1.90 | 0.85–4.25 | 0.119 | |||
ADL impairment | 8.89 | 4.37–18.10 | <0.001 | 7.13 | 2.93–17.40 | <0.001 |
Comorbidity | 3.68 | 1.93–7.02 | <0.001 | 3.28 | 1.43–7.54 | 0.005 |
Dementia | 1.43 | 0.66–3.13 | 0.368 | |||
Fever | 8.62 | 3.52–21.11 | <0.001 | 3.15 | 1.10–9.03 | 0.032 |
Initial CXR infiltration | 3.55 | 1.52–8.30 | 0.003 | |||
Initial CRP | 1.20 | 1.14–1.27 | <0.001 | 1.18 | 1.11–1.26 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, J.; Ryu, H.-S.; Kim, H.A.; Hyun, M.; Lee, J.Y.; Yi, H.-A. Prognostic Factors of COVID-19 Infection in Elderly Patients: A Multicenter Study. J. Clin. Med. 2020, 9, 3932. https://doi.org/10.3390/jcm9123932
Hwang J, Ryu H-S, Kim HA, Hyun M, Lee JY, Yi H-A. Prognostic Factors of COVID-19 Infection in Elderly Patients: A Multicenter Study. Journal of Clinical Medicine. 2020; 9(12):3932. https://doi.org/10.3390/jcm9123932
Chicago/Turabian StyleHwang, Jihye, Ho-Sung Ryu, Hyun Ah Kim, Miri Hyun, Ji Yeon Lee, and Hyon-Ah Yi. 2020. "Prognostic Factors of COVID-19 Infection in Elderly Patients: A Multicenter Study" Journal of Clinical Medicine 9, no. 12: 3932. https://doi.org/10.3390/jcm9123932
APA StyleHwang, J., Ryu, H. -S., Kim, H. A., Hyun, M., Lee, J. Y., & Yi, H. -A. (2020). Prognostic Factors of COVID-19 Infection in Elderly Patients: A Multicenter Study. Journal of Clinical Medicine, 9(12), 3932. https://doi.org/10.3390/jcm9123932