Transcatheter Aortic Valve Replacement with Self-Expandable ACURATE neo as Compared to Balloon-Expandable SAPIEN 3 in Patients with Severe Aortic Stenosis: Meta-Analysis of Randomized and Propensity-Matched Studies
Abstract
:1. Introduction
2. Experimental Section
2.1. Data Sources and Search Strategy
2.2. Selection Criteria and Quality Assessment
2.3. Endpoints Selection
2.4. Statistical Analysis
3. Results
3.1. Study Selection and Bias
3.2. Patients Characteristic
3.3. Procedural Outcomes
3.4. Clinical Outcomes
3.5. Functional Outcomes
3.6. All-Cause Mortality
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
Appendix A
Item No. | Recommendation | Reported on Page No. |
---|---|---|
Reporting of background should include | ||
1 | Problem definition | 2 |
2 | Hypothesis statement | NA |
3 | Description of study outcome(s) | 3–11 |
4 | Type of exposure or intervention used | 5 |
5 | Type of study designs used | 5 |
6 | Study population | 5 |
Reporting of search strategy should include | ||
7 | Qualifications of searchers (e.g., librarians and investigators) | Title page |
8 | Search strategy, including time period included in the synthesis and key words | 4, Figure 1 |
9 | Effort to include all available studies, including contact with authors | 5 |
10 | Databases and registries searched | 5 |
11 | Search software used, name and version, including special features used (e.g., explosion) | NA |
12 | Use of hand searching (e.g., reference lists of obtained articles) | 5 |
13 | List of citations located and those excluded, including justification | NA |
14 | Method of addressing articles published in languages other than English | NA |
15 | Method of handling abstracts and unpublished studies | NA |
16 | Description of any contact with authors | NA |
Reporting of methods should include | ||
17 | Description of relevance or appropriateness of studies assembled for assessing the hypothesis to be tested | NA |
18 | Rationale for the selection and coding of data (e.g., sound clinical principles or convenience) | NA |
19 | Documentation of how data were classified and coded (e.g., multiple raters, blinding and interrater reliability) | NA |
20 | Assessment of confounding (e.g., comparability of cases and controls in studies where appropriate) | Table A2 |
21 | Assessment of study quality, including blinding of quality assessors, stratification or regression on possible predictors of study results | Table A2 |
22 | Assessment of heterogeneity | 3 |
23 | Description of statistical methods (e.g., complete description of fixed or random effects models, justification of whether the chosen models account for predictors of study results, dose-response models, or cumulative meta-analysis) in sufficient detail to be replicated | 3 |
24 | Provision of appropriate tables and graphics | yes |
Reporting of results should include | ||
25 | Graphic summarizing individual study estimates and overall estimate | Figure 3, Figure 4 and Figure 5 |
26 | Table giving descriptive information for each study included | Table 2 |
27 | Results of sensitivity testing (e.g., subgroup analysis) | NA |
28 | Indication of statistical uncertainty of findings | 13–14 |
Reporting of discussion should include | ||
29 | Quantitative assessment of bias (e.g., publication bias) | NA |
30 | Justification for exclusion (e.g., exclusion of non-English language citations) | Figure 1 |
31 | Assessment of quality of included studies | 13, Table A2 |
Reporting of conclusions should include | ||
32 | Consideration of alternative explanations for observed results | 11–13 |
33 | Generalization of the conclusions (i.e., appropriate for the data presented and within the domain of the literature review) | 14 |
34 | Guidelines for future research | NA |
35 | Disclosure of funding source | Title page |
Study (RCT) | Random sequence generation (selection bias) | Allocation concealment (selection bias) | Blinding of participants and personnel (performance bias) | Blinding of outcome assessment (detection bias) | Incomplete outcome data (attrition bias) | Selective reporting (reporting bias) | Other bias | |
---|---|---|---|---|---|---|---|---|
Lanz et al. [SCOPE I] 2019 [14] | Low | Unclear | High | Low | Low | Low | Low | |
Study (PS-matched studies) | Bias due to confounding | Bias in selection of participants into the study | Bias in measurement of interventions | Bias due to departures from intended interventions | Bias due to missing data | Bias in measurement of outcomes1 | Bias in selection of reported result | Overall bias |
Barth S et al. 2019 [15] | Serious | Serious | Low | Low | Low | Serious | Low | Moderate |
Costa G et al. 2019 [16] | Serious | Low | Low | Low | Low | Serious | Low | Moderate |
Husser O et al. 2017 [17] | Serious | Low | Low | Low | Low | Serious | Low | Moderate |
Mauri V et al. 2017 [18] | Serious | Low | Low | Low | Low | Serious | Low | Moderate |
Scheafer A et al. 2017 [19] | Serious | Low | Low | Low | Low | Serious | Low | Moderate |
Study [ref] | Inclusion criteria | Exclusion criteria | Selection criteria for the procedure | Selection criteria for the valve |
---|---|---|---|---|
Barth S et al. 2019 [15] | Patients received either the ACURATE/ACURATE neo prostheses (n = 591) or the SAPIEN 3 prosthesis (n = 715). | Through nearest neighborhood matching with exact allocation for access route and center, pairs of 329 patients (250 transfemoral, 79 transapical) per group were determined. | Not reported. | Not reported. |
Costa et al. 2019 [16] | All the patients treated with SAPIEN 3, Evolut R, or ACURATE neo, which could have indifferently received all the three devices according to manufacturer sizing indications. | Patients who did not performed pre-TAVI multi-detector computed tomography assessment (n = 169), patients who had a valve-in- valve implantation in a failed aortic bioprosthesis (n = 21), patients with bicuspid aortic valve (n = 28), and pure aortic regurgitation (n = 1). | Not reported. | Not reported. |
Husser O et al. 2017 [17] | Patients with symptomatic, severe stenosis of the native aortic valve were treated with transfemoral TAVI using ACURATE neo (n = 311) or SAPIEN 3 (n = 810) at 3 centers in Germany. | Not reported. | The interdisciplinary heart team discussed all cases and consensus was achieved regarding the therapeutic strategy. | The interdisciplinary heart team discussed all cases and consensus was achieved regarding the therapeutic strategy. |
Lanz J et al. 2019 [14] | Patients aged 75 years or older. With severe aortic stenosis defined by an aortic valve area (AVA) < 1 cm2 or AVA indexed to body surface area of < 0·6 cm2/m2. Symptomatic (NYHA functional class > I, angina or syncope). At increased risk for mortality if undergoing SAVR as determined by: - the heart team OR - an STS-PROM score > 10% OR - a Logistic EuroSCORE > 20%. Heart team agrees on eligibility for participation. Aortic annulus perimeter 66–85 mm AND area 338–573 mm2 based on multi-slice computed tomography. Minimum diameter of arterial aorto-iliac-femoral axis on one side: ≥5·5 mm. Patient understand the purpose, potential risks and benefits of the trial, is able to provide written informed content and willing to participate in all parts of the follow-up. | -Non-valvular, congenital or non-calcific acquired aortic stenosis, uni- or bicuspid aortic valve. -Anatomy not appropriate for transfemoral TAVR due to degree or eccentricity of calcification or tortuosity of aorto- and iliac-femoral arteries. -Pre-existing prosthetic heart valve in aortic or mitral position. -Emergency procedures, cardiogenic shock (vasopressor dependence, mechanical hemodynamic support), or severely reduced left ventricular ejection fraction (< 20%). -Concomitant planned procedure except for percutaneous coronary intervention. -Stroke or myocardial infarction (except type 2) in prior 30 days. -Planned non-cardiac surgery within 30 days after TAVR. -Severe coagulation conditions, inability to tolerate anticoagulation/antiplatelet therapy. -Evidence of intra-cardiac mass, thrombus or vegetation. -Active bacterial endocarditis or other active infection. -Hypertrophic cardiomyopathy with or without obstruction. -Contraindication to contrast media or allergy to nitinol. -Participation in another trial leading to deviations in the preparation and conduction of the intervention or the post-implantation management. | The heart team or an STS-PROM score > 10% or a Logistic EuroSCORE > 20%. Heart team agrees on eligibility for participation. | Patients were randomly assigned in a 1:1 ratio to undergo TAVI with either the ACURATE neo or the SAPIEN 3 system. |
Mauri V et al. 2017 [18] | Inclusion criteria were small annular dimension defined as an annulus area <400 mm2 and transfemoral TAVI with either an ACURATE neo size S or an Edwards SAPIEN 3 size 23 mm. | Not reported. | Eligibility of the individual candidate for TAVI had been decided within the local institutional heart team. | Prosthesis selection was at the discretion of the operating physicians at each center. |
Schaefer A et al. 2017 [19] | A consecutive series of 104 patients received transfemoral TAVI using the ACURATE neo for treatment of severe symptomatic calcified aortic stenosis (study group) between 2012 and 2016. For comparative assessment, a matched control group of 104 patients treated by transfemoral TAVI using the Edwards SAPIEN 3 during the same time frame (2014 to 2016) was retrieved from dedicated hospital database containing a total of 1326 TAVI patients (210 SAPIEN 3 patients). | Patients unsuitable for a retrograde transfemoral approach and all valve-in-valve procedures were excluded from analysis. | Allocation of patients to TAVI followed current international recommendations after consensus of the local dedicated heart team. | Not reported. |
Study [ref] | Intervention | HT (%) | DM (%) | PVD (%) | CKI (%) | COPD (%) | PM/ICD (%) | AF (%) | CAD (%) | MI history (%) | Stroke history (%) | Heart surgery history (%) | NYHA III/IV (%) | LVEF (%) | Mean aortic gradient (mmHg) | Aortic valve area (cm2) | Aortic annulus diameter (mm) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Barth S et al. 2019 [15] | ACURATE neo | 93.3 | 36.8 | NR | 2.7 | 15.8 | NR | 38.0 | NR | NR | 14.0 | 14.9 | 79.0 | 53.0 ± 13.0 | 44.0 ± 15.0 | 0.68 ± 0.18 | 21.0 ± 2.0 |
SAPIEN 3 | 93.0 | 35.0 | NR | 2.7 | 14.9 | NR | 38.7 | NR | NR | 14.6 | 14.6 | 78.1 | 54.0 ± 15.0 | 45.0 ± 14.0 | 0.67 ± 0.17 | 21.0 ± 3.0 | |
Costa et al. 2019 [16] | ACURATE neo | 89.6 | 18.8 | 6.3 | 4.2 | 20.8 | NR | 12.5 | NR | 14.6 | 2.1 | 6.3 | NR | 54.5 ± 9.7 | 51.3 ± 14.5 | NR | NR |
SAPIEN 3 | 89.6 | 27.1 | 4.2 | 2.1 | 14.6 | NR | 12.5 | NR | 14.6 | 4.2 | 2.1 | NR | 56.1 ± 9.7 | 51.3 ± 17.2 | NR | NR | |
Husser O et al. 2017 [17] | ACURATE neo | NR | 33.1 | 10.6 | 2.3 | 13.5 | 9.0 | 24.8 | 61.1 | 10.0 | 13.8 | 10.6 | 82.3 | NR | 45.0 ± 15.0 | NR | NR |
SAPIEN 3 | NR | 32.3 | 11.3 | 1.9 | 17.8 | 10.0 | 26.2 | 62.7 | 10.1 | 12.5 | 8.7 | 78.6 | NR | 44.0 ± 16.0 | NR | NR | |
Lanz J et al. 2019 [14] | ACURATE neo | 92.0 | 29.0 | 12.0 | 4.0 | 9.0 | 12.0 | 36.0 | 59.0 | 10.0 | 13.0 | 9.0 | 77.0 | 56.4 ± 11.1 | 42.9 ± 17.2 | 0.7 ± 0.2 | 23.6 ± 1.6 |
ACURATE neo | 91.0 | 32.0 | 11.0 | 5.0 | 12.0 | 10.0 | 37.0 | 60.0 | 13.0 | 13.0 | 9.0 | 73.0 | 57.1 ± 10.7 | 41.5 ± 15.1 | 0.7 ± 0.2 | 23.7 ± 1.6 | |
Mauri V et al. 2017 [18] | SAPIEN 3 | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | 59.0 ± 8.0 | 46.0 ± 16.0 | NR | NR |
ACURATE neo | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | 59.0 ± 10.0 | 47.0 ± 16.0 | NR | NR | |
Schaefer A et al. 2017 [19] | SAPIEN 3 | 85.6 | 27.9 | 16.3 | NR | 17.3 | NR | 34.6 | 59.6 | NR | 14.4 | 9.6 | 86.5 | NR | 35.9 ± 16.6 | 0.8 ± 0.2 | 24.5 ± 2.5 |
ACURATE neo | 93.3 | 26.0 | 13.5 | NR | 20.2 | NR | 32.7 | 57.7 | NR | 11.5 | 5.8 | 88.5 | NR | 37.6 ± 16.7 | 0.8 ± 0.2 | 25.3 ± 2.6 |
Study [ref] | Intervention | Anesthesia (%) | Access Site (%) | Valve sizes Implanted (%), (Mean ± SD) | Pre-Dilatation (%) | Post-Dilatation (%) | Contrast Volume (mL) | Fluoroscopy Time (min) | Procedure Duration (min) |
---|---|---|---|---|---|---|---|---|---|
Barth S et al. 2019 [15] | ACURATE neo | general 96.0, conscious sedation 4.0 | femoral 74.5, apical 25.5 | S NR M NR L NR (25.0 ± 2.0) | 97.6 | 40.4 | 128 ± 54 | 9.2 ± 4.4 | 62.0 ± 24.0 |
SAPIEN 3 | general 96.4, conscious sedation 3.6 | femoral 75.7, apical 24.3 | 23 mm NR 26 mm NR 29 mm NR (25.0 ± 2.0) | 52.1 | 11.6 | 106 ± 43 | 8.5 ± 4.9 | 59.0 ± 26.0 | |
Costa et al. 2019 [16] | ACURATE neo | NR | femoral 100 | NR | NR | NR | NR | NR | NR |
SAPIEN 3 | femoral 100 | NR | NR | NR | NR | NR | NR | ||
Husser O et al. 2017 [17] | ACURATE neo | general 52.7, conscious sedation 47.3 | femoral 100 | S 30.9 M 40.2 L 28.9 | 95.8 | 42.1 | 115.0 ± 54.0 | 10.0 ± 6.0 | 55.0 ± 30.0 |
SAPIEN 3 | general 54.0, conscious sedation 46.0 | femoral 100 | 23 mm 43.9 26 mm 41.6 29 mm 14.5 | 74.3 | 23.8 | 104.0 ± 53.0 | 11.0 ± 5.9 | 54.0 ± 24.0 | |
Lanz J et al. 2019 [14] | ACURATE neo | general 25.0, conscious sedation 75.0 | femoral 99.0, other 1.0 | S 20.0 M 43.0 L 34.0 | 88.0 | 52.0 | 136.0 ± 55.6 | NR | 53.2 ± 26.5 |
SAPIEN 3 | general 23.0, conscious sedation 77.0 | femoral 99.0, other 1.0 | 23 mm 39.0 26 mm 55.0 29 mm 5.0 | 23.0 | 48.0 | 110 ± 45.9 | NR | 46.0 ± 25.9 | |
Mauri V et al. 2017 [18] | ACURATE neo | general 100.0 | femoral 100 | S 100.0 | 94.6 | 31.5 | NR | NR | NR |
SAPIEN 3 | femoral 100 | 23 mm 100.0 | 31.5 | 6.5 | NR | NR | NR | ||
Schaefer A et al. 2017 [19] | ACURATE neo | conscious sedation 47.1% general 52.9% | femoral 100 | S 35.6 M 38.5 L 25.9 | 90.3 | 47.6 | 162.6 ± 70.3 | 19.3 ± 9.4 | 94.0 ± 46.9 |
SAPIEN 3 | conscious sedation 34.6% general 65.4% | femoral 100 | 23mm 40.4 26mm 49.0 29mm 10.6 | 53.8 | 20.2 | 154.8±73.0 | 19.4±9.1 | 94.8±38.0 |
Study [ref] | Presence of Pacemaker at Baseline Reported | Precision of the Indication Reported | Days Post TAVR for PPI Reported |
---|---|---|---|
Barth S et al. 2019 [15] | No | no | In-hospital |
Costa et al. 2019 [16] | Yes | no | NA |
Husser O et al. 2017 [17] | Yes | no | In-hospital and 30 days |
Lanz J et al. 2019 [14] | Yes | no | 30 days |
Mauri V et al 2017 [18] | No | no | 30 days |
Schaefer A et al. 2017 [19] | No | Atrioventricular block Grade 3 or rapid progressive left bundle branch block | In-hospital |
References
- Cribier, A.; Eltchaninoff, H.; Bash, A.; Borenstein, N.; Tron, C.; Bauer, F.; Derumeaux, G.; Anselme, F.; Laborde, F.; Leon, M.B. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: First human case description. Circulation 2002, 106, 3006–3008. [Google Scholar] [CrossRef]
- Smith, C.R.; Leon, M.B.; Mack, M.J.; Miller, D.C.; Moses, J.W.; Svensson, L.G.; Tuzcu, E.M.; Webb, J.G.; Fontana, G.P.; Makkar, R.R.; et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N. Engl. J. Med. 2011, 364, 2187–2198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, D.H.; Popma, J.J.; Reardon, M.J.; Yakubov, S.J.; Coselli, J.S.; Deeb, G.M.; Gleason, T.G.; Buchbinder, M.; Hermiller, J., Jr.; Kleiman, N.S.; et al. Transcatheter aortic-valve replacement with a self-expanding prosthesis. N. Engl. J. Med. 2014, 370, 1790–1798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webb, J.G.; Pasupati, S.; Humphries, K.; Thompson, C.; Altwegg, L.; Moss, R.; Sinhal, A.; Carere, R.G.; Munt, B.; Ricci, D.; et al. Percutaneous transarterial aortic valve replacement in selected high-risk patients with aortic stenosis. Circulation 2007, 116, 755–763. [Google Scholar] [CrossRef] [Green Version]
- Leon, M.B.; Smith, C.R.; Mack, M.; Miller, D.C.; Moses, J.W.; Svensson, L.G.; Tuzcu, E.M.; Webb, J.G.; Fontana, G.P.; Makkar, R.R.; et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N. Engl. J. Med. 2010, 363, 1597–1607. [Google Scholar] [CrossRef] [Green Version]
- Thourani, V.H.; Kodali, S.; Makkar, R.R.; Herrmann, H.C.; Williams, M.; Babaliaros, V.; Smalling, R.; Lim, S.; Malaisrie, S.C.; Kapadia, S.; et al. Transcatheter aortic valve replacement versus surgical valve replacement in intermediate-risk patients: A propensity score analysis. Lancet 2016, 387, 2218–2225. [Google Scholar] [CrossRef]
- Leon, M.B.; Smith, C.R.; Mack, M.J.; Makkar, R.R.; Svensson, L.G.; Kodali, S.K.; Thourani, V.H.; Tuzcu, E.M.; Miller, D.C.; Herrmann, H.C.; et al. Transcatheter or Surgical Aortic-Valve Replacement in Intermediate-Risk Patients. N. Engl. J. Med. 2016, 374, 1609–1620. [Google Scholar] [CrossRef]
- Reardon, M.J.; Van Mieghem, N.M.; Popma, J.J.; Kleiman, N.S.; Sondergaard, L.; Mumtaz, M.; Adams, D.H.; Deeb, G.M.; Maini, B.; Gada, H.; et al. Surgical or Transcatheter Aortic-Valve Replacement in Intermediate-Risk Patients. N. Engl. J. Med. 2017, 376, 1321–1331. [Google Scholar] [CrossRef]
- Mack, M.J.; Leon, M.B.; Thourani, V.H.; Makkar, R.; Kodali, S.K.; Russo, M.; Kapadia, S.R.; Malaisrie, S.C.; Cohen, D.J.; Pibarot, P.; et al. Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1695–1705. [Google Scholar] [CrossRef]
- Nishimura, R.A.; Otto, C.M.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P., 3rd; Fleisher, L.A.; Jneid, H.; Mack, M.J.; McLeod, C.J.; O’Gara, P.T.; et al. 2017 AHA/ACC Focused Update of the 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2017, 135, e1159–e1195. [Google Scholar] [CrossRef]
- Van Belle, E.; Juthier, F.; Susen, S.; Vincentelli, A.; Dallongeville, J.; Iung, B.; Eltchaninoff, H.; Laskar, M.; Leprince, P.; Lievre, M.; et al. Response to letter regarding article, "postprocedural aortic regurgitation in balloon-expandable and self-expandable transcatheter aortic valve replacement procedures: Analysis of predictors and impact on long-term mortality: Insights from the FRANCE2 registry". Circulation 2015, 131, e16–e17. [Google Scholar] [CrossRef] [Green Version]
- Kodali, S.K.; Williams, M.R.; Smith, C.R.; Svensson, L.G.; Webb, J.G.; Makkar, R.R.; Fontana, G.P.; Dewey, T.M.; Thourani, V.H.; Pichard, A.D.; et al. Two-year outcomes after transcatheter or surgical aortic-valve replacement. N. Engl. J. Med. 2012, 366, 1686–1695. [Google Scholar] [CrossRef] [Green Version]
- Jones, B.M.; Tuzcu, E.M.; Krishnaswamy, A.; Popovic, Z.; Mick, S.; Roselli, E.E.; Gul, S.; Devgun, J.; Mistry, S.; Jaber, W.A.; et al. Prognostic significance of mild aortic regurgitation in predicting mortality after transcatheter aortic valve replacement. J. Thorac. Cardiovasc. Surg. 2016, 152, 783–790. [Google Scholar] [CrossRef] [Green Version]
- Lanz, J.; Kim, W.K.; Walther, T.; Burgdorf, C.; Mollmann, H.; Linke, A.; Redwood, S.; Thilo, C.; Hilker, M.; Joner, M.; et al. Safety and efficacy of a self-expanding versus a balloon-expandable bioprosthesis for transcatheter aortic valve replacement in patients with symptomatic severe aortic stenosis: A randomised non-inferiority trial. Lancet 2019, 394, 1619–1628. [Google Scholar] [CrossRef]
- Barth, S.; Reents, W.; Zacher, M.; Kerber, S.; Diegeler, A.; Schieffer, B.; Schreiber, M.; Lauer, B.; Kuntze, T.; Dahmer, M.; et al. Multicentre propensity-matched comparison of transcatheter aortic valve implantation using the ACURATE TA/neo self-expanding versus the SAPIEN 3 balloon-expandable prosthesis. EuroIntervention 2019, 15, 884–891. [Google Scholar] [CrossRef]
- Costa, G.; Buccheri, S.; Barbanti, M.; Picci, A.; Todaro, D.; Di Simone, E.; La Spina, K.; D’Arrigo, P.; Criscione, E.; Nastasi, M.; et al. Outcomes of three different new generation transcatheter aortic valve prostheses. Catheter. Cardiovasc. Interv. 2019. [Google Scholar] [CrossRef]
- Husser, O.; Kim, W.K.; Pellegrini, C.; Holzamer, A.; Walther, T.; Mayr, P.N.; Joner, M.; Kasel, A.M.; Trenkwalder, T.; Michel, J.; et al. Multicenter Comparison of Novel Self-Expanding Versus Balloon-Expandable Transcatheter Heart Valves. JACC Cardiovasc. Interv. 2017, 10, 2078–2087. [Google Scholar] [CrossRef]
- Mauri, V.; Kim, W.K.; Abumayyaleh, M.; Walther, T.; Moellmann, H.; Schaefer, U.; Conradi, L.; Hengstenberg, C.; Hilker, M.; Wahlers, T.; et al. Short-Term Outcome and Hemodynamic Performance of Next-Generation Self-Expanding Versus Balloon-Expandable Transcatheter Aortic Valves in Patients With Small Aortic Annulus: A Multicenter Propensity-Matched Comparison. Circ. Cardiovasc. Interv. 2017, 10. [Google Scholar] [CrossRef]
- Schaefer, A.; Linder, M.; Seiffert, M.; Schoen, G.; Deuschl, F.; Schofer, N.; Schneeberger, Y.; Blankenberg, S.; Reichenspurner, H.; Schaefer, U.; et al. Comparison of latest generation transfemoral self-expandable and balloon-expandable transcatheter heart valves. Interact. Cardiovasc. Thorac. Surg. 2017, 25, 905–911. [Google Scholar] [CrossRef] [Green Version]
- Moriyama, N.; Vento, A.; Laine, M. Safety of Next-Day Discharge After Transfemoral Transcatheter Aortic Valve Replacement With a Self-Expandable Versus Balloon-Expandable Valve Prosthesis. Circ. Cardiovasc. Interv. 2019, 12, e007756. [Google Scholar] [CrossRef]
- Pagnesi, M.; Kim, W.K.; Conradi, L.; Barbanti, M.; Stefanini, G.G.; Zeus, T.; Pilgrim, T.; Schofer, J.; Zweiker, D.; Testa, L.; et al. Transcatheter Aortic Valve Replacement With Next-Generation Self-Expanding Devices: A Multicenter, Retrospective, Propensity-Matched Comparison of Evolut PRO Versus Acurate neo Transcatheter Heart Valves. JACC Cardiovasc. Interv. 2019, 12, 433–443. [Google Scholar] [CrossRef]
- Stroup, D.F.; Berlin, J.A.; Morton, S.C.; Olkin, I.; Williamson, G.D.; Rennie, D.; Moher, D.; Becker, B.J.; Sipe, T.A.; Thacker, S.B. Meta-analysis of observational studies in epidemiology: A proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000, 283, 2008–2012. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gotzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef]
- Higgins, J.P.; Altman, D.G.; Gotzsche, P.C.; Juni, P.; Moher, D.; Oxman, A.D.; Savovic, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.; et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [Green Version]
- Sterne, J.A.; Hernan, M.A.; Reeves, B.C.; Savovic, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef] [Green Version]
- Kappetein, A.P.; Head, S.J.; Genereux, P.; Piazza, N.; van Mieghem, N.M.; Blackstone, E.H.; Brott, T.G.; Cohen, D.J.; Cutlip, D.E.; van Es, G.A.; et al. Updated standardized endpoint definitions for transcatheter aortic valve implantation: The Valve Academic Research Consortium-2 consensus document. J. Am. Coll. Cardiol. 2012, 60, 1438–1454. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [Green Version]
- Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol. 2014, 14, 135. [Google Scholar] [CrossRef] [Green Version]
- Sathananthan, J.; Hensey, M.; Fraser, R.; Landes, U.; Blanke, P.; Hatoum, H.; Dasi, L.P.; Sedaghat, A.; Bapat, V.N.; Leipsic, J.; et al. Implications of hydrodynamic testing to guide sizing of self-expanding transcatheter heart valves for valve-in-valve procedures. Catheter. Cardiovasc. Interv. 2019. [Google Scholar] [CrossRef]
- Gozdek, M.; Ratajczak, J.; Arndt, A.; Zieliński, K.; Pasierski, M.; Matteucci, M.; Fina, D.; Jiritano, F.; Meani, P.; Raffa, G.M.; et al. Transcatheter aortic valve replacement with Lotus and Sapien 3 prosthetic valves: A systematic review and meta-analysis. J. Thorac. Dis. 2020. (ahead of print). [Google Scholar]
- Ando, T.; Briasoulis, A.; Holmes, A.A.; Taub, C.C.; Takagi, H.; Afonso, L. Sapien 3 versus Sapien XT prosthetic valves in transcatheter aortic valve implantation: A meta-analysis. Int. J. Cardiol. 2016, 220, 472–478. [Google Scholar] [CrossRef]
- Kodali, S.; Thourani, V.H.; White, J.; Malaisrie, S.C.; Lim, S.; Greason, K.L.; Williams, M.; Guerrero, M.; Eisenhauer, A.C.; Kapadia, S.; et al. Early clinical and echocardiographic outcomes after SAPIEN 3 transcatheter aortic valve replacement in inoperable, high-risk and intermediate-risk patients with aortic stenosis. Eur. Heart J. 2016, 37, 2252–2262. [Google Scholar] [CrossRef] [Green Version]
- Noble, S.; Stortecky, S.; Heg, D.; Tueller, D.; Jeger, R.; Toggweiler, S.; Ferrari, E.; Nietlispach, F.; Taramasso, M.; Maisano, F.; et al. Comparison of procedural and clinical outcomes with Evolut R versus Medtronic CoreValve: A Swiss TAVI registry analysis. EuroIntervention 2017, 12, e2170–e2176. [Google Scholar] [CrossRef] [Green Version]
- Naber, C.K.; Pyxaras, S.A.; Ince, H.; Frambach, P.; Colombo, A.; Butter, C.; Gatto, F.; Hink, U.; Nickenig, G.; Bruschi, G.; et al. A multicentre European registry to evaluate the Direct Flow Medical transcatheter aortic valve system for the treatment of patients with severe aortic stenosis. EuroIntervention 2016, 12, e1413–e1419. [Google Scholar] [CrossRef] [Green Version]
- Wendler, O.; Schymik, G.; Treede, H.; Baumgartner, H.; Dumonteil, N.; Ihlberg, L.; Neumann, F.J.; Tarantini, G.; Zamarano, J.L.; Vahanian, A. SOURCE 3 Registry: Design and 30-Day Results of the European Postapproval Registry of the Latest Generation of the SAPIEN 3 Transcatheter Heart Valve. Circulation 2017, 135, 1123–1132. [Google Scholar] [CrossRef]
- Thomas, M.; Schymik, G.; Walther, T.; Himbert, D.; Lefevre, T.; Treede, H.; Eggebrecht, H.; Rubino, P.; Michev, I.; Lange, R.; et al. Thirty-day results of the SAPIEN aortic Bioprosthesis European Outcome (SOURCE) Registry: A European registry of transcatheter aortic valve implantation using the Edwards SAPIEN valve. Circulation 2010, 122, 62–69. [Google Scholar] [CrossRef] [Green Version]
- Naber, C.K.; Pyxaras, S.A.; Ince, H.; Latib, A.; Frambach, P.; den Heijer, P.; Wagner, D.; Butter, C.; Colombo, A.; Kische, S. Real-world multicentre experience with the Direct Flow Medical repositionable and retrievable transcatheter aortic valve implantation system for the treatment of high-risk patients with severe aortic stenosis. EuroIntervention 2016, 11, e1314–e1320. [Google Scholar] [CrossRef]
- Kowalewski, M.; Gozdek, M.; Raffa, G.M.; Slomka, A.; Zielinski, K.; Kubica, J.; Anisimowicz, L.; Kowalewski, J.; Landes, U.; Kornowski, R.; et al. Transcathether aortic valve implantation with the new repositionable self-expandable Medtronic Evolut R vs. CoreValve system: Evidence on the benefit of a meta-analytical approach. J. Cardiovasc. Med. 2019, 20, 226–236. [Google Scholar] [CrossRef]
- Tamburino, C.; Capodanno, D.; Ramondo, A.; Petronio, A.S.; Ettori, F.; Santoro, G.; Klugmann, S.; Bedogni, F.; Maisano, F.; Marzocchi, A.; et al. Incidence and predictors of early and late mortality after transcatheter aortic valve implantation in 663 patients with severe aortic stenosis. Circulation 2011, 123, 299–308. [Google Scholar] [CrossRef] [Green Version]
- Kodali, S.; Pibarot, P.; Douglas, P.S.; Williams, M.; Xu, K.; Thourani, V.; Rihal, C.S.; Zajarias, A.; Doshi, D.; Davidson, M.; et al. Paravalvular regurgitation after transcatheter aortic valve replacement with the Edwards sapien valve in the PARTNER trial: Characterizing patients and impact on outcomes. Eur. Heart J. 2015, 36, 449–456. [Google Scholar] [CrossRef] [Green Version]
- Gilard, M.; Eltchaninoff, H.; Iung, B.; Donzeau-Gouge, P.; Chevreul, K.; Fajadet, J.; Leprince, P.; Leguerrier, A.; Lievre, M.; Prat, A.; et al. Registry of transcatheter aortic-valve implantation in high-risk patients. N. Engl. J. Med. 2012, 366, 1705–1715. [Google Scholar] [CrossRef]
- Choudhury, T.; Solomonica, A.; Bagur, R. The ACURATE neo transcatheter aortic valve system. Exp. Rev. Med. Device. 2018, 15, 693–699. [Google Scholar] [CrossRef]
ACURATE neo (Boston Scientific Corporation) | SAPIEN 3 (Edwards Lifesciences) |
---|---|
Supra-annular | Intra-annular |
Porcine pericardial leaflet tissue | Bovine pericardial leaflet tissue |
Self-expanding, deployment in a top-down mechanism of nitinol frame. | Balloon-expandable cobalt-chromium frame |
Transfemoral sheath size (valve size) | |
18-French for all devices: Small (23 mm), Medium (25 mm), Large (27 mm). | Ready for ultra-low profile: 14 F (20, 23, 26 mm); 16 F (29 mm), 18 F (20, 23, 26 mm), 21 F (29 mm) |
Special features | |
-Upper and lower crown; -Three stabilization arches; -Outer and inner pericardial skirt. | -Outer sealing and inner skirt at the inflow |
Study | Barth S et al. 2019 [15] | Costa et al. 2019 [16] | Husser O et al. 2017 [17] | Lanz J et al. 2019 [14] | Mauri V et al. 2017 [18] | Schaefer A et al. 2017 [19] | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ACURATE neo | SAPIEN 3 | ACURATE neo | SAPIEN 3 | ACURATE neo | SAPIEN 3 | ACURATE neo | SAPIEN 3 | ACURATE neo | SAPIEN 3 | ACURATE neo | SAPIEN 3 | |
Study period | 2012–2016 | 09.2014–02.2018 | 01.2014–01.2016 | 02.2017–02.2019 | 02.2014–08.2016 | 2012–2016 | ||||||
Design | MC, RCS, PM | SC, RCS, PM | MC, RCS, PM | MC, RCT | MC, RCS, PM | SC, RCS, PM | ||||||
Number of pts. | 329 | 329 | 48 | 48 | 311 | 622 | 372 | 367 | 92 | 92 | 104 | 104 |
Age | 81.0 ± 5.0 | 81.0 ± 6.0 | 82.3 ± 3.8 | 83.3 ± 2.3 | 81.0 ± 6.0 | 81.0 ± 6.0 | 82.6 ± 4.3 | 83.0 ± 3.9 | 82.8 ± 6.5 | 81.9 ± 5.3 | 81.7 ± 5.5 | 81.2 ± 6.2 |
Female (%) | NR | 70.8 | 68.8 | 60.8 | 55.3 | 59.0 | 55.0 | 92.4 | 92.4 | 69.2 | 65.4 | |
BMI (kg/m2) | 28.7 ± 5.5 | 28.4 ± 5.8 | 27.8 ± 4.6 | 27.1 ± 3.9 | 27.0 ± 5.0 | 27.0 ± 5.0 | 27.3 ± 4.4 | 27.9 ± 4.7 | 27.3 ± 5.5 | 26.0 ± 4.7 | 27.1 ± 5.1 | 26.8 ± 5.0 |
STS-PROM (%) | NR | 4.0 ± 3.3 | 3.8 ± 1.7 | NR | 3.7 ± 1.8 | 3.7 ± 1.9 | NR | 5.8 ± 3.8 | 5.4 ± 3.6 | |||
Logistic EuroSCORE (%) | 18.8 ± 14.7 | 19.1 ± 13.6 | NR | NR | 18.0 ± 10.0 | 18.0 ± 12.0 | NR | NR | 16.2 ± 8.8 | 16.6 ± 8.8 | 15.9 ± 9.3 | 13.7 ± 9.0 |
NYHA III/IV (%) | 79.0 | 78.1 | NR | 256 | 489 | 77.0 | 73.0 | NR | 86.5 | 88.5 | ||
EF (%) | 53.0 ± 13.0 | 54.0 ± 15.0 | 54.5 ± 9.7 | 56.1 ± 9.7 | NR | NR | 56.4 ± 11.1 | 57.1 ± 10.7 | 59.0 ± 8.0 | 59.0 ± 10.0 | NR | NR |
EF < 35% (%) | 9.4 | 10.3 | NR | 5.8 | 5.5 | NR | NR | 26.0 * | 22.1 1 | |||
Mean aortic gradient (mmHg) | 44.0 ± 15.0 | 45.0 ± 14.0 | 51.3 ± 14.5 | 51.3 ± 17.2 | 45.0±15.0 | 44.0 ± 16.0 | 42.9 ± 17.2 | 41.5 ± 15.1 | 46.0 ± 16.0 | 47.0 ± 16.0 | 35.9 ± 16.6 | 37.6 ± 16.7 |
Aortic annulus diameter (mm) | 21.0 ± 2.0 | 21.0 ± 3.0 | NR | NR | 23.6 ± 1.6 | 23.7 ± 1.6 | NR | 24.5 ± 2.5 | 25.3 ± 2.6 | |||
Access site (%) | TF 74.5, TA 25.5 | TF 75.7, TA 24.3 | TF 100.0 | TF 100.0 | TF 100.0 | TF 100.0 | TF 99.0, TA <1.0 | TF 100.0 | TF 100.0 | TF 100.0 | TF 100.0 | TF 100.0 |
VARC-2 outcomes definitions | yes | Yes | yes | yes | yes | yes | ||||||
Follow-up (months) | 10.8 ± 9.7 | 12.2 ± 9.9 | 12 | 1 | 1 | 12.7 ± 2.6 | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gozdek, M.; Zieliński, K.; Pasierski, M.; Matteucci, M.; Fina, D.; Jiritano, F.; Meani, P.; Raffa, G.M.; Malvindi, P.G.; Pilato, M.; et al. Transcatheter Aortic Valve Replacement with Self-Expandable ACURATE neo as Compared to Balloon-Expandable SAPIEN 3 in Patients with Severe Aortic Stenosis: Meta-Analysis of Randomized and Propensity-Matched Studies. J. Clin. Med. 2020, 9, 397. https://doi.org/10.3390/jcm9020397
Gozdek M, Zieliński K, Pasierski M, Matteucci M, Fina D, Jiritano F, Meani P, Raffa GM, Malvindi PG, Pilato M, et al. Transcatheter Aortic Valve Replacement with Self-Expandable ACURATE neo as Compared to Balloon-Expandable SAPIEN 3 in Patients with Severe Aortic Stenosis: Meta-Analysis of Randomized and Propensity-Matched Studies. Journal of Clinical Medicine. 2020; 9(2):397. https://doi.org/10.3390/jcm9020397
Chicago/Turabian StyleGozdek, Mirosław, Kamil Zieliński, Michał Pasierski, Matteo Matteucci, Dario Fina, Federica Jiritano, Paolo Meani, Giuseppe Maria Raffa, Pietro Giorgio Malvindi, Michele Pilato, and et al. 2020. "Transcatheter Aortic Valve Replacement with Self-Expandable ACURATE neo as Compared to Balloon-Expandable SAPIEN 3 in Patients with Severe Aortic Stenosis: Meta-Analysis of Randomized and Propensity-Matched Studies" Journal of Clinical Medicine 9, no. 2: 397. https://doi.org/10.3390/jcm9020397
APA StyleGozdek, M., Zieliński, K., Pasierski, M., Matteucci, M., Fina, D., Jiritano, F., Meani, P., Raffa, G. M., Malvindi, P. G., Pilato, M., Paparella, D., Słomka, A., Kubica, J., Jagielak, D., Lorusso, R., Suwalski, P., & Kowalewski, M., on behalf of Thoracic Research Centre. (2020). Transcatheter Aortic Valve Replacement with Self-Expandable ACURATE neo as Compared to Balloon-Expandable SAPIEN 3 in Patients with Severe Aortic Stenosis: Meta-Analysis of Randomized and Propensity-Matched Studies. Journal of Clinical Medicine, 9(2), 397. https://doi.org/10.3390/jcm9020397