Circulating Arsenic is Associated with Long-Term Risk of Graft Failure in Kidney Transplant Recipients: A Prospective Cohort Study
Abstract
:1. Introduction
2. Methods
2.1. Design and Study Population
2.2. Assessment of Dietary Intake
2.3. Clinical Parameters and Definitions
2.4. Laboratory Methods and Arsenic Measurement
2.5. Follow-Up of Plasma Arsenic Levels in a Sample Population of the TransplantLines Cohort and Biobank Study
2.6. Statistical Analyses
3. Results
3.1. Baseline Characteristics and Cross-Sectional Analyses
3.2. Prospective Analyses
3.3. Follow-up of Plasma Arsenic Levels in a Sample Population of the TransplantLines Cohort and Biobank Study
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Cohen, S.M.; Arnold, L.L.; Eldan, M.; Lewis, A.S.; Beck, B.D. Methylated arsenicals: The implications of metabolism and carcinogenicity studies in rodents to human risk assessment. Crit. Rev. Toxicol. 2006, 36, 99–133. [Google Scholar] [CrossRef] [PubMed]
- Hughes, M.F.; Beck, B.D.; Chen, Y.; Lewis, A.S.; Thomas, D.J. Arsenic exposure and toxicology: A historical perspective. Toxicol. Sci. 2011, 123, 305–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jomova, K.; Jenisova, Z.; Feszterova, M.; Baros, S.; Liska, J.; Hudecova, D.; Rhodes, C.J.; Valko, M. Arsenic: Toxicity, oxidative stress and human disease. J. Appl. Toxicol. 2011, 31, 95–107. [Google Scholar] [CrossRef]
- Valko, M.; Morris, H.; Cronin, M.T. Metals, toxicity and oxidative stress. Curr. Med. Chem. 2005, 12, 1161–1208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, W.H.; Schipper, H.M.; Lee, J.S.; Singer, J.; Waxman, S. Mechanisms of action of arsenic trioxide. Cancer Res. 2002, 62, 3893–3903. [Google Scholar]
- Aposhian, H.V.; Aposhian, M.M. Newer developments in arsenic toxicity. J. Am. Coll. Toxicol. 1989, 8, 1297–1305. [Google Scholar] [CrossRef]
- Muehrcke, R.C.; Pirani, C.L. Arsine-Induced anuria. A correlative clinicopathological study with electron microscopic observations. Ann. Intern. Med. 1968, 68, 853–866. [Google Scholar] [CrossRef]
- Uldall, P.R.; Khan, H.A.; Ennis, J.E.; McCallum, R.I.; Grimson, T.A. Renal damage from industrial arisine poisoning. Br. J. Ind. Med. 1970, 27, 372–377. [Google Scholar]
- Peraza, M.A.; Carter, D.E.; Gandolfi, A.J. Toxicity and metabolism of subcytotoxic inorganic arsenic in human renal proximal tubule epithelial cells (HK-2). Cell Biol. Toxicol. 2003, 19, 253–264. [Google Scholar] [CrossRef]
- Chang, Y.W.; Singh, K.P. Arsenic induces fibrogenic changes in human kidney epithelial cells potentially through epigenetic alterations in DNA methylation. J. Cell. Physiol. 2019, 234, 4713–4725. [Google Scholar] [CrossRef]
- Duker, A.A.; Carranza, E.J.M.; Hale, M. Arsenic geochemistry and health. Environ. Int. 2005, 31, 631–641. [Google Scholar] [CrossRef] [PubMed]
- Abernathy, C.O.; Ohanian, E.V. Non-Carcinogenic effects of inorganic arsenic. Environ. Geochem. Health 1992, 14, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Ferreccio, C.; Smith, A.H.; Durán, V.; Barlaro, T.; Benítez, H.; Valdés, R.; Aguirre, J.J.; Moore, L.E.; Acevedo, J.; Vásquez, M.I.; et al. Case-Control study of arsenic in drinking water and kidney cancer in uniquely exposed northern Chile. Am. J. Epidemiol. 2013, 178, 813–818. [Google Scholar] [CrossRef] [PubMed]
- Ferreccio, C.; Sancha, A.M. Arsenic exposure and its impact on health in Chile. J. Health Popul. Nutr. 2006, 24, 164–175. [Google Scholar]
- Ferreccio, C.; González, C.; Milosavjlevic, V.; Marshall, G.; Sancha, A.M.; Smith, A.H. Lung cancer and arsenic concentrations in drinking water in Chile. Epidemiology 2000, 11, 673–679. [Google Scholar] [CrossRef]
- Gilbert-Diamond, D.; Cottingham, K.L.; Gruber, J.F.; Punshon, T.; Sayarath, V.; Gandolfi, A.J.; Baker, E.R.; Jackson, B.P.; Folt, C.L.; Karagas, M.R. Rice consumption contributes to arsenic exposure in US women. Proc. Natl. Acad. Sci. USA 2011, 108, 20656–20660. [Google Scholar] [CrossRef] [Green Version]
- Baig, J.A.; Kazi, T.G. Translocation of arsenic contents in vegetables from growing media of contaminated areas. Ecotoxicol. Environ. Saf. 2012, 75, 27–32. [Google Scholar] [CrossRef]
- Martena, M.J.; Van Der Wielen, J.C.A.; Rietjens, I.M.C.M.; Klerx, W.N.M.; De Groot, H.N.; Konings, E.J.M. Monitoring of mercury, arsenic, and lead in traditional Asian herbal preparations on the Dutch market and estimation of associated risks. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2010, 27, 190–205. [Google Scholar] [CrossRef] [Green Version]
- Zavala, Y.J.; Gerads, R.; Gorleyok, H.; Duxbury, J.M. Arsenic in rice: II Arsenic speciation in USA grain and implications for human health. Environ. Sci. Technol. 2008, 42, 3861–3866. [Google Scholar] [CrossRef]
- Park, S.; Lee, B.K. Strong positive associations between seafood, vegetables, and alcohol with blood mercury and urinary arsenic levels in the Korean adult population. Arch. Environ. Contam. Toxicol. 2013, 64, 160–170. [Google Scholar] [CrossRef]
- Choi, B.S.; Choi, S.J.; Kim, D.W.; Huang, M.; Kim, N.Y.; Park, K.S.; Kim, C.Y.; Lee, H.M.; Yum, Y.N.; Han, E.S.; et al. Effects of repeated seafood consumption on urinary excretion of arsenic species by volunteers. Arch. Environ. Contam. Toxicol. 2010, 58, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Meliker, J.R.; Wahl, R.L.; Cameron, L.L.; Nriagu, J.O. Arsenic in drinking water and cerebrovascular disease, diabetes mellitus, and kidney disease in Michigan: A standardized mortality ratio analysis. Environ. Health 2007, 6, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Cornelis, R.; De Kimpe, J.; Mees, L.; Vanderbiesen, V.; Vanholder, R. Determination of total arsenic in serum and packed cellsof patients with renal insufficiency. Anal. Bioanal. Chem. 1995, 353, 143–147. [Google Scholar] [CrossRef]
- Hsueh, Y.M.; Chung, C.J.; Shiue, H.S.; Chen, J.B.; Chiang, S.S.; Yang, M.H.; Tai, C.W.; Su, C.T. Urinary arsenic species and CKD in a Taiwanese population: A case-control study. Am. J. Kidney Dis. 2009, 54, 859–870. [Google Scholar] [CrossRef] [PubMed]
- Soderland, P.; Lovekar, S.; Weiner, D.E.; Brooks, D.R.; Kaufman, J.S. Chronic kidney disease associated with environmental toxins and exposures. Adv. Chronic Kidney Dis. 2010, 17, 254–264. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.; Kuo, C.C.; Fadrowski, J.; Agnew, J.; Weaver, V.M.; Navas-Acien, A. Arsenic and chronic kidney disease: A systematic review. Curr. Environ. Health Rep. 2014, 1, 192–207. [Google Scholar] [CrossRef] [Green Version]
- Kotsanis, N.; Iliopoulou-Georgudaki, J. Arsenic induced liver hyperplasia and kidney fibrosis in rainbow trout (Oncorhynchus mykiss) by microinjection technique: A sensitive animal bioassay for environmental metal-toxicity. Bull. Environ. Contam. Toxicol. 1999, 62, 169–178. [Google Scholar] [CrossRef]
- Robles-Osorio, M.L.; Sabath-Silva, E.; Sabath, E. Arsenic-Mediated nephrotoxicity. Ren. Fail. 2015, 37, 542–547. [Google Scholar] [CrossRef]
- Zhang, J.; Pan, X.; Li, N.; Li, X.; Wang, Y.; Liu, X.; Yin, X.; Yu, Z. Grape seed extract attenuates arsenic-induced nephrotoxicity in rats. Exp. Ther. Med. 2014, 7, 260–266. [Google Scholar] [CrossRef]
- Kasiske, B.L.; Vazquez, M.A.; Harmon, W.E.; Brown, R.S.; Danovitch, G.M.; Gaston, R.S.; Roth, D.; Scandling, J.D.; Singer, G.G. Recommendations for the outpatient surveillance of renal transplant recipients. American Society of Transplantation. J. Am. Soc. Nephrol. 2000, 11, S1–S86. [Google Scholar]
- Feunekes, G.I.; Van Staveren, W.A.; De Vries, J.H.; Burema, J.; Hautvast, J.G. Relative and biomarker-based validity of a food-frequency questionnaire estimating intake of fats and cholesterol. Am. J. Clin. Nutr. 1993, 58, 489–496. [Google Scholar] [CrossRef]
- NEVO-Online Versie 2019/6.0, RIVM, Bilthoven. Available online: https://nevo-online.rivm.nl/ (accessed on 1 June 2019).
- Van den Berg, E.; Geleijnse, J.M.; Brink, E.J.; Van Baak, M.A.; Homan van der Heide, J.J.; Gans, R.O.; Navis, G.; Bakker, S.J. Sodium intake and blood pressure in renal transplant recipients. Nephrol. Dial. Transplant. 2012, 27, 3352–3359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du Bois, D.; Du Bois, E.F. A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrition 1989, 5, 303–311. [Google Scholar] [PubMed]
- Shabir, S.; Jham, S.; Harper, L.; Ball, S.; Borrows, R.; Sharif, A. Validity of glycated haemoglobin to diagnose new onset diabetes after transplantation. Transplant Int. 2013, 26, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F.; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Van Timmeren, M.M.; Lems, S.P.M.; Hepkema, B.G.; Bakker, S.J.L. Anti-Human leukocyte antigen antibodies and development of graft failure after renal transplantation. Transplantation 2009, 88, 1399–1400. [Google Scholar] [CrossRef]
- Eisenga, M.F.; Gomes-Neto, A.W.; van Londen, M.; Ziengs, A.L.; Douwes, R.M.; Stam, S.P.; Osté, M.C.J.; Knobbe, T.J.; Hessels, N.R.; Buunk, A.M.; et al. Rationale and design of TransplantLines: A prospective cohort study and biobank of solid organ transplant recipients. BMJ Open 2018, 8, e024502. [Google Scholar] [CrossRef]
- Harrell, F.E.J.; Lee, K.L.; Mark, D.B. Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat. Med. 1996, 15, 361–387. [Google Scholar] [CrossRef]
- Sasaki, A.; Oshima, Y.; Fujimura, A. An approach to elucidate potential mechanism of renal toxicity of arsenic trioxide. Exp. Hematol. 2007, 35, 252–262. [Google Scholar] [CrossRef]
- Wu, M.M.; Chiou, H.Y.; Wang, T.W.; Hsueh, Y.M.; Wang, I.H.; Chen, C.J.; Lee, T.C. Association of blood arsenic levels with increased reactive oxidants and decreased antioxidant capacity in a human population of northeastern Taiwan. Environ. Health Perspect. 2001, 109, 1011–1017. [Google Scholar] [CrossRef]
- Maiti, S.; Chatterjee, A. Effects on levels of glutathione and some related enzymes in tissues after an acute arsenic exposure in rats and their relationship to dietary protein deficiency. Arch. Toxicol. 2001, 75, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Wendt, T.; Bucciarelli, L.; Qu, W.; Lu, Y.; Yan, S.F.; Stern, D.M.; Schmidt, A.M. Receptor for advanced glycation endproducts (RAGE) and vascular inflammation: Insights into the pathogenesis of macrovascular complications in diabetes. Curr. Atheroscler. Rep. 2002, 4, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Hall, E.M.; Acevedo, J.; López, F.G.; Cortés, S.; Ferreccio, C.; Smith, A.H.; Steinmaus, C.G. Hypertension among adults exposed to drinking water arsenic in Northern Chile. Environ. Res. 2017, 153, 99–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eick, S.M.; Ferreccio, C.; Acevedo, J.; Castriota, F.; Cordero, J.F.; Roh, T.; Smith, A.H.; Smith, M.T.; Steinmaus, C.G. Socioeconomic status and the association between arsenic exposure and type 2 diabetes. Environ. Res. 2019, 172, 578–585. [Google Scholar] [CrossRef]
- Tsai, S.M.; Wang, T.N.; Ko, Y.C. Mortality for certain diseases in areas with high levels of arsenic in drinking water. Arch. Environ. Health 1999, 54, 186–193. [Google Scholar] [CrossRef]
- Chiu, H.F.; Yang, C.Y. Decreasing trend in renal disease mortality after cessation from arsenic exposure in a previous arseniasis-endemic area in southwestern Taiwan. J. Toxicol. Environ. Health A 2005, 68, 319–327. [Google Scholar] [CrossRef]
- Smith, A.H.; Marshall, G.; Liaw, J.; Yuan, Y.; Ferreccio, C.; Steinmaus, C. Mortality in young adults following In Utero and childhood exposure to arsenic in drinking water. Environ. Health Perspect. 2012, 120, 1527–1531. [Google Scholar] [CrossRef] [Green Version]
- Lewis, D.R.; Southwick, J.W.; Ouellet-Hellstrom, R.; Rench, J.; Calderon, R.L. Drinking water arsenic in Utah: A cohort mortality study. Environ. Health Perspect. 1999, 107, 359–365. [Google Scholar] [CrossRef]
- Ramanathan, K.; Shila, S.; Kumaran, S.; Panneerselvam, C. Protective role of ascorbic acid and a-tocopherol on arsenic-induced microsomal dysfunctions. Hum. Exp. Toxicol. 2003, 22, 129–136. [Google Scholar] [CrossRef]
- Bongiovanni, G.A.; Pérez, R.D.; Mardirosian, M.; Pérez, C.A.; Marguí, E.; Queralt, I. Comprehensive analysis of renal arsenic accumulation using images based on X-ray fluorescence at the tissue, cellular, and subcellular levels. Appl. Radiat. Isot. 2019, 150, 95–102. [Google Scholar] [CrossRef]
- Ponomarenko, O.; La Porte, P.F.; Singh, S.P.; Langan, G.; Fleming, D.E.B.; Spallholz, J.E.; Alauddin, M.; Ahsan, H.; Ahmed, S.; Gailer, J.; et al. Selenium-Mediated arsenic excretion in mammals: A synchrotron-based study of whole-body distribution and tissue-specific chemistry. Metallomics 2017, 9, 1585–1595. [Google Scholar] [CrossRef]
- Van Diepen, M.; Ramspek, C.L.; Jager, K.J.; Zoccali, C.; Dekker, F.W. Prediction versus aetiology: Common pitfalls and how to avoid them. Nephrol. Dial. Transplant. 2017, 32, ii1–ii5. [Google Scholar] [CrossRef]
- Van Dokkum, W.; De Vos, R.H.; Muys, T.; Wesstra, J.A. Minerals and trace elements in total diets in The Netherlands. Br. J. Nutr. 1989, 61, 7–15. [Google Scholar] [CrossRef]
- Hoogenboom, L.A.P.; Bovee, T.F.H.; Kloet, D.; De Waal, E.; Kleter, G.A.; Van Leeuwen, S.P.J.; Pieters, H.; De Boer, J. Contaminanten in Vis-En Visproducten: Mogelijke Risico’s Voor de Consumenten en Adviezen Voor Monotoring; Wageningen Food Safety Research: Wageningen, The Netherlands, 2003. [Google Scholar]
- Van Halem, D.; Bakker, S.A.; Amy, G.L.; Van Dijk, J.C. Drinking water engineering and science arsenic in drinking water: A worldwide water quality concern for water supply companies. Drink. Water Eng. Sci. 2009, 2, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Danish Ministry of the Environment. BEK 1449 from 11, App. 1b; Danish Ministry of the Environment: Copenhagen, Denmark, 2007. [Google Scholar]
- Lamb, K.E.; Lodhi, S.; Meier-Kriesche, H.U. Long-Term renal allograft survival in the United States: A critical reappraisal. Am. J. Transplant. 2011, 11, 450–462. [Google Scholar] [CrossRef]
- Yuan, T.H.; Ke, D.Y.; Wang, J.E.-H.; Chan, C.-C. Associations between renal functions and exposure of arsenic and polycyclic aromatic hydrocarbon in adults living near a petrochemical complex. Environ. Pollut. 2020, 256, 113457. [Google Scholar] [CrossRef]
- Huang, M.; Choi, S.J.; Kim, D.W.; Kim, N.Y.; Park, C.H.; Yu, S.D.; Kim, D.S.; Park, K.S.; Song, J.S.; Kim, H.; et al. Risk assessment of low-level cadmium and arsenic on the kidney. J. Toxicol. Environ. Health A 2009, 72, 1493–1498. [Google Scholar] [CrossRef]
- Feldmann, J.; Lai, V.W.; Cullen, W.R.; Ma, M.; Lu, X.; Le, X.C. Sample preparation and storage can change arsenic speciation in human urine. Clin. Chem. 1999, 45, 1988–1997. [Google Scholar] [CrossRef] [Green Version]
- Gomes-Neto, A.W.; Osté, M.C.J.; Sotomayor, C.G.; van den Berg, E.; Geleijnse, J.M.; Berger, S.P.; Gans, R.O.B.; Bakker, S.J.L.; Navis, G.J. Mediterranean style diet and kidney function loss in kidney transplant recipients. Clin. J. Am. Soc. Nephrol. 2020. [Google Scholar] [CrossRef]
Cadmium Concentration | n | µg/L | Bias (%) | Inter-Assay Coefficient | |
---|---|---|---|---|---|
SD (µg/L) | CV (%) | ||||
Low | 36 | 0.75 | −13 | 0.26 | 40 |
Medium | 36 | 2.5 | −9.2 | 0.38 | 17 |
High | 37 | 4.5 | −6 | 0.48 | 11 |
Baseline Characteristics | Overall KTRs n = 665 | † Plasma Arsenic (ln), µg/L | ‡ Plasma Arsenic (ln), µg/L | Backwards Linear Regression | § Backwards Linear Regression | |
---|---|---|---|---|---|---|
Std. β | Std. β | Std. β | Std. β | |||
Plasma arsenic, µg/L, median (IQR) | 1.26 (1.04–2.04) | − | − | − | − | |
Demographics and body composition | ||||||
Age, years, mean (SD) | 53 (13) | − | − | |||
Sex (male), n (%) | 383 (58) | − | − | |||
Diabetes mellitus, n (%) | 160 (24) | −0.07 * | −0.07 * | ~ | ~ | |
Body surface area, m2, mean (SD) | 1.94 (0.22) | −0.02 | −0.05 | |||
Body mass index, kg/m2, median (IQR) | 26.0 (23.3–29.4) | −0.003 | −0.02 | |||
Waist circumference, cm, mean (SD) | 99 (14) | 0.003 | −0.02 | |||
Cardiovascular history and lifestyle | ||||||
History of cardiovascular disease, n (%) | 325 (49) | −0.01 | −0.01 | |||
Heart rate, beats per minute, mean (SD) | 69 (12) | 0.01 | 0.02 | |||
Systolic blood pressure, mmHg, mean (SD) | 136 (17) | −0.04 | −0.06 * | ~ | ~ | |
Use of antihypertensives, n (%) | 586 (88) | 0.001 | −0.04 | |||
Current or former smoker, n (%) | 382 (57) | 0.04 | 0.03 | |||
Alcohol consumption > 10 g/d, n (%) | 169 (25) | 0.14 *** | 0.14 *** | ~ | ||
Dietary intake | ||||||
Bread, g/day, mean (SD) | 133 (59) | −0.09 ** | −0.08 * | ~ | ~ | |
Vegetables, g/day, median (IQR) | 90 (50–118) | −0.03 | −0.03 | |||
Fruit, g/day, median (IQR) | 123 (61–232) | −0.04 | −0.04 | ~ | ~ | |
Potato, g/day, median (IQR) | 119 (72–161) | −0.11 *** | −0.11 ** | ~ | ~ | |
Rice, g/day, median (IQR) | 15 (4–32) | 0.07 * | 0.06 * | ~ | ~ | |
Fish, g/day, median (IQR) | 11 (4–21) | 0.32 *** | 0.31 *** | 0.26 *** | 0.27 *** | |
Coffee, mg/day, median (IQR) | 500 (250–625) | −0.001 | 0.01 | |||
Tea, mg/day, median (IQR) | 250 (54–375) | 0.03 | 0.01 * | ~ | ~ | |
Laboratory measurements | ||||||
Albumin, g/L, mean (SD) | 43 (3) | −0.05 | −0.03 | |||
Calcium, mmol/L, mean (SD) | 2.40 (0.15) | −0.06 * | −0.04 | |||
Phosphate, mmol/L, mean (SD) | 0.97 (0.21) | 0.09 ** | 0.03 | |||
eGFR, mL/min/1.73 m2, mean (SD) | 53 (20) | −0.18 *** | − | −0.11 ** | − | |
Proteinuria, n (%) | 150 (23) | 0.12 *** | 0.09 ** | 0.18 *** | ||
Alkaline phosphatase, U/L, median (IQR) | 67 (54–84) | 0.02 | 0.02 | |||
ASAT, U/L, median (IQR) | 22 (18–27) | 0.06 * | 0.07 * | ~ | ~ | |
ALAT, U/L, median (IQR) | 19 (14–25) | 0.01 | 0.04 | |||
Gamma-GT, U/L, median (IQR) | 26 (18–41) | 0.05 * | 0.05 | |||
Lipids | ||||||
Total cholesterol, mmol/L, mean (SD) | 5.1 (1.1) | 0.03 | 0.02 | |||
HDL cholesterol, mmol/L, median (IQR) | 1.3 (1.1–1.6) | 0.04 | 0.08 * | ~ | ~ | |
LDL cholesterol, mmol/L, mean (SD) | 3.0 (0.9) | 0.02 | 0.01 | |||
Triglycerides, mmol/L, median (IQR) | 1.7 (1.2–2.3) | −0.01 | −0.04 | |||
Inflammation and oxidative stress | ||||||
Leukocyte count, per 109/L, mean (SD) | 8.1 (2.6) | 0.01 | 0.01 | |||
hs-CRP, mg/L, median (IQR) | 1.6 (0.7–4.5) | −0.01 | −0.02 | |||
Malondialdehyde, µmol/L, median (IQR) | 2.5 (1.9–3.7) | −0.02 | −0.01 | |||
Primary kidney disease and kidney transplantation | ||||||
Primary kidney disease | ||||||
Glomerulosclerosis, n (%) | 190 (29) | 0.02 | 0.01 | |||
Glomerulonephritis, n (%) | 51 (8) | 0.01 | −0.01 | |||
Tubulointerstitial nephritis, n (%) | 76 (11) | 0.05 | 0.06 | |||
Polycystic kidney disease, n (%) | 136 (21) | −0.09 | −0.07 | |||
Kidney hypo/dysplasia, n (%) | 29 (4) | 0.02 | 0.02 | |||
Renovascular disease, n (%) | 38 (6) | −0.05 | −0.04 | |||
Diabetes, n (%) | 32 (5) | 0.04 | 0.04 | |||
Other/miscellaneous, n (%) | 113 (17) | 0.02 | 0.02 | |||
Donor type, living n (%) | 229 (34) | −0.05 | −0.04 | |||
Donor age, years, median (IQR) | 46 (31–54) | −0.01 | −0.06 * | ~ | ~ | |
Transplant vintage, years, median (IQR) | 5.5 (2.0–11.9) | −0.03 | −0.01 | |||
Immunosuppressive therapy | ||||||
Prednisolone dose, grams, median (IQR) | 10.0 (7.5–10.0) | 0.01 | 0.02 | |||
Use of calcineurin inhibitor, n (%) | 381 (57) | 0.05 | 0.003 | |||
Use of proliferation inhibitor, n (%) | 553 (83) | −0.001 | 0.02 | |||
Acute rejection treatment, n (%) | 176 (26) | 0.04 | 0.03 |
Plasma Arsenic | |||||
---|---|---|---|---|---|
Tertile 1 | Tertile 2 | Tertile 3 | Continuous (ln) | ||
Ref. | HR (95% CI) | HR (95% CI) | HR (95% CI) | p | |
nevents | 18 | 25 | 29 | 72 | |
Model 1 | 1.00 | 1.41 (0.77–2.59) | 1.69 (0.94–3.04) | 1.47 (1.08–2.01) | 0.02 |
Model 2 | 1.00 | 1.58 (0.86–2.92) | 2.12 (1.14–3.95) | 1.80 (1.28–2.53) | 0.001 |
Model 3 | 1.00 | 1.55 (0.84–2.87) | 2.05 (1.10–3.82) | 1.74 (1.24–2.45) | 0.001 |
Model 4 | 1.00 | 1.40 (0.75–2.61) | 2.00 (1.06–3.77) | 1.90 (1.32–2.73) | 0.001 |
Model 5 | 1.00 | 1.32 (0.71–2.45) | 1.76 (0.93–3.32) | 1.56 (1.10–2.23) | 0.01 |
Model 6 | 1.00 | 1.29 (0.70–2.40) | 1.84 (0.99–3.42) | 1.53 (1.09–2.14) | 0.01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sotomayor, C.G.; Groothof, D.; Vodegel, J.J.; Gacitúa, T.A.; Gomes-Neto, A.W.; Osté, M.C.J.; Pol, R.A.; Ferreccio, C.; Berger, S.P.; Chong, G.; et al. Circulating Arsenic is Associated with Long-Term Risk of Graft Failure in Kidney Transplant Recipients: A Prospective Cohort Study. J. Clin. Med. 2020, 9, 417. https://doi.org/10.3390/jcm9020417
Sotomayor CG, Groothof D, Vodegel JJ, Gacitúa TA, Gomes-Neto AW, Osté MCJ, Pol RA, Ferreccio C, Berger SP, Chong G, et al. Circulating Arsenic is Associated with Long-Term Risk of Graft Failure in Kidney Transplant Recipients: A Prospective Cohort Study. Journal of Clinical Medicine. 2020; 9(2):417. https://doi.org/10.3390/jcm9020417
Chicago/Turabian StyleSotomayor, Camilo G., Dion Groothof, Joppe J. Vodegel, Tomás A. Gacitúa, António W. Gomes-Neto, Maryse C. J. Osté, Robert A. Pol, Catterina Ferreccio, Stefan P. Berger, Guillermo Chong, and et al. 2020. "Circulating Arsenic is Associated with Long-Term Risk of Graft Failure in Kidney Transplant Recipients: A Prospective Cohort Study" Journal of Clinical Medicine 9, no. 2: 417. https://doi.org/10.3390/jcm9020417
APA StyleSotomayor, C. G., Groothof, D., Vodegel, J. J., Gacitúa, T. A., Gomes-Neto, A. W., Osté, M. C. J., Pol, R. A., Ferreccio, C., Berger, S. P., Chong, G., Slart, R. H. J. A., Rodrigo, R., Navis, G. J., Touw, D. J., & Bakker, S. J. L. (2020). Circulating Arsenic is Associated with Long-Term Risk of Graft Failure in Kidney Transplant Recipients: A Prospective Cohort Study. Journal of Clinical Medicine, 9(2), 417. https://doi.org/10.3390/jcm9020417