Expression of FFAR3 and FFAR4 Is Increased in Gastroesophageal Reflux Disease
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Expression of FFARs in Esophageal Mucosa
- RNA isolation: Samples were isolated according to the manufacturer’s protocol using a Total RNA Mini kit (A&A Biotechnology, Gdynia, Poland). Briefly, tissue samples were homogenized in TRIsure reagent (Bioline, UK) using an ultrasound homogenizer (Bandelin Sonoplus HD3100, Germany). The purity and quantity of the isolated RNA were measured using a Colibri Microvolume Spectrometer (Titertek Berthold, Colibri, Germany). Total RNA was eluted using diethyl-pyrocarbonate-treated water.
- Reverse transcription: cDNA synthesis was performed with the RevertAid First Strand cDNA Synthesis Kit (Fermentas, Canada) in accordance with the manufacturer’s protocol. Total RNA (1 µg) was used in the reverse transcription reaction in a total volume of 20 µL with the following four-step incubation: 25 °C for 10 min, 50 °C for 15 min, 85 °C for 5 min, and 4 °C for 10 min.
- Quantitative real-time RT-PCR: For the quantification of mRNA expression, we applied the real-time fluorescence detection PCR method with FAM dye-labeled TaqMan probes: FFAR1 (Hs03045166_s1), FFAR2 (Hs00271142_s1), FFAR3 (Hs02519193_g1), FFAR4 (Hs00699184_m1) (Thermofisher, Waltham, USA). Values obtained for studied genes were normalized to the expression of the hypoxanthine phosphoribosyltransferase 1 (HPRT1) gene (Hs02800695_m1, Thermofisher, Waltham, USA) as an endogenous control. The real-time reaction mixture was prepared in a total volume of 10 µL and consisted of 0.5 µL cDNA, 5 µL TaqMan Gene Expression Master Mix, 0.5 µL TaqMan Gene Expression Assays, and 4 µL RNA-free water; this was performed in triplicate. The cDNA was amplified in a LightCycler (Roche, Switzerland). Cycle parameters were as follows: initial denaturation at 95 °C for 10 min, followed by 40 cycles of sequential incubations at 95 °C for 15 s and at 60 °C for 1 min. The initial amount of the template was evaluated as a Ct parameter. The number of cycles linearly correlates with the logarithmic value of RNA quantity. The relative expression level normalized to HPRT1 was calculated as 2 − (CtFFARx − CtHPRT1) × 1000.
2.3. Histological Assessment of Dilated Intracellular Spaces (DISs)
2.4. Statistical Analyses
3. Results
3.1. The mRNA Expression of FFAR1, FFAR2, and FFAR3 was Increased in Patients with GERD Compared to HCs
3.2. Patients with NERD Exhibited Higher mRNA Expression of FFARs Compared with HCs and Patients with ERD
3.3. Patients with GERD Presented a Specific DIS Pattern
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vakil, N.; Van Zanten, S.V.; Kahrilas, P.; Dent, J.; Jones, R.; Global Consensus Group. The Montreal Definition and Classification of Gastroesophageal Reflux Disease: A Global Evidence-Based Consensus. Am. J. Gastroenterol. 2006, 101, 1900–1920. [Google Scholar] [CrossRef]
- Carr, J.S.; Zafar, S.F.; Saba, N.; Khuri, F.R.; El-Rayes, B.F. Risk Factors for Rising Incidence of Esophageal and Gastric Cardia Adenocarcinoma. J. Gastrointest. Cancer 2013, 44, 143–151. [Google Scholar] [CrossRef] [PubMed]
- El-Serag, H.B. Time Trends of Gastroesophageal Reflux Disease: A Systematic Review. Clin. Gastroenterol. Hepatol. 2007, 5, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Velanovich, V. The development of the GERD-HRQL symptom severity instrument. Dis. Esophagus 2007, 20, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Herregods, T.V.; Bredenoord, A.J.; Smout, A.J. Pathophysiology of gastroesophageal reflux disease: New understanding in a new era. Neurogastroenterol. Motil. 2015, 27, 1202–1213. [Google Scholar] [CrossRef] [PubMed]
- Dagli, U.; Kalkan, I.H. The role of lifestyle changes in gastroesophageal reflux diseases treatment. Turk. J. Gastroenterol. 2017, 28, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.H. Gastroesophageal Reflux Disease: Recent Advances and Its Association with Sleep. Ann. N. Y. Acad. Sci. 2016, 1380, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, N.; Kuroda, M.; Suzuki, T.; Kamada, K.; Uchiyama, K.; Handa, O.; Takagi, T.; Yoshikawa, T.; Kuramoto, H. Role of Nociceptors/Neuropeptides in the Pathogenesis of Visceral Hypersensitivity of Nonerosive Reflux Disease. Dig. Dis. Sci. 2013, 58, 2237–2243. [Google Scholar] [CrossRef]
- Caviglia, R.; Ribolsi, M.; Gentile, M.; Rabitti, C.; Emerenziani, S.; Guarino, M.P.L.; Petitti, T.; Cicala, M. Dilated intercellular spaces and acid reflux at the distal and proximal oesophagus in patients with non-erosive gastro-oesophageal reflux disease. Aliment. Pharmacol. Ther. 2007, 25, 629–636. [Google Scholar] [CrossRef]
- Vela, M.F.; Craft, B.M.; Sharma, N.; Freeman, J.; Hazen-martin, D. Refractory Heartburn: Comparison of Intercellular Space Diameter in Documented GERD vs. Functional Heartburn. Am. J. Gastroenterol. 2011, 106, 844–850. [Google Scholar] [CrossRef]
- Mansour, N.M.; El-Serag, H.B.; Anandasabapathy, S. Barrett’s esophagus: Best practices for treatment and post-treatment surveillance. Ann. Cardiothorac. Surg. 2017, 6, 75–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinucci, I.; De Bortoli, N.; Russo, S.; Bertani, L.; Furnari, M.; Mokrowiecka, A.; Malecka-Panas, E.; Savarino, V.; Savarino, E.; Marchi, S. Barrett’s esophagus in 2016: From pathophysiology to treatment. World J. Gastrointest. Pharmacol. Ther. 2016, 7, 190. [Google Scholar] [CrossRef] [PubMed]
- Patti, M.G. An Evidence-Based Approach to the Treatment of Gastroesophageal Reflux Disease. JAMA Surg. 2016, 151, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, M.; Green, C.; Bautista, J.M.; Dekel, R.; Risner-Adler, S.; Whitacre, R.; Graver, E.; Fass, R. Assessment of dietary nutrients that influence perception of intra-oesophageal acid reflux events in patients with gastro-oesophageal reflux disease. Aliment. Pharmacol. Ther. 2007, 25, 93–101. [Google Scholar] [CrossRef] [PubMed]
- El-Serag, H.B.; Satia, J.A.; Rabeneck, L. Dietary intake and the risk of gastro-oesophageal reflux disease: A cross sectional study in volunteers. Gut 2005, 54, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Ruhl, C.E.; Everhart, J.E. Overweight, but not high dietary fat intake, increases risk of gastroesophageal reflux disease hospitalization. Ann. Epidemiol. 1999, 9, 424–435. [Google Scholar] [CrossRef]
- Vinolo, M.A.R.; Hirabara, S.M.; Curi, R. G-protein-coupled receptors as fat sensors. Curr. Opin. Clin. Nutr. Metab. Care 2012, 15, 112–116. [Google Scholar] [CrossRef]
- Alvarez-Curto, E.; Milligan, G. Metabolism meets immunity: The role of free fatty acid receptors in the immune system. Biochem. Pharmacol. 2016, 114, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Sykaras, A.G.; Demenis, C.; Case, R.M.; McLaughlin, J.T.; Smith, C.P. Duodenal Enteroendocrine I-Cells Contain mRNA Transcripts Encoding Key Endocannabinoid and Fatty Acid Receptors. PLoS ONE 2012, 7, e42373. [Google Scholar] [CrossRef] [Green Version]
- Ma, D.; Tao, B.; Warashina, S.; Kotani, S.; Lu, L.; Kaplamadzhiev, D.B.; Mori, Y.; Tonchev, A.B.; Yamashima, T. Expression of free fatty acid receptor GPR40 in the central nervous system of adult monkeys. Neurosci. Res. 2007, 58, 394–401. [Google Scholar] [CrossRef]
- Maslowski, K.M.; Vieira, A.T.; Ng, A.; Kranich, J.; Sierro, F.; Yu, D.; Schilter, H.C.; Rolph, M.S.; Mackay, F.; Artis, D.; et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 2009, 461, 1282–1286. [Google Scholar] [CrossRef] [PubMed]
- Bartoszek, A.; Von Moo, E.; Binienda, A.; Fabisiak, A.; Krajewska, J.B.; Mosińska, P.; Niewinna, K.; Tarasiuk, A.; Martemyanov, K.; Salaga, M.; et al. Free Fatty Acid Receptors as new potential therapeutic target in inflammatory bowel diseases. Pharmacol. Res. 2020, 152, 104604. [Google Scholar] [CrossRef] [PubMed]
- Bartoszek, A.; Fichna, J.; Tarasiuk, A.; Binienda, A.; Fabisiak, A.; Krajewska, J.B.; Mosińska, P.; Niewinna, K.; Salaga, M. Free Fatty Acid Receptors as New Potential Targets in Colorectal Cancer. Curr. Drug Targets 2019, 21, 1397–1404. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.C.; Li, Y.C.; Chang, L.C.; Tey, S.L.; Lin, K.J.; Huang, S.C. Long-Chain Fatty Acid Receptors Mediate Relaxation of the Porcine Lower Esophageal Sphincter. Front. Physiol. 2019, 10, 676. [Google Scholar] [CrossRef] [PubMed]
- Muredda, L.; Kępczyńska, M.A.; Zaibi, M.S.; AlOmar, S.Y.; Trayhurn, P. IL-1β and TNFα inhibit GPR120 (FFAR4) and stimulate GPR84 (EX33) and GPR41 (FFAR3) fatty acid receptor expression in human adipocytes: Implications for the anti-inflammatory action of n-3 fatty acids. Arch. Physiol. Biochem. 2018, 124, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Souza, R.F.; Bayeh, L.; Spechler, S.J.; Tambar, U.K.; Bruick, R.K. A new paradigm for GERD pathogenesis. Not acid injury, but cytokine-mediated inflammation driven by HIF-2α: A potential role for targeting HIF-2α to prevent and treat reflux esophagitis. Curr. Opin. Pharmacol. 2017, 37, 93–99. [Google Scholar] [CrossRef]
- Williams-Bey, Y.; Boularan, C.; Vural, A.; Huang, N.N.; Hwang, I.Y.; Shan-Shi, C.; Kehrl, J.H. Omega-3 Free Fatty Acids Suppress Macrophage Inflammasome Activation by Inhibiting NF-κB Activation and Enhancing Autophagy. PLoS ONE 2014, 9, e97957. [Google Scholar] [CrossRef] [Green Version]
- Oh, D.Y.; Talukdar, S.; Bae, E.J.; Imamura, T.; Morinaga, H.; Fan, W.Q.; Li, P.; Lu, W.J.; Watkins, S.M.; Olefsky, J.M. GPR120 Is an Omega-3 Fatty Acid Receptor Mediating Potent Anti-inflammatory and Insulin-Sensitizing Effects. Cell 2010, 142, 687–698. [Google Scholar] [CrossRef] [Green Version]
- Cui, Z.; Li, D.; Liu, J.; Zhang, Y.; Xu, H.; Yin, H.; Li, H.; Wang, G.; Cai, H.; Zhang, L.; et al. G-Protein-Coupled Receptor 120 Regulates the Development and Progression of Human Esophageal Cancer. Oncol. Rep. 2018, 40, 1147–1155. [Google Scholar] [CrossRef] [Green Version]
- Savarino, E.; Zentilin, P.; Savarino, V. NERD: An umbrella term including heterogeneous subpopulations. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 371–380. [Google Scholar] [CrossRef]
- Savarino, E.; Marabotto, E.; Zentilin, P.; Frazzoni, M.; Sammito, G.; Bonfanti, D.; Sconfienza, L.; Assandri, L.; Gemignani, L.; Malesci, A.; et al. The added value of impedance-pH monitoring to Rome III criteria in distinguishing functional heartburn from non-erosive reflux disease. Dig. Liver Dis. 2011, 43, 542–547. [Google Scholar] [CrossRef] [PubMed]
- Savarino, E.; Zentilin, P.; Mastracci, L.; Dulbecco, P.; Marabotto, E.; Gemignani, L.; Bruzzone, L.; De Bortoli, N.; Frigo, A.C.; Fiocca, R.; et al. Microscopic esophagitis distinguishes patients with non-erosive reflux disease from those with functional heartburn. J. Gastroenterol. 2013, 48, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Jovov, B.; Que, J.; Tobey, N.A.; Djukic, Z.; Hogan, B.L.M.; Orlando, R.C. Role of E-cadherin in the Pathogenesis of Gastroesophageal Reflux Disease. Am. J. Gastroenterol. 2011, 106, 1039–1047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banaschewski, B.J.H.; Veldhuizen, E.J.A.; Keating, E.; Haagsman, H.P.; Zuo, Y.Y.; Yamashita, C.M.; Veldhuizen, R.A.W. Surfactant Supplemented with an Antimicrobial Peptide for the Treatment of Bacterial Pneumonia: Antimicrobial and Biophysical Properties. Antimicrob. Agents Chemother. 2015, 59, 3075–3083. [Google Scholar] [CrossRef] [Green Version]
- Barshishat, M.; Polak-Charcon, S.; Schwartz, B. Butyrate regulates E-cadherin transcription, isoform expression and intracellular position in colon cancer cells. Br. J. Cancer 2000, 82, 195–203. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.D.; Prykhodko, O.; Hållenius, F.F.; Nyman, M. Monobutyrin Reduces Liver Cholesterol and Improves Intestinal Barrier Function in Rats Fed High-Fat Diets. Nutrients 2019, 11, 308. [Google Scholar] [CrossRef] [Green Version]
- Kia, L.; Pandolfino, J.E.; Kahrilas, P.J. Biomarkers of Reflux Disease. Clin. Gastroenterol. Hepatol. 2016, 14, 790–797. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabisiak, A.; Bartoszek, A.; Talar, M.; Binienda, A.; Dziedziczak, K.; Krajewska, J.B.; Mosińska, P.; Niewinna, K.; Tarasiuk, A.; Mokrowiecka, A.; et al. Expression of FFAR3 and FFAR4 Is Increased in Gastroesophageal Reflux Disease. J. Clin. Med. 2020, 9, 4111. https://doi.org/10.3390/jcm9124111
Fabisiak A, Bartoszek A, Talar M, Binienda A, Dziedziczak K, Krajewska JB, Mosińska P, Niewinna K, Tarasiuk A, Mokrowiecka A, et al. Expression of FFAR3 and FFAR4 Is Increased in Gastroesophageal Reflux Disease. Journal of Clinical Medicine. 2020; 9(12):4111. https://doi.org/10.3390/jcm9124111
Chicago/Turabian StyleFabisiak, Adam, Adrian Bartoszek, Marcin Talar, Agata Binienda, Katarzyna Dziedziczak, Julia B. Krajewska, Paula Mosińska, Karolina Niewinna, Aleksandra Tarasiuk, Anna Mokrowiecka, and et al. 2020. "Expression of FFAR3 and FFAR4 Is Increased in Gastroesophageal Reflux Disease" Journal of Clinical Medicine 9, no. 12: 4111. https://doi.org/10.3390/jcm9124111
APA StyleFabisiak, A., Bartoszek, A., Talar, M., Binienda, A., Dziedziczak, K., Krajewska, J. B., Mosińska, P., Niewinna, K., Tarasiuk, A., Mokrowiecka, A., Wierzchniewska-Ławska, A., Małecka-Panas, E., Salaga, M., & Fichna, J. (2020). Expression of FFAR3 and FFAR4 Is Increased in Gastroesophageal Reflux Disease. Journal of Clinical Medicine, 9(12), 4111. https://doi.org/10.3390/jcm9124111