Skeletal and Respiratory Muscle Dysfunctions in Pulmonary Arterial Hypertension
Abstract
:1. Introduction
2. Skeletal and Respiratory Muscles in Normal Conditions
3. Skeletal and Respiratory Muscle Dysfunction During PAH
3.1. Skeletal Muscle Dysfunction During PAH (Figure 2)
3.1.1. Catabolic Markers and Inflammation
3.1.2. Impaired Oxygen Supply
3.1.3. Impaired Oxygen Use: Mitochondrial Dysfunction
3.2. Respiratory Muscle Dysfunction During PAH
4. Relationships between Peripheral Muscles Impairments, Decreased Exercise Performance, and Quality of Life in PAH Patients
5. Therapeutics Approaches Targeting Muscle Dysfunction in PAH
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Humbert, M.; Guignabert, C.; Bonnet, S.; Dorfmuller, P.; Klinger, J.R.; Nicolls, M.R.; Olschewski, A.J.; Pullamsetti, S.S.; Schermuly, R.T.; Stenmark, K.R.; et al. Pathology and pathobiology of pulmonary hypertension: State of the art and research perspectives. Eur. Respir. J. 2019, 53, 1801887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simonneau, G.; Montani, D.; Celermajer, D.S.; Denton, C.P.; Gatzoulis, M.A.; Krowka, M.; Williams, P.G.; Souza, R. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur. Respir. J. 2019, 53, 1801913. [Google Scholar] [CrossRef] [PubMed]
- Galie, N.; Humbert, M.; Vachiery, J.-L.; Gibbs, S.; Lang, I.; Torbicki, A.; Simonneau, G.; Peacock, A.; Vonk Noordegraaf, A.; Beghetti, M.; et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur. Respir. J. 2015, 46, 903–975. [Google Scholar] [PubMed]
- Amsallem, M.; Sternbach, J.M.; Adigopula, S.; Kobayashi, Y.; Vu, T.A.; Zamanian, R.; Liang, D.; Dhillon, G.; Schnittger, I.; McConnell, M.V.; et al. Addressing the Controversy of Estimating Pulmonary Arterial Pressure by Echocardiography. J. Am. Soc. Echocardiogr. Off. Publ. Am. Soc. Echocardiogr. 2016, 29, 93–102. [Google Scholar] [CrossRef]
- Kovacs, G.; Herve, P.; Barbera, J.A.; Chaouat, A.; Chemla, D.; Condliffe, R.; Garcia, G.; Grunig, E.; Howard, L.; Humbert, M.; et al. An official European Respiratory Society statement: Pulmonary haemodynamics during exercise. Eur. Respir. J. 2017, 50, 1700578. [Google Scholar] [CrossRef]
- Geenen, L.W.; Baggen, V.J.M.; Kauling, R.M.; Koudstaal, T.; Boomars, K.A.; Boersma, E.; Roos-Hesselink, J.W.; van den Bosch, A.E. The Prognostic Value of Soluble ST2 in Adults with Pulmonary Hypertension. J. Clin. Med. 2019, 8, 1517. [Google Scholar] [CrossRef] [Green Version]
- Nickel, N.P.; Yuan, K.; Dorfmuller, P.; Provencher, S.; Lai, Y.-C.; Bonnet, S.; Austin, E.D.; Koch, C.D.; Morris, A.; Perros, F.; et al. Beyond the Lungs: Systemic Manifestations of Pulmonary Arterial Hypertension. Am. J. Respir. Crit. Care Med. 2019, 201, 148–157. [Google Scholar] [CrossRef]
- Spiekerkoetter, E.; Goncharova, E.A.; Guignabert, C.; Stenmark, K.; Kwapiszewska, G.; Rabinovitch, M.; Voelkel, N.; Bogaard, H.J.; Graham, B.; Pullamsetti, S.S.; et al. Hot topics in the mechanisms of pulmonary arterial hypertension disease: Cancer-like pathobiology, the role of the adventitia, systemic involvement, and right ventricular failure. Pulm. Circ. 2019, 9, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Bauer, R.; Dehnert, C.; Schoene, P.; Filusch, A.; Bartsch, P.; Borst, M.M.; Katus, H.A.; Meyer, F.J. Skeletal muscle dysfunction in patients with idiopathic pulmonary arterial hypertension. Respir. Med. 2007, 101, 2366–2369. [Google Scholar] [CrossRef] [Green Version]
- Batt, J.; Ahmed, S.S.; Correa, J.; Bain, A.; Granton, J. Skeletal muscle dysfunction in idiopathic pulmonary arterial hypertension. Am. J. Respir. Cell Mol. Biol. 2014, 50, 74–86. [Google Scholar] [CrossRef]
- Meyer, F.J.; Lossnitzer, D.; Kristen, A.V.; Schoene, A.M.; Kubler, W.; Katus, H.A.; Borst, M.M. Respiratory muscle dysfunction in idiopathic pulmonary arterial hypertension. Eur. Respir. J. 2005, 25, 125–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabitz, H.-J.; Schwoerer, A.; Bremer, H.-C.; Sonntag, F.; Walterspacher, S.; Walker, D.; Schaefer, V.; Ehlken, N.; Staehler, G.; Halank, M.; et al. Impairment of respiratory muscle function in pulmonary hypertension. Clin. Sci. Lond. Engl. 1979 2008, 114, 165–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manders, E.; Rain, S.; Bogaard, H.-J.; Handoko, M.L.; Stienen, G.J.M.; Vonk-Noordegraaf, A.; Ottenheijm, C.A.C.; de Man, F.S. The striated muscles in pulmonary arterial hypertension: Adaptations beyond the right ventricle. Eur. Respir. J. 2015, 46, 832–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marra, A.M.; Arcopinto, M.; Bossone, E.; Ehlken, N.; Cittadini, A.; Grunig, E. Pulmonary arterial hypertension-related myopathy: An overview of current data and future perspectives. Nutr. Metab. Cardiovasc. Dis. NMCD 2015, 25, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Grunig, E.; Ehlken, N.; Ghofrani, A.; Staehler, G.; Meyer, F.J.; Juenger, J.; Opitz, C.F.; Klose, H.; Wilkens, H.; Rosenkranz, S.; et al. Effect of exercise and respiratory training on clinical progression and survival in patients with severe chronic pulmonary hypertension. Respir. Int. Rev. Thorac. Dis. 2011, 81, 394–401. [Google Scholar] [CrossRef] [Green Version]
- Mereles, D.; Ehlken, N.; Kreuscher, S.; Ghofrani, S.; Hoeper, M.M.; Halank, M.; Meyer, F.J.; Karger, G.; Buss, J.; Juenger, J.; et al. Exercise and respiratory training improve exercise capacity and quality of life in patients with severe chronic pulmonary hypertension. Circulation 2006, 114, 1482–1489. [Google Scholar] [CrossRef] [Green Version]
- Pizzimenti, M.; Riou, M.; Charles, A.-L.; Talha, S.; Meyer, A.; Andres, E.; Chakfe, N.; Lejay, A.; Geny, B. The Rise of Mitochondria in Peripheral Arterial Disease Physiopathology: Experimental and Clinical Data. J. Clin. Med. 2019, 8, 2125. [Google Scholar] [CrossRef] [Green Version]
- Jansson, E.; Sylven, C. Creatine kinase MB and citrate synthase in type I and type II muscle fibres in trained and untrained men. Eur. J. Appl. Physiol. 1985, 54, 207–209. [Google Scholar] [CrossRef]
- Stump, C.S.; Henriksen, E.J.; Wei, Y.; Sowers, J.R. The metabolic syndrome: Role of skeletal muscle metabolism. Ann. Med. 2006, 38, 389–402. [Google Scholar] [CrossRef]
- Aaron, E.A.; Seow, K.C.; Johnson, B.D.; Dempsey, J.A. Oxygen cost of exercise hyperpnea: Implications for performance. J. Appl. Physiol. Bethesda Md 1985 1992, 72, 1818–1825. [Google Scholar] [CrossRef]
- DeFronzo, R.A.; Tripathy, D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 2009, 32 Suppl 2, S157–S163. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, L.; Idorn, M.; Olofsson, G.H.; Lauenborg, B.; Nookaew, I.; Hansen, R.H.; Johannesen, H.H.; Becker, J.C.; Pedersen, K.S.; Dethlefsen, C.; et al. Voluntary Running Suppresses Tumor Growth through Epinephrine- and IL-6-Dependent NK Cell Mobilization and Redistribution. Cell Metab. 2016, 23, 554–562. [Google Scholar] [CrossRef] [Green Version]
- Moon, H.Y.; Becke, A.; Berron, D.; Becker, B.; Sah, N.; Benoni, G.; Janke, E.; Lubejko, S.T.; Greig, N.H.; Mattison, J.A.; et al. Running-Induced Systemic Cathepsin B Secretion Is Associated with Memory Function. Cell Metab. 2016, 24, 332–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agudelo, L.Z.; Femenia, T.; Orhan, F.; Porsmyr-Palmertz, M.; Goiny, M.; Martinez-Redondo, V.; Correia, J.C.; Izadi, M.; Bhat, M.; Schuppe-Koistinen, I.; et al. Skeletal muscle PGC-1alpha1 modulates kynurenine metabolism and mediates resilience to stress-induced depression. Cell 2014, 159, 33–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rantanen, T.; Harris, T.; Leveille, S.G.; Visser, M.; Foley, D.; Masaki, K.; Guralnik, J.M. Muscle strength and body mass index as long-term predictors of mortality in initially healthy men. J. Gerontol. A. Biol. Sci. Med. Sci. 2000, 55, M168–M173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myers, J.; Prakash, M.; Froelicher, V.; Do, D.; Partington, S.; Atwood, J.E. Exercise capacity and mortality among men referred for exercise testing. N. Engl. J. Med. 2002, 346, 793–801. [Google Scholar] [CrossRef] [PubMed]
- Cooper, R.; Kuh, D.; Hardy, R. Objectively measured physical capability levels and mortality: Systematic review and meta-analysis. BMJ 2010, 341, c4467. [Google Scholar] [CrossRef] [Green Version]
- Zoll, J.; Sanchez, H.; N’Guessan, B.; Ribera, F.; Lampert, E.; Bigard, X.; Serrurier, B.; Fortin, D.; Geny, B.; Veksler, V.; et al. Physical activity changes the regulation of mitochondrial respiration in human skeletal muscle. J. Physiol. 2002, 543, 191–200. [Google Scholar] [CrossRef]
- Balaban, R.S.; Nemoto, S.; Finkel, T. Mitochondria, oxidants, and aging. Cell 2005, 120, 483–495. [Google Scholar] [CrossRef] [Green Version]
- Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009, 417, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Reczek, C.R.; Chandel, N.S. ROS-dependent signal transduction. Curr. Opin. Cell Biol. 2015, 33, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Turrens, J.F. Mitochondrial formation of reactive oxygen species. J. Physiol. 2003, 552, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Vescovo, G.; Ceconi, C.; Bernocchi, P.; Ferrari, R.; Carraro, U.; Ambrosio, G.B.; Libera, L.D. Skeletal muscle myosin heavy chain expression in rats with monocrotaline-induced cardiac hypertrophy and failure. Relation to blood flow and degree of muscle atrophy. Cardiovasc. Res. 1998, 39, 233–241. [Google Scholar] [CrossRef] [Green Version]
- de Man, F.S.; van Hees, H.W.H.; Handoko, M.L.; Niessen, H.W.; Schalij, I.; Humbert, M.; Dorfmuller, P.; Mercier, O.; Bogaard, H.-J.; Postmus, P.E.; et al. Diaphragm muscle fiber weakness in pulmonary hypertension. Am. J. Respir. Crit. Care Med. 2011, 183, 1411–1418. [Google Scholar] [CrossRef] [PubMed]
- Wust, R.C.I.; Myers, D.S.; Stones, R.; Benoist, D.; Robinson, P.A.; Boyle, J.P.; Peers, C.; White, E.; Rossiter, H.B. Regional skeletal muscle remodeling and mitochondrial dysfunction in right ventricular heart failure. Am. J. Physiol. Heart Circ. Physiol. 2012, 302, H402–H411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enache, I.; Charles, A.-L.; Bouitbir, J.; Favret, F.; Zoll, J.; Metzger, D.; Oswald-Mammosser, M.; Geny, B.; Charloux, A. Skeletal muscle mitochondrial dysfunction precedes right ventricular impairment in experimental pulmonary hypertension. Mol. Cell. Biochem. 2013, 373, 161–170. [Google Scholar] [CrossRef]
- Potus, F.; Malenfant, S.; Graydon, C.; Mainguy, V.; Tremblay, E.; Breuils-Bonnet, S.; Ribeiro, F.; Porlier, A.; Maltais, F.; Bonnet, S.; et al. Impaired angiogenesis and peripheral muscle microcirculation loss contribute to exercise intolerance in pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 2014, 190, 318–328. [Google Scholar] [CrossRef]
- Moreira-Goncalves, D.; Padrao, A.I.; Ferreira, R.; Justino, J.; Nogueira-Ferreira, R.; Neuparth, M.J.; Vitorino, R.; Fonseca, H.; Silva, A.F.; Duarte, J.A.; et al. Signaling pathways underlying skeletal muscle wasting in experimental pulmonary arterial hypertension. Biochim. Biophys. Acta 2015, 1852, 2722–2731. [Google Scholar] [CrossRef] [Green Version]
- Mainguy, V.; Maltais, F.; Saey, D.; Gagnon, P.; Martel, S.; Simon, M.; Provencher, S. Peripheral muscle dysfunction in idiopathic pulmonary arterial hypertension. Thorax 2010, 65, 113–117. [Google Scholar] [CrossRef] [Green Version]
- Dimopoulos, S.; Tzanis, G.; Manetos, C.; Tasoulis, A.; Mpouchla, A.; Tseliou, E.; Vasileiadis, I.; Diakos, N.; Terrovitis, J.; Nanas, S. Peripheral muscle microcirculatory alterations in patients with pulmonary arterial hypertension: A pilot study. Respir. Care 2013, 58, 2134–2141. [Google Scholar] [CrossRef] [Green Version]
- Breda, A.P.; Pereira de Albuquerque, A.L.; Jardim, C.; Morinaga, L.K.; Suesada, M.M.; Fernandes, C.J.C.; Dias, B.; Lourenco, R.B.; Salge, J.M.; Souza, R. Skeletal muscle abnormalities in pulmonary arterial hypertension. PLoS ONE 2014, 9, e114101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malenfant, S.; Potus, F.; Mainguy, V.; Leblanc, E.; Malenfant, M.; Ribeiro, F.; Saey, D.; Maltais, F.; Bonnet, S.; Provencher, S. Impaired Skeletal Muscle Oxygenation and Exercise Tolerance in Pulmonary Hypertension. Med. Sci. Sports Exerc. 2015, 47, 2273–2282. [Google Scholar] [CrossRef]
- Manders, E.; Ruiter, G.; Bogaard, H.-J.; Stienen, G.J.M.; Vonk-Noordegraaf, A.; de Man, F.S.; Ottenheijm, C.A.C. Quadriceps muscle fibre dysfunction in patients with pulmonary arterial hypertension. Eur. Respir. J. 2015, 45, 1737–1740. [Google Scholar] [CrossRef] [Green Version]
- Malenfant, S.; Potus, F.; Fournier, F.; Breuils-Bonnet, S.; Pflieger, A.; Bourassa, S.; Tremblay, E.; Nehme, B.; Droit, A.; Bonnet, S.; et al. Skeletal muscle proteomic signature and metabolic impairment in pulmonary hypertension. J. Mol. Med. Berl. Ger. 2015, 93, 573–584. [Google Scholar] [CrossRef] [PubMed]
- Sithamparanathan, S.; Rocha, M.C.; Parikh, J.D.; Rygiel, K.A.; Falkous, G.; Grady, J.P.; Hollingsworth, K.G.; Trenell, M.I.; Taylor, R.W.; Turnbull, D.M.; et al. Skeletal muscle mitochondrial oxidative phosphorylation function in idiopathic pulmonary arterial hypertension: In vivo and in vitro study. Pulm. Circ. 2018, 8. [Google Scholar] [CrossRef] [Green Version]
- Sandri, M. Signaling in muscle atrophy and hypertrophy. Physiol. Bethesda Md 2008, 23, 160–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lecker, S.H.; Solomon, V.; Mitch, W.E.; Goldberg, A.L. Muscle protein breakdown and the critical role of the ubiquitin-proteasome pathway in normal and disease states. J. Nutr. 1999, 129, 227S–237S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagan, J.; Seto, T.; Pagano, M.; Cittadini, A. Role of the ubiquitin proteasome system in the heart. Circ. Res. 2013, 112, 1046–1058. [Google Scholar] [CrossRef]
- Dorfmuller, P.; Perros, F.; Balabanian, K.; Humbert, M. Inflammation in pulmonary arterial hypertension. Eur. Respir. J. 2003, 22, 358–363. [Google Scholar] [CrossRef] [Green Version]
- Reid, M.B.; Lannergren, J.; Westerblad, H. Respiratory and limb muscle weakness induced by tumor necrosis factor-alpha: Involvement of muscle myofilaments. Am. J. Respir. Crit. Care Med. 2002, 166, 479–484. [Google Scholar] [CrossRef]
- Hassoun, P.M.; Mouthon, L.; Barbera, J.A.; Eddahibi, S.; Flores, S.C.; Grimminger, F.; Jones, P.L.; Maitland, M.L.; Michelakis, E.D.; Morrell, N.W.; et al. Inflammation, growth factors, and pulmonary vascular remodeling. J. Am. Coll. Cardiol. 2009, 54, S10–S19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomasetti, M.; Nocchi, L.; Staffolani, S.; Manzella, N.; Amati, M.; Goodwin, J.; Kluckova, K.; Nguyen, M.; Strafella, E.; Bajzikova, M.; et al. MicroRNA-126 suppresses mesothelioma malignancy by targeting IRS1 and interfering with the mitochondrial function. Antioxid. Redox Signal. 2014, 21, 2109–2125. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, P.B.; Ferreira, E.M.V.; Arakaki, J.S.O.; Takara, L.S.; Moura, J.; Nascimento, R.B.; Nery, L.E.; Neder, J.A. Kinetics of skeletal muscle O2 delivery and utilization at the onset of heavy-intensity exercise in pulmonary arterial hypertension. Eur. J. Appl. Physiol. 2011, 111, 1851–1861. [Google Scholar] [CrossRef] [PubMed]
- Michelakis, E.D.; Gurtu, V.; Webster, L.; Barnes, G.; Watson, G.; Howard, L.; Cupitt, J.; Paterson, I.; Thompson, R.B.; Chow, K.; et al. Inhibition of pyruvate dehydrogenase kinase improves pulmonary arterial hypertension in genetically susceptible patients. Sci. Transl. Med. 2017, 9, eaao4583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manders, E.; de Man, F.S.; Handoko, M.L.; Westerhof, N.; van Hees, H.W.H.; Stienen, G.J.M.; Vonk-Noordegraaf, A.; Ottenheijm, C.A.C. Diaphragm weakness in pulmonary arterial hypertension: Role of sarcomeric dysfunction. Am. J. Physiol. Lung Cell. Mol. Physiol. 2012, 303, L1070–L1078. [Google Scholar] [CrossRef] [Green Version]
- Himori, K.; Abe, M.; Tatebayashi, D.; Lee, J.; Westerblad, H.; Lanner, J.T.; Yamada, T. Superoxide dismutase/catalase mimetic EUK-134 prevents diaphragm muscle weakness in monocrotalin-induced pulmonary hypertension. PLoS ONE 2017, 12, e0169146. [Google Scholar] [CrossRef]
- Naeije, R. Breathing more with weaker respiratory muscles in pulmonary arterial hypertension. Eur. Respir. J. 2005, 25, 6–8. [Google Scholar] [CrossRef] [Green Version]
- Laveneziana, P.; Humbert, M.; Godinas, L.; Joureau, B.; Malrin, R.; Straus, C.; Jais, X.; Sitbon, O.; Simonneau, G.; Similowski, T.; et al. Inspiratory muscle function, dynamic hyperinflation and exertional dyspnoea in pulmonary arterial hypertension. Eur. Respir. J. 2015, 45, 1495–1498. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.G.; Hansen, J.E.; Oudiz, R.J.; Wasserman, K. Exercise pathophysiology in patients with primary pulmonary hypertension. Circulation 2001, 104, 429–435. [Google Scholar] [CrossRef] [Green Version]
- Kabitz, H.-J.; Bremer, H.-C.; Schwoerer, A.; Sonntag, F.; Walterspacher, S.; Walker, D.J.; Ehlken, N.; Staehler, G.; Windisch, W.; Grunig, E. The combination of exercise and respiratory training improves respiratory muscle function in pulmonary hypertension. Lung 2014, 192, 321–328. [Google Scholar] [CrossRef]
- Gonzalez-Saiz, L.; Fiuza-Luces, C.; Sanchis-Gomar, F.; Santos-Lozano, A.; Quezada-Loaiza, C.A.; Flox-Camacho, A.; Munguia-Izquierdo, D.; Ara, I.; Santalla, A.; Moran, M.; et al. Benefits of skeletal-muscle exercise training in pulmonary arterial hypertension: The WHOLEi+12 trial. Int. J. Cardiol. 2017, 231, 277–283. [Google Scholar] [CrossRef] [PubMed]
- de Man, F.S.; Handoko, M.L.; Groepenhoff, H.; van ’t Hul, A.J.; Abbink, J.; Koppers, R.J.H.; Grotjohan, H.P.; Twisk, J.W.R.; Bogaard, H.-J.; Boonstra, A.; et al. Effects of exercise training in patients with idiopathic pulmonary arterial hypertension. Eur. Respir. J. 2009, 34, 669–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mainguy, V.; Maltais, F.; Saey, D.; Gagnon, P.; Martel, S.; Simon, M.; Provencher, S. Effects of a rehabilitation program on skeletal muscle function in idiopathic pulmonary arterial hypertension. J. Cardiopulm. Rehabil. Prev. 2010, 30, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Hambrecht, R.; Fiehn, E.; Weigl, C.; Gielen, S.; Hamann, C.; Kaiser, R.; Yu, J.; Adams, V.; Niebauer, J.; Schuler, G. Regular physical exercise corrects endothelial dysfunction and improves exercise capacity in patients with chronic heart failure. Circulation 1998, 98, 2709–2715. [Google Scholar] [CrossRef] [Green Version]
- Petersen, A.M.W.; Pedersen, B.K. The anti-inflammatory effect of exercise. J. Appl. Physiol. Bethesda Md 1985 2005, 98, 1154–1162. [Google Scholar] [CrossRef] [Green Version]
- Daussin, F.N.; Zoll, J.; Dufour, S.P.; Ponsot, E.; Lonsdorfer-Wolf, E.; Doutreleau, S.; Mettauer, B.; Piquard, F.; Geny, B.; Richard, R. Effect of interval versus continuous training on cardiorespiratory and mitochondrial functions: Relationship to aerobic performance improvements in sedentary subjects. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 295, R264–R272. [Google Scholar] [CrossRef] [Green Version]
- Grunig, E.; Eichstaedt, C.; Barbera, J.-A.; Benjamin, N.; Blanco, I.; Bossone, E.; Cittadini, A.; Coghlan, G.; Corris, P.; D’Alto, M.; et al. ERS statement on exercise training and rehabilitation in patients with severe chronic pulmonary hypertension. Eur. Respir. J. 2019, 53, 1800332. [Google Scholar] [CrossRef] [Green Version]
- Becker-Grunig, T.; Klose, H.; Ehlken, N.; Lichtblau, M.; Nagel, C.; Fischer, C.; Gorenflo, M.; Tiede, H.; Schranz, D.; Hager, A.; et al. Efficacy of exercise training in pulmonary arterial hypertension associated with congenital heart disease. Int. J. Cardiol. 2013, 168, 375–381. [Google Scholar] [CrossRef] [Green Version]
- Grunig, E.; Lichtblau, M.; Ehlken, N.; Ghofrani, H.A.; Reichenberger, F.; Staehler, G.; Halank, M.; Fischer, C.; Seyfarth, H.-J.; Klose, H.; et al. Safety and efficacy of exercise training in various forms of pulmonary hypertension. Eur. Respir. J. 2012, 40, 84–92. [Google Scholar] [CrossRef] [Green Version]
- Nagel, C.; Prange, F.; Guth, S.; Herb, J.; Ehlken, N.; Fischer, C.; Reichenberger, F.; Rosenkranz, S.; Seyfarth, H.-J.; Mayer, E.; et al. Exercise training improves exercise capacity and quality of life in patients with inoperable or residual chronic thromboembolic pulmonary hypertension. PLoS ONE 2012, 7, e41603. [Google Scholar] [CrossRef] [Green Version]
- Chan, L.; Chin, L.M.K.; Kennedy, M.; Woolstenhulme, J.G.; Nathan, S.D.; Weinstein, A.A.; Connors, G.; Weir, N.A.; Drinkard, B.; Lamberti, J.; et al. Benefits of intensive treadmill exercise training on cardiorespiratory function and quality of life in patients with pulmonary hypertension. Chest 2013, 143, 333–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinstein, A.A.; Chin, L.M.K.; Keyser, R.E.; Kennedy, M.; Nathan, S.D.; Woolstenhulme, J.G.; Connors, G.; Chan, L. Effect of aerobic exercise training on fatigue and physical activity in patients with pulmonary arterial hypertension. Respir. Med. 2013, 107, 778–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fox, B.D.; Kassirer, M.; Weiss, I.; Raviv, Y.; Peled, N.; Shitrit, D.; Kramer, M.R. Ambulatory rehabilitation improves exercise capacity in patients with pulmonary hypertension. J. Card. Fail. 2011, 17, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Quintana, E.; Miranda-Calderin, G.; Ugarte-Lopetegui, A.; Rodriguez-Gonzalez, F. Rehabilitation program in adult congenital heart disease patients with pulmonary hypertension. Congenit. Heart Dis. 2010, 5, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Shoemaker, M.J.; Wilt, J.L.; Dasgupta, R.; Oudiz, R.J. Exercise training in patients with pulmonary arterial hypertension: A case report. Cardiopulm. Phys. Ther. J. 2009, 20, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Bussotti, M.; Gremigni, P.; Pedretti, R.F.E.; Kransinska, P.; Di Marco, S.; Corbo, P.; Marchese, G.; Totaro, P.; Sommaruga, M. Effects of an Outpatient Service Rehabilitation Programme in Patients Affected by Pulmonary Arterial Hypertension: An Observational Study. Cardiovasc. Hematol. Disord. Drug Targets 2017, 17, 3–10. [Google Scholar] [CrossRef]
- Marra, A.M.; Egenlauf, B.; Bossone, E.; Eichstaedt, C.; Grunig, E.; Ehlken, N. Principles of rehabilitation and reactivation: Pulmonary hypertension. Respir. Int. Rev. Thorac. Dis. 2015, 89, 265–273. [Google Scholar] [CrossRef]
- Bertoletti, L.; Bouvaist, H.; Tromeur, C.; Bezzeghoud, S.; Dauphin, C.; Enache, I.; Bourdin, A.; Seronde, M.-F.; Montani, D.; Turquier, S.; et al. “Rehab for all!” Is it too early in pulmonary arterial hypertension? Eur. Respir. J. 2019, 54, 1901558. [Google Scholar] [CrossRef]
- Ehlken, N.; Lichtblau, M.; Klose, H.; Weidenhammer, J.; Fischer, C.; Nechwatal, R.; Uiker, S.; Halank, M.; Olsson, K.; Seeger, W.; et al. Exercise training improves peak oxygen consumption and haemodynamics in patients with severe pulmonary arterial hypertension and inoperable chronic thrombo-embolic pulmonary hypertension: A prospective, randomized, controlled trial. Eur. Heart J. 2016, 37, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-Y.; Lee, J.-H.; Huh, J.W.; Kim, H.J.; Park, M.K.; Ro, J.Y.; Oh, Y.-M.; Lee, S.-D.; Lee, Y.-S. Bortezomib alleviates experimental pulmonary arterial hypertension. Am. J. Respir. Cell Mol. Biol. 2012, 47, 698–708. [Google Scholar] [CrossRef]
- Zhu, Y.; Wu, Y.; Shi, W.; Wang, J.; Yan, X.; Wang, Q.; Liu, Y.; Yang, L.; Gao, L.; Li, M. Inhibition of ubiquitin proteasome function prevents monocrotaline-induced pulmonary arterial remodeling. Life Sci. 2017, 173, 36–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, W.; Song, X.; Lin, C.; Ji, W. Interventions and mechanisms of N-acetylcysteine on monocrotaline-induced pulmonary arterial hypertension. Exp. Ther. Med. 2018, 15, 5503–5509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lejay, A.; Paradis, S.; Lambert, A.; Charles, A.-L.; Talha, S.; Enache, I.; Thaveau, F.; Chakfe, N.; Geny, B. N-Acetyl Cysteine Restores Limb Function, Improves Mitochondrial Respiration, and Reduces Oxidative Stress in a Murine Model of Critical Limb Ischaemia. Eur. J. Vasc. Endovasc. Surg. Off. J. Eur. Soc. Vasc. Surg. 2018, 56, 730–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garnham, J.O.; Roberts, L.D.; Caspi, T.; Al-Owais, M.M.; Bullock, M.; Swoboda, P.P.; Koshy, A.; Gierula, J.; Paton, M.F.; Cubbon, R.M.; et al. Divergent skeletal muscle mitochondrial phenotype between male and female patients with chronic heart failure. J. Cachexia Sarcopenia Muscle 2019. [Google Scholar] [CrossRef] [Green Version]
- Meyer, A.; Zoll, J.; Charles, A.L.; Charloux, A.; de Blay, F.; Diemunsch, P.; Sibilia, J.; Piquard, F.; Geny, B. Skeletal muscle mitochondrial dysfunction during chronic obstructive pulmonary disease: Central actor and therapeutic target. Exp. Physiol. 2013, 98, 1063–1078. [Google Scholar] [CrossRef]
References | Animals | Animal Model | Type of Muscle | Main Results |
---|---|---|---|---|
Vescovo. 1998, Cardiovasc Res [33] | Rats | MCT injection | Peripheral (M. soleus, extensor digitorum longus) |
|
de Man. 2011, Am J Respir Crit Care Med [34] | Male Wistar rats | MCT injection | Respiratory (diaphragm)Peripheral(extensor digitorum longus/quadriceps) |
|
Wust. 2012, Am J Physiol Heart Circ Physiol [35] | Rats | MCT injection | plantaris |
|
Enache. 2013, Mol Cell Biochem [36] | Rats | MCT injection | Right/left ventriculeGastrocnemius |
|
Potus. 2014, Am J respir Crit Care Med [37] | Male Sprague-Dawley rats | MCT injectionintramuscular injection of antagomir-126 (anti-HAS-miR-126, 2 μg/quadriceps), every 4 days during a 2-week period | Peripheral |
|
Moreira-Gonçalves. 2015, Biochim Biophys Acta [38] | Male Wistar rats | MCT injection | collection of blood and gastrocnemius samples |
|
Reference | Population Number (n – PH/control) | Type of Muscle | Outcomes Measured | Main Results |
---|---|---|---|---|
Meyer. 2005, Eur Respir J [11] | 46 26/20 | Respiratory (diaphragm) |
|
|
Bauer. 2007, Respir Med [9] | 48 24/24 | Peripheral (Forearm) |
|
|
Kabitz. 2008, Clin Sci Lond Engl [12] | 62 31 (25 PAH/6 CTEPH)/31 | Respiratory (diaphragm) |
|
|
Mainguy. 2010, Thorax [39] | 20 10/10 | Peripheral (limp muscle/quadriceps) |
|
|
Dimopoulos. 2013, Respir Care [40] | 32 8/8 (+ 16 with chronic heart failure) | Peripheral (thenar muscle) |
|
|
Breda. 2014, Plos One [41] | 26 16/10 | Peripheral (quadriceps) |
|
|
Potus. 2014, Am J respir Crit Care Med [37] | 40 20/20 | Peripheral (quadriceps) |
|
|
Batt J. 2014, Am J respir Cell Mol Biol [10] | 22 12/10 | Peripheral (Quadriceps/vastus lateralis) |
|
|
Malenfant. 2015, Med Sci Sports Exerc [42] | 20 10/10 |
|
| |
Manders. 2015, Eur Respir J [43] | 19 11/8 | Peripheral (quadriceps) |
|
|
Malenfant. 2015, J Mol Med. [44] | 16 8/8 |
|
| |
Sithamparanathan. 2018, Pulm Circ [45] | 9 |
|
|
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riou, M.; Pizzimenti, M.; Enache, I.; Charloux, A.; Canuet, M.; Andres, E.; Talha, S.; Meyer, A.; Geny, B. Skeletal and Respiratory Muscle Dysfunctions in Pulmonary Arterial Hypertension. J. Clin. Med. 2020, 9, 410. https://doi.org/10.3390/jcm9020410
Riou M, Pizzimenti M, Enache I, Charloux A, Canuet M, Andres E, Talha S, Meyer A, Geny B. Skeletal and Respiratory Muscle Dysfunctions in Pulmonary Arterial Hypertension. Journal of Clinical Medicine. 2020; 9(2):410. https://doi.org/10.3390/jcm9020410
Chicago/Turabian StyleRiou, Marianne, Mégane Pizzimenti, Irina Enache, Anne Charloux, Mathieu Canuet, Emmanuel Andres, Samy Talha, Alain Meyer, and Bernard Geny. 2020. "Skeletal and Respiratory Muscle Dysfunctions in Pulmonary Arterial Hypertension" Journal of Clinical Medicine 9, no. 2: 410. https://doi.org/10.3390/jcm9020410
APA StyleRiou, M., Pizzimenti, M., Enache, I., Charloux, A., Canuet, M., Andres, E., Talha, S., Meyer, A., & Geny, B. (2020). Skeletal and Respiratory Muscle Dysfunctions in Pulmonary Arterial Hypertension. Journal of Clinical Medicine, 9(2), 410. https://doi.org/10.3390/jcm9020410