Influence of Serum Vitamin D Level in the Response of Actinic Keratosis to Photodynamic Therapy with Methylaminolevulinate
Abstract
:1. Introduction
2. Patients and Methods
2.1. Design
2.2. Ethics
2.3. Subjects
2.4. Treatment Protocol
2.5. Clinical Evaluation
2.6. Biochemical Variables
2.7. Histological and Immune-Histochemical Variables
2.8. Statistical Analysis
3. Results
3.1. Demographic Characteristics of the Sample
3.2. Clinical and Histological Response to PDT Per Lesion
3.3. Association of Variables with Overall Clinical Response
3.4. Association of the Variables with the Histological Response
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Giovannucci, E. The epidemiology of vitamin D and cancer incidence and mortality: A review (United States). Cancer Causes Control. 2005, 16, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Kamradt, J.; Rafi, L.; Mitschele, T.; Meineke, V.; Gärtner, B.C.; Tilgen, W.; Holick, M.F.; Reichrath, J. Analysis of the Vitamin D system in Cutaneous Malignancies. Recent Results Cancer Res. 2003, 164, 259–269. [Google Scholar] [PubMed]
- Hu, L.; Bikle, D.D.; Oda, Y. Reciprocal role of vitamin D receptor on β-catenin regulated keratinocyte proliferation and differentiation. J. Steroid Biochem. Mol. Biol. 2014, 144, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Wong, G.; Gupta, R.; Dixon, K.; Deo, S.; Choong, S.; Halliday, G.; Bishop, J.; Ishizuka, S.; Norman, A.; Posner, G.; et al. 1,25-Dihydroxyvitamin D and three low-calcemic analogs decrease UV-induced DNA damage via the rapid response pathway. J. Steroid Biochem. Mol. Boil. 2004, 89, 567–570. [Google Scholar] [CrossRef] [PubMed]
- Vuolo, L.; Di Somma, C.; Faggiano, A.; Colao, A.A. Vitamin D and Cancer. Front. Endocrinol. 2012, 23, 3–58. [Google Scholar] [CrossRef] [PubMed]
- Röwert-Huber, J.; Patel, M.J.; Forschner, T.; Ulrich, C.; Eberle, J.; Kerl, H.; Sterry, W.; Stockfleth, E. Actinic keratosis is an early in situ squamous cell carcinoma: A proposal for reclassification. Br. J. Dermatol. 2007, 156, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Bagazgoitia, L.; Santos, J.C.; Juarranz, A.; Jaén, P. Photodynamic therapy reduces the histological features of actinic damage and the expression of early oncogenic markers. Br. J. Dermatol. 2011, 165, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Rollakanti, K.; Anand, S.; Maytin, E.V. Topical calcitriol prior to photodynamic therapy enhances treatment efficacy in non-melanoma skin cancer mouse models. Proc. SPIE Int. Soc. Opt. Eng. 2015, 9308, 93080Q. [Google Scholar] [PubMed]
- Anand, S.; Rollakanti, K.R.; Horst, R.L.; Hasan, T.; Maytin, E.V. Combination of oral vitamin D3 with photodynamic therapy enhances tumor cell death in a murine model of cutaneous squamous cell carcinoma. Photochem. Photobiol. 2014, 90, 1126–1135. [Google Scholar] [PubMed]
- Anand, S.; Wilson, C.; Hasan, T.; Maytin, E.V. Vitamin D3 enhances the apoptotic response of epithelial tumors to aminolevulinate-based photodynamic therapy. Cancer Res. 2011, 71, 6040–6050. [Google Scholar] [CrossRef] [PubMed]
- Torezan, L.; Grinblat, B.; Haedersdal, M.; Valente, N.; Festa-Neto, C.; Szeimies, R.M. A randomized split-scalp study comparing calcipotriol-assisted methyl aminolaevulinate photodynamic therapy (MAL-PDT) with conventional MAL-PDT for the treatment of actinic keratosis. Br. J. Dermatol. 2018, 179, 829–835. [Google Scholar] [CrossRef] [PubMed]
- Galimberti, G.N. Calcipotriol as pretreatment prior to daylight-mediated photodynamic therapy in patients with actinic keratosis: A case series. Photodiagnosis Photodyn. Ther. 2018, 21, 172–175. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, Treatment, and Prevention of Vitamin D Deficiency: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [PubMed]
- Reichrath, J.; Reichrath, S.; Heyne, K.; Vogt, T.; Roemer, K. Tumor suppression in skin and other tissues via cross-talk between vitamin D- and p53-signaling. Front. Physiol. 2014, 5. [Google Scholar] [CrossRef] [PubMed]
- Bikle, D.D. The vitamin D receptor: A tumor suppressor in skin. Single Mol. Single Cell Seq. 2014, 810, 282–302. [Google Scholar]
- Bikle, D.D.; Jiang, Y. The Protective Role of Vitamin D Signaling in Non-Melanoma Skin Cancer. Cancers 2013, 5, 1426–1438. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Goldstein, K.M.; Chen, P.; Huang, S.; Gelbert, L.M.; Nagpal, S. Transcriptional Profiling of Keratinocytes Reveals a Vitamin D-Regulated Epidermal Differentiation Network. J. Investig. Dermatol. 2005, 124, 778–785. [Google Scholar] [CrossRef] [PubMed]
- Bay, C.; Togsverd-Bo, K.; Lerche, C.M.; Haedersdal, M. Skin tumor development after UV irradiation and photodynamic therapy is unaffected by short-term pretreatment with 5-fluorouracil, imiquimod and calcipotriol. An experimental hairless mouse study. J. Photochem. Photobiol. B: Boil. 2016, 154, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Trowbridge, R.M.; Mitkov, M.V.; Hunter, W.J.; Agrawal, D.K. Vitamin D Receptor and CD86 Expression in the Skin of Vitamin D-Deficient Swine. Exp. Mol. Pathol. 2014, 96, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, L.; Kahl, P.; Majores, M.; Bierhoff, E.; Stockfleth, E.; Dirschka, T. Actinic keratosis: Correlation between clinical and histological classification systems. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 1303–1307. [Google Scholar] [CrossRef] [PubMed]
Variables (N = 25) | Frecuency | Mean (Range or SD) | |
---|---|---|---|
Age (years) | 70.1 (61–81) | ||
Gender | Male Female | 19/25 (76%) 6/25 (24%) | |
Phototype | II III | 10/25 (40%) 15/25 (60%) | |
B.M.I. (kg/m2) | 30.1 (23.30–42.40) | ||
Location of treated AK | Face Scalp | 9/25 (36%) 16/25 (64%) | |
Serum 25(OH)D3 (ng/mL) | 25.37 (SD 9.86) |
N = 24 | Basal (mean, SD) | After PDT (mean, SD) | p |
---|---|---|---|
Clinical and histological variables | |||
AK number per patient | 7.84 (SD 2.79) | 2.80 (SD 1.61) | 0.005 |
KIN grade (quantitative) | 1.88 (0.85) | 0.67 (1.01) | <0.001 |
KIN grade (qualitative) | 0.004 | ||
KIN 3 | 7 (29.17 %) | 2 (8.33%) | |
KIN 2 | 10 (41.66%) | 3 (12.50%) | |
KIN 1 | 7 (29.17%) | 4 ( 16.67%) | |
KIN 0 | 0 | 15 (62.50%) | |
Immunomarkers | |||
VDR expression (%) | 56.67 (20.36) | 66.67 (22.00) | 0.062 |
VDR intensity (0–3) | 1.96 (0.81) | 2.08 (0.93) | 0.479 |
β-catenin expression (%) | 4.17 (5.69) | 2.61 (4.59) | 0.191 |
Ki67 expression (%) | 57.08 (27.10) | 26.88 (19.27) | 0.000 |
P53 expression (%) | 59.17 (27.72) | 26.39 (24.54) | 0.000 |
Patient Clinical Response | p | Histological Response | p | |||
---|---|---|---|---|---|---|
Partial Response (mean, SD) n = 6 | Complete response (mean, SD) n = 19 | Positive (mean, SD) n = 17 | Negative (mean, SD) n = 7 | |||
Age (mean, SD) | 71.47 (6.66) | 69.67 (3.20) | 0.53 | 69.88 (6.19) | 73.86 (5.37) | 0.153 |
Gender | 1 | 0.608 | ||||
Male | 14 (73.37%) | 5 (26.30%) | 14 (73.70%) | 5 (26.30%) | ||
Female | 5 (83.30%) | 1 (16.70%) | 3 (60.00%) | 2 (40.00%) | ||
Phototype | 0.175 | 0.356 | ||||
II | 6 (60.00%) | 4 (40.00%) | 5 (55.60%) | 4 (44.4%) | ||
III | 13 (86.70%) | 2 (13.30%) | 12 (80.00%) | 3 (20.00%) | ||
Location | 1 | 0.352 | ||||
-Face | 7 (77.80%) | 2 (22.20%) | 7 (87.50%) | 1 (12.50%) | ||
-Scalp | 12 (75.00%) | 4 (25.00%) | 10 (62.50%) | 6 (37.50%) | ||
Vitamin D (ng/ml) | 24.42 (9.67) | 27.67 (9.86) | 0.483 | 26.96 (9.49) | 18.60 (7.49) | 0.05 |
VDR expression (%) | 62.78 (16.74) | 35.71 (19.88) | 0.002 | 59.41 (18.53) | 53.33 (25.03) | 0.535 |
VDR intensity (0–3) | 2.00 (0.77) | 1.71 (0.95) | 0.442 | 2.00 (0.79) | 1.83 (0.98) | 0.68 |
β-cat. expression (%) | 4.39 (5.62) | 3.86 (5.40) | 0.832 | 5.53 (6.06) | 17 (2.04) | 0.103 |
Ki67 expression(%) | 56.39 (28.12) | 51.00 (32.20) | 0.683 | 55.00 (29.42) | 59.17 (22.00) | 0.756 |
P53 expression (%) | 64.41 (23.51) | 59.00 (38.79) | 0.701 | 64.69 (27.35) | 52.00 (22.80) | 0.361 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno, R.; Nájera, L.; Mascaraque, M.; Juarranz, Á.; González, S.; Gilaberte, Y. Influence of Serum Vitamin D Level in the Response of Actinic Keratosis to Photodynamic Therapy with Methylaminolevulinate. J. Clin. Med. 2020, 9, 398. https://doi.org/10.3390/jcm9020398
Moreno R, Nájera L, Mascaraque M, Juarranz Á, González S, Gilaberte Y. Influence of Serum Vitamin D Level in the Response of Actinic Keratosis to Photodynamic Therapy with Methylaminolevulinate. Journal of Clinical Medicine. 2020; 9(2):398. https://doi.org/10.3390/jcm9020398
Chicago/Turabian StyleMoreno, Ricardo, Laura Nájera, Marta Mascaraque, Ángeles Juarranz, Salvador González, and Yolanda Gilaberte. 2020. "Influence of Serum Vitamin D Level in the Response of Actinic Keratosis to Photodynamic Therapy with Methylaminolevulinate" Journal of Clinical Medicine 9, no. 2: 398. https://doi.org/10.3390/jcm9020398
APA StyleMoreno, R., Nájera, L., Mascaraque, M., Juarranz, Á., González, S., & Gilaberte, Y. (2020). Influence of Serum Vitamin D Level in the Response of Actinic Keratosis to Photodynamic Therapy with Methylaminolevulinate. Journal of Clinical Medicine, 9(2), 398. https://doi.org/10.3390/jcm9020398