Altered Gut Microbial Fermentation and Colonization with Methanobrevibacter smithii in Renal Transplant Recipients
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Patient Comorbidities
2.3. Breath H2 and CH4 Concentration Measurement
2.4. M. Smithii Measurement in Feces
2.5. Statistical Analyses
3. Results
3.1. M. Smithii in Feces
3.2. Determinants of Breath CH4
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Laupacis, A.; Keown, P.; Pus, N.; Krueger, H.; Ferguson, B.; Wong, C. MN A Study of Quality of Life and Cost Utility Analysis of Tx. Kidney Int. 1996, 50, 235–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jofré, R.; López-Gómez, J.M.; Moreno, F.; Sanz-Guajardo, D.; Valderrábano, F. Changes in quality of life after renal transplantation. Am. J. Kidney Dis. 1998, 32, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, R.A.; Ashby, V.B.; Milford, E.L.; Ojo, A.O.; Ettenger, R.E.; Agodoa, L.Y.; Held, P.J.; Port, F. Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N. Engl. J. Med. 1999, 341, 1725–1730. [Google Scholar] [CrossRef] [Green Version]
- Lamb, K.E.; Lodhi, S.; Meier-Kriesche, H.-U. Long-term renal allograft survival in the United States: A critical reappraisal. Am. J. Transplant. 2011, 11, 450–462. [Google Scholar] [CrossRef] [PubMed]
- Bunnapradist, S.; Neri, L.; Wong, W.; Lentine, K.L.; Burroughs, T.E.; Pinsky, B.W.; Takemoto, S.K.; Schnitzler, M.A. Incidence and Risk Factors for Diarrhea Following Kidney Transplantation and Association With Graft Loss and Mortality. Am. J. Kidney Dis. 2008, 51, 478–486. [Google Scholar] [CrossRef] [Green Version]
- Pant, C.; Deshpande, A.; Larson, A.; O’Connor, J.; Rolston, D.D.K.; Sferra, T.J. Diarrhea in solid-organ transplant recipients: A review of the evidence. Curr. Med. Res. Opin. 2013, 29, 1315–1328. [Google Scholar] [CrossRef]
- Lee, J.R.; Magruder, M.; Zhang, L.; Westblade, L.F.; Satlin, M.J.; Robertson, A.; Edusei, E.; Crawford, C.; Ling, L.; Taur, Y.; et al. Gut microbiota dysbiosis and diarrhea in kidney transplant recipients. Am. J. Transplant. 2019, 19, 488–500. [Google Scholar] [CrossRef] [Green Version]
- Ríos-Covián, D.; Ruas-Madiedo, P.; Margolles, A.; Gueimonde, M.; De los Reyes-Gavilán, C.G.; Salazar, N. Intestinal short chain fatty acids and their link with diet and human health. Front. Microbiol. 2016, 7, 185. [Google Scholar] [CrossRef] [Green Version]
- Morrison, D.J.; Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 2016, 7, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Holscher, H.D. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 2017, 8, 172–184. [Google Scholar] [CrossRef]
- Chaudhary, P.P.; Gaci, N.; Borrel, G.; O’Toole, P.W.; Brugère, J.F. Molecular methods for studying methanogens of the human gastrointestinal tract: Current status and future directions. Appl. Microbiol. Biotechnol. 2015, 99, 5801–5815. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, N.; Lin, H.C.; McSweeney, C.S.; Mackie, R.I.; Gaskins, H.R. Mechanisms of Microbial Hydrogen Disposal in the Human Colon and Implications for Health and Disease. Annu. Rev. Food Sci. Technol. 2010, 1, 363–395. [Google Scholar] [CrossRef] [PubMed]
- Sahakian, A.B.; Jee, S.R.; Pimentel, M. Methane and the gastrointestinal tract. Dig. Dis. Sci. 2010, 55, 2135–2143. [Google Scholar] [CrossRef] [PubMed]
- Dridi, B.; Henry, M.; El Khéchine, A.; Raoult, D.; Drancourt, M. High prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae detected in the human gut using an improved DNA detection protocol. PLoS ONE 2009, 4, 1–6. [Google Scholar] [CrossRef]
- Miller, T.L.; Wolin, M.J.; De Macario, E.C.; Macario, A.J.L. Isolation of Methanobrevibacter smithii from human feces. Appl. Environ. Microbiol. 1982, 43, 227–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghavami, S.B.; Rostami, E.; Sephay, A.A.; Shahrokh, S.; Balaii, H.; Aghdaei, H.A.; Zali, M.R. Alterations of the human gut Methanobrevibacter smithii as a biomarker for inflammatory bowel diseases. Microb. Pathog. 2018, 117, 285–289. [Google Scholar] [CrossRef]
- Eisenga, M.F.; Gomes-Neto, A.W.; van Londen, M.; Ziengs, A.L.; Douwes, R.M.; Stam, S.P.; Osté, M.C.J.; Knobbe, T.J.; Hessels, N.R.; Buunk, A.M.; et al. Rationale and design of TransplantLines: A prospective cohort study and biobank of solid organ transplant recipients. BMJ Open 2018, 8, e024502. [Google Scholar] [CrossRef]
- Gavin, J.R.; Alberti, K.G.M.M.; Davidson, M.B.; DeFronzo, R.A.; Drash, A.; Gabbe, S.G.; Genuth, S.; Harris, M.I.; Kahn, R.; Keen, H.; et al. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 2003, 26, 5–20. [Google Scholar]
- De Lacy Costello, B.P.J.; Ledochowski, M.; Ratcliffe, N.M. The importance of methane breath testing: A review. J. Breath Res. 2013, 7, 024001. [Google Scholar] [CrossRef]
- Levitt, M.D.; Hirsh, P.; Fetzer, C.A.; Sheahan, M.; Levine, A.S. H2 excretion after ingestion of complex carbohydrates. Gastroenterology 1987, 92, 383–389. [Google Scholar] [CrossRef]
- Yu, Z.; Morrison, M. Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques 2004, 36, 808–812. [Google Scholar] [CrossRef] [PubMed]
- De Goffau, M.C.; Luopajärvi, K.; Knip, M.; Ilonen, J.; Ruohtula, T.; Härkönen, T.; Orivuori, L.; Hakala, S.; Welling, G.W.; Harmsen, H.J. Fecal Microbiota Composition Differs Between Children With b-Cell Autoimmunity and Those Without. Diabetes 2013, 62, 1238–1244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnston, C.; Ufnar, J.A.; Griffith, J.F.; Gooch, J.A.; Stewart, J.R. A real-time qPCR assay for the detection of the nifH gene of Methanobrevibacter smithii, a potential indicator of sewage pollution. J. Appl. Microbiol. 2010, 109, 1946–1956. [Google Scholar] [CrossRef] [PubMed]
- Samuel, B.S.; Hansen, E.E.; Manchester, J.K.; Coutinho, P.M.; Henrissat, B.; Fulton, R.; Latreille, P.; Kim, K.; Wilson, R.K.; Gordon, J.I. Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proc. Natl. Acad. Sci. USA 2007, 104, 10643–10648. [Google Scholar] [CrossRef] [Green Version]
- Levitt, M.D.; Furne, J.K.; Kuskowski, M.; Ruddy, J. Stability of human methanogenic flora over 35 years and a review of insights obtained from breath methane measurements. Clin. Gastroenterol. Hepatol. 2006, 4, 123–129. [Google Scholar] [CrossRef]
- Cloarec, D.; Bornet, F.; Gouilloud, S.; Barry, J.L.; Salim, B.; Galmiche, J.P. Breath hydrogen response to lactulose in healthy subjects: Relationship to methane producing status. Gut 1990, 31, 300–304. [Google Scholar] [CrossRef] [Green Version]
- Christl, S.U.; Gibson, G.R.; Cummings, J.H. Role of dietary sulphate in the regulation of methanogenesis in the human large intestine. Gut 1992, 33, 1234–1238. [Google Scholar] [CrossRef] [Green Version]
- Gibson, G.R.; Cummings, J.H.; Macfarlane, G.T.; Allison, C.; Segal, I.; Vorster, H.H.; Walker, A.R. Alternative pathways for hydrogen disposal during fermentation in the human colon. Gut 1990, 31, 679–683. [Google Scholar] [CrossRef]
- Smith, N.W.; Shorten, P.R.; Altermann, E.H.; Roy, N.C.; McNabb, W.C. Hydrogen cross-feeders of the human gastrointestinal tract. Gut Microbes 2019, 10, 270–288. [Google Scholar] [CrossRef] [Green Version]
- Roediger, W.E.W.; Duncan, A.; Kapaniris, O.; Millard, S. Reducing sulfur compounds of the colon impair colonocyte nutrition: Implications for ulcerative colitis. Gastroenterology 1993, 104, 802–809. [Google Scholar] [CrossRef]
- Leonel, A.J.; Alvarez-Leite, J.I. Butyrate: Implications for intestinal function. Curr. Opin. Clin. Nutr. Metab. Care 2012, 15, 474–479. [Google Scholar] [CrossRef] [PubMed]
- Perman, J.A.; Modler, S. Glycoproteins as Substrates for Colonic Bacterial Flora. Gastroenterology 1982, 83, 388–393. [Google Scholar] [CrossRef]
- Gibson, G.R.; Cummings, J.H.; Macfarlane, G.T. Use of a three-stage continuous culture system to study the effect of mucin on dissimilatory sulfate reduction and methanogenesis by mixed populations of human gut bacteria. Appl. Environ. Microbiol. 1988, 54, 2750–2755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eutamene, H.; Beaufrand, C.; Harkat, C.; Theodorou, V. The role of mucoprotectants in the management of gastrointestinal disorders. Expert Rev. Gastroenterol. Hepatol. 2018, 12, 83–90. [Google Scholar] [CrossRef]
- Miller, T.L.; Wolin, M.J. Enumeration of Methanobrevibacter smithii in human feces. Arch. Microbiol. 1982, 131, 14–18. [Google Scholar] [CrossRef]
- Miller, T.L.; Wolin, M.J. Methanosphaera stadtmaniae gen. nov., sp. nov.: A species that forms methane by reducing methanol with hydrogen. Arch. Microbiol. 1985, 141, 116–122. [Google Scholar] [CrossRef]
- Miller, T.L.; Wolin, M.J. Oxidation of Hydrogen and Reduction of Methanol to methane.pdf. J. Bacteriol. 1983, 153, 1051–1055. [Google Scholar] [CrossRef] [Green Version]
- Lecours, P.B.; Marsolais, D.; Cormier, Y.; Berberi, M.; Haché, C.; Bourdages, R.; Duchaine, C. Increased prevalence of methanosphaera stadtmanae in inflammatory bowel diseases. PLoS ONE 2014, 9, 1–7. [Google Scholar] [CrossRef]
- Bang, C.; Weidenbach, K.; Gutsmann, T.; Heine, H.; Schmitz, R.A. The intestinal archaea Methanosphaera stadtmanae and Methanobrevibacter smithii activate human dendritic cells. PLoS ONE 2014, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, P.P.; Conway, P.L.; Schlundt, J. Methanogens in humans: Potentially beneficial or harmful for health. Appl. Microbiol. Biotechnol. 2018, 102, 3095–3104. [Google Scholar] [CrossRef]
- Scanlan, P.D.; Shanahan, F.; Marchesi, J.R. Human methanogen diversity and incidence in healthy and diseased colonic groups using mcrA gene analysis. BMC Microbiol. 2008, 8, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Triantafyllou, K.; Chang, C.; Pimentel, M. Methanogens, methane and gastrointestinal motility. J. Neurogastroenterol. Motil. 2014, 20, 31–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vakili, S.T.T.; Taher, M.; Ebrahimi Daryani, N. Update on the management of ulcerative colitis. Acta Med Iran. 2012, 50, 363–372. [Google Scholar]
- Deepak, P.; Bruining, D.H. Update on the Medical Management of Crohn’ s Disease. Curr. Gastroenterol. Rep. 2015, 17, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Li, Z.; Liu, C.; Zhang, J. Methane Medicine: A Rising Star Gas with Powerful Anti-Inflammation, Antioxidant, and Antiapoptosis Properties. Oxid. Med. Cell. Longev. 2018, 2018, 1912746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nafar, M.; Sahraei, Z.; Salamzadeh, J.; Samavat, S.; Vaziri, N.D. Oxidative stress in kidney transplantation causes, consequences, and potential treatment. Iran. J. Kidney Dis. 2011, 5, 357–372. [Google Scholar] [PubMed]
- Boros, M.; Ghyczy, M.; Irces, D.; Varga, G.; Tokés, T.; Kupai, K.; Torday, C.; Kaszaki, J. The anti-inflammatory effects of methane. Crit. Care Med. 2012, 40, 1269–1278. [Google Scholar] [CrossRef]
- Chen, O.; Ye, Z.; Cao, Z.; Manaenko, A.; Ning, K.; Zhai, X.; Zhang, R.; Zhang, T.; Chen, X.; Liu, W.; et al. Methane attenuates myocardial ischemia injury in rats through anti-oxidative, anti-apoptotic and anti-inflammatory actions. Free Radic. Biol. Med. 2016, 90, 1–11. [Google Scholar] [CrossRef]
- Wolf, P.G.; Biswas, A.; Morales, S.E.; Greening, C.; Gaskins, H.R. H2 metabolism is widespread and diverse among human colonic microbes. Gut Microbes 2016, 7, 235–245. [Google Scholar] [CrossRef] [Green Version]
- Christl, S.U.; Murgatroyd, P.R.; Gibson, S.R.; Cummings, J.H. Production, metabolism, and excretion of hydrogen in the large intestine. Gastroenteroology 1992, 102, 1269–1277. [Google Scholar] [CrossRef]
- Santos-Marcos, J.A.; Rangel-Zuñiga, O.A.; Jimenez-Lucena, R.; Quintana-Navarro, G.M.; Garcia-Carpintero, S.; Malagon, M.M.; Landa, B.B.; Tena-Sempere, M.; Perez-Martinez, P.; Lopez-Miranda, J.; et al. Influence of gender and menopausal status on gut microbiota. Maturitas 2018, 116, 43–53. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Renal Transplant Recipients | Healthy Controls | p-Value |
---|---|---|---|
Number of subjects, n (%) | 142 (64.8) | 77 (35.2) | n/a |
Fermentation parameters | |||
Breath H2 concentration, ppm | 11.3 [4.0–30.0] | 10.5 [4.5–28.3] | 0.9 |
Breath CH4 concentration, ppm | 7.5 [3.9–10.6] | 16.0 [8.0–45.5] | <0.001 |
Quantifiable abundance of M. smithii in feces, n (valid %) | 22 (28.6) | 38 (86.4) | <0.001 |
Abundance of M. smithii in feces samples, M. smithii/gram | 0.0 [0.0–4.0 × 105] | 5.9 × 107 [1.2 × 106–8.9 × 108] | <0.001 |
Demographics | |||
Age, y | 56.3 ± 13.7 | 56.4 ± 10.6 | 0.6 |
Number of males, n (%) | 91 (64.1) | 39 (50.6) | 0.05 |
BMI, kg/m2 | 28.0 ± 5.2 | 26.4 ± 3.8 | 0.01 |
Time since transplantation, y | 1.0 [0.5–8.0] | - | n/a |
Lifestyle parameters | |||
Current smokers, n (valid %) | 23 (16.7) | 14 (18.9) | 0.4 |
Alcohol intake per day, units | 0.0 [0.0–0.2] | 0.25 [0.0-0.5] | 0.003 |
Laboratory parameters | |||
Hemoglobin, g/dL | 13.8 ± 1.9 | 14.4 ± 1.3 | 0.008 |
Hematocrit, L/L | 0.42 ± 0.06 | 0.43 ± 0.04 | 0.2 |
Leukocytes, 109/L | 7.4 ± 2.5 | 6.5 ± 1.9 | <0.003 |
Platelets, 109/L | 250.6 ± 78.4 | 261.2 ± 56.6 | 0.3 |
C-reactive protein, mg/L | 2.3 [1.1–5.0] | 1.2 [0.8–4.0] | 0.035 |
Albumin, g/L | 44.2 ± 3.1 | 45.4 ± 2.5 | 0.003 |
Glucose, mmol/L | 6.0 ± 1.7 | 5.5 ± 0.7 | 0.005 |
HbA1c, mmol/mol | 42.3 ± 7.8 | 36.9 ± 3.5 | <0.001 |
eGFR, ml/min/1.73 m2 | 49.8 ± 16.5 | 69.3 ± 18.7 | <0.001 |
Creatinine, µmol/L | 130 [103.0–156.8] | 92.0 [81.0–106.0] | <0.001 |
Urea, mmol/L | 9.4 ± 4.4 | 5.8 ± 1.6 | <0.001 |
Medication use | |||
Antibiotics, n (%) | 37 (16.9) | 0 (0.0) | <0.001 |
Immunosuppressants, n (%) | |||
Prednisolone, n (%) | 140 (98.6) | - | n/a |
Mycophenolate mofetil, n (%) | 112 (78.9) | - | n/a |
Tacrolimus, n (%) | 102 (71.8) | - | n/a |
Cyclosporine, n (%) | 14 (9.9) | - | n/a |
Everolimus, n (%) | 7 (4.9) | - | n/a |
Azathioprine, n (%) | 10 (7.0) | - | n/a |
Statins, n (%) | 70 (49.3) | 8 (10.4) | <0.001 |
Proton pump inhibitors, n (%) | 108 (76.1) | 0 (0.0) | <0.001 |
Insulin, n (%) | 11 (7.8) | 0 (0.0) | 0.009 |
Biguanides, n (%) | 7 (4.9) | 0 (0.0) | 0.09 |
Macrogol, n (%) | 8 (5.6) | 1 (1.3) | 0.200 |
Lactulose, n (%) | 2 (1.4) | 0 (0.0) | 0.500 |
Loperamide, n (%) | 1 (0.7) | 0 (0.0) | 1.000 |
Antidepressants, n (%) | 16 (7.3) | 4 (5.2) | 0.4 |
Primary renal disease before transplantation | |||
Unknown, n (%) | 23 (16.2) | - | n/a |
Inflammatory disease | 55 (38.7) | ||
Congenital and hereditary kidney disease, n (%) | 41 (28.9) | - | n/a |
Renal vascular disease, excluding vasculitis, n (%) | 13 (9.2) | - | n/a |
Diabetic nephropathy, n (%) | 10 (7.0) | - | n/a |
Others | |||
Diabetes mellitus, n (%) | 27 (19.0) | 1 (1.3) | <0.001 |
History of allograft rejection, n (%) | 14 (9.9) | - | n/a |
Univariable Linear Regression Analysis | Multivariable Linear Regression Analysis * | |||
---|---|---|---|---|
St. β | p-Value | St. β | p-Value | |
A medical history of renal transplantation (yes vs. no) | −0.42 | <0.001 | ||
Fermentation parameters | ||||
Log10 Breath H2, ppm | 0.32 | <0.001 | 0.54 | <0.001 |
Quantifiable abundance of M. smithii in feces (yes vs. no) | 0.55 | <0.001 | 0.95 | <0.001 |
Interaction between log10 breath H2 and M. smithii in feces | 0.48 | <0.001 | −0.51 | 0.001 |
Demographics | ||||
Age, y | 0.07 | 0.3 | ||
Gender (yes vs. no) | −0.02 | 0.7 | ||
BMI, kg/m2 | −0.18 | 0.012 | ||
eGFR, mL/min/1.73 m2 | 0.25 | <0.001 | ||
Intoxications | ||||
Smoking (yes vs. no) | −0.10 | 0.1 | ||
Alcohol (units per day) | −0.01 | 0.9 | ||
Medication use (yes vs. no) | ||||
Antibiotics | −0.12 | 0.1 | ||
Immunosuppressive medication (yes vs. no) | ||||
Prednisolone | −0.40 | <0.001 | ||
Mycophenolate mofetil | −0.36 | <0.001 | −0.18 | 0.014 |
Tacrolimus | −0.27 | <0.001 | ||
Cyclosporine | −0.06 | 0.4 | ||
Azathioprine | 0.00 | 1.0 | −0.10 | 0.1 |
Everolimus | 0.04 | 0.5 | ||
Statins | −0.15 | 0.024 | ||
Proton pump inhibitors | −0.26 | <0.001 | ||
Macrogol | 0.06 | 0.4 | ||
Lactulose | 0.10 | 0.1 | ||
Loperamide | 0.02 | 0.8 | ||
Biguanide drugs | −0.04 | 0.6 | ||
Insulin | −0.05 | 0.5 | ||
Antidepressants | −0.14 | 0.044 | ||
Primary renal disease of RTR (yes vs. no) | ||||
Unknown | −0.04 | 0.6 | ||
Inflammatory disease | 0.02 | 0.8 | ||
Congenital and hereditary kidney disease | 0.00 | 1.0 | ||
Renal vascular disease, excluding vasculitis | 0.09 | 0.3 | ||
Diabetes Mellitus | −0.08 | 0.3 | ||
Others (yes vs. no) | ||||
Suffering from Diabetes Mellitus | −0.06 | 0.4 | ||
History of allograft rejection | −0.02 | 0.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knobbe, T.J.; Douwes, R.M.; Kremer, D.; Swarte, J.C.; Eisenga, M.F.; Gomes-Neto, A.W.; van Londen, M.; Peters, F.T.M.; Blokzijl, H.; Nolte, I.M.; et al. Altered Gut Microbial Fermentation and Colonization with Methanobrevibacter smithii in Renal Transplant Recipients. J. Clin. Med. 2020, 9, 518. https://doi.org/10.3390/jcm9020518
Knobbe TJ, Douwes RM, Kremer D, Swarte JC, Eisenga MF, Gomes-Neto AW, van Londen M, Peters FTM, Blokzijl H, Nolte IM, et al. Altered Gut Microbial Fermentation and Colonization with Methanobrevibacter smithii in Renal Transplant Recipients. Journal of Clinical Medicine. 2020; 9(2):518. https://doi.org/10.3390/jcm9020518
Chicago/Turabian StyleKnobbe, Tim J., Rianne M. Douwes, Daan Kremer, J. Casper Swarte, Michele F. Eisenga, António W. Gomes-Neto, Marco van Londen, Frans T. M. Peters, Hans Blokzijl, Ilja M. Nolte, and et al. 2020. "Altered Gut Microbial Fermentation and Colonization with Methanobrevibacter smithii in Renal Transplant Recipients" Journal of Clinical Medicine 9, no. 2: 518. https://doi.org/10.3390/jcm9020518
APA StyleKnobbe, T. J., Douwes, R. M., Kremer, D., Swarte, J. C., Eisenga, M. F., Gomes-Neto, A. W., van Londen, M., Peters, F. T. M., Blokzijl, H., Nolte, I. M., Hendriks, W. H., Harmsen, H. J. M., & Bakker, S. J. L. (2020). Altered Gut Microbial Fermentation and Colonization with Methanobrevibacter smithii in Renal Transplant Recipients. Journal of Clinical Medicine, 9(2), 518. https://doi.org/10.3390/jcm9020518