Examining Bone, Muscle and Fat in Middle-Aged Long-Term Endurance Runners: A Cross-Sectional Study
Abstract
:1. Introduction
2. Experimental Section
2.1. Subjects
2.2. Procedures
2.2.1. DXA
2.2.2. MRI
2.3. Statistical Analyses
3. Results
3.1. Body Composition
3.2. Lumbar Multifidus
3.3. Bone Mineral Density
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Garatachea, N.; Pareja-Galeano, H.; Sanchis-Gomar, F.; Santos-Lozano, A.; Fiuza-Luces, C.; Moran, M.; Emanuele, E.; Joyner, M.J.; Lucia, A. Exercise attenuates the major hallmarks of aging. Rejuvenation Res. 2015, 18, 57–89. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, B.K.; Saltin, B. Exercise as medicine-evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand. J. Med. Sci. Sports 2015, 25, 1–72. [Google Scholar] [CrossRef] [Green Version]
- Miller, T.D.; Balady, G.J.; Fletcher, G.F. Exercise and its role in the prevention and rehabilitation of cardiovascular disease. Ann. Behav. Med. 1997, 19, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Chaput, J.P.; Klingenberg, L.; Rosenkilde, M.; Gilbert, J.A.; Tremblay, A.; Sjodin, A. Physical activity plays an important role in body weight regulation. J. Obes. 2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kendall, K.L.; Fairman, C.M. Women and exercise in aging. J. Sport Health Sci. 2014, 3, 170–178. [Google Scholar] [CrossRef] [Green Version]
- Turner, C.H. Three rules for bone adaptation to mechanical stimuli. Bone 1998, 23, 399–407. [Google Scholar] [CrossRef]
- Michel, B.A.; Lane, N.E.; Bjorkengren, A.; Bloch, D.A.; Fries, J.F. Impact of running on lumbar bone density: A 5-year longitudinal study. J. Rheumatol. 1992, 19, 1759–1763. [Google Scholar] [PubMed]
- Wells, J.C.; Fewtrell, M.S. Measuring body composition. Arch. Dis. Child. 2006, 91, 612–617. [Google Scholar] [CrossRef] [Green Version]
- Kaminsky, L.A.; Ozemek, C.; Williams, K.L.; Byun, W. Precision of total and regional body fat estimates from dual-energy X-ray absorptiometer measurements. J. Nutr. Health Aging 2014, 18, 591–594. [Google Scholar] [CrossRef]
- Kullberg, J.; Brandberg, J.; Angelhed, J.E.; Frimmel, H.; Bergelin, E.; Strid, L.; Ahlstrom, H.; Johansson, L.; Lonn, L. Whole-body adipose tissue analysis: Comparison of MRI, CT and dual energy X-ray absorptiometry. Br. J. Radiol. 2009, 82, 123–130. [Google Scholar] [CrossRef]
- Shen, W.; Punyanitya, M.; Chen, J.; Gallagher, D.; Albu, J.; Pi-Sunyer, X.; Lewis, C.E.; Grunfeld, C.; Heshka, S.; Heymsfield, S.B. Waist circumference correlates with metabolic syndrome indicators better than percentage fat. Obesity (Silver Spring) 2006, 14, 727–736. [Google Scholar] [CrossRef] [Green Version]
- Fox, C.S.; Massaro, J.M.; Hoffmann, U.; Pou, K.M.; Maurovich-Horvat, P.; Liu, C.Y.; Vasan, R.S.; Murabito, J.M.; Meigs, J.B.; Cupples, L.A.; et al. Abdominal visceral and subcutaneous adipose tissue compartments: Association with metabolic risk factors in the Framingham Heart Study. Circulation 2007, 116, 39–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Fox, C.S.; Hickson, D.A.; May, W.D.; Hairston, K.G.; Carr, J.J.; Taylor, H.A. Impact of abdominal visceral and subcutaneous adipose tissue on cardiometabolic risk factors: The Jackson Heart Study. J. Clin. Endocrinol. Metab. 2010, 95, 5419–5426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.H.; Yao, W.J.; Lu, F.H.; Wu, J.S.; Chang, C.J. Relationship between glycosylated hemoglobin, blood pressure, serum lipid profiles and body fat distribution in healthy Chinese. Atherosclerosis 1998, 137, 157–165. [Google Scholar] [CrossRef]
- Ohkawara, K.; Tanaka, S.; Miyachi, M.; Ishikawa-Takata, K.; Tabata, I. A dose-response relation between aerobic exercise and visceral fat reduction: Systematic review of clinical trials. Int. J. Obes. (Lond.) 2007, 31, 1786–1797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, T.N.; Choi, K.M. Sarcopenia: Definition, epidemiology, and pathophysiology. J. Bone Metab. 2013, 20, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodpaster, B.H.; Park, S.W.; Harris, T.B.; Kritchevsky, S.B.; Nevitt, M.; Schwartz, A.V.; Simonsick, E.M.; Tylavsky, F.A.; Visser, M.; Newman, A.B. The loss of skeletal muscle strength, mass, and quality in older adults: The health, aging and body composition study. J. Gerontol. A Biol. Sci. Med. Sci. 2006, 61, 1059–1064. [Google Scholar] [CrossRef]
- Peterson, M.D.; Rhea, M.R.; Sen, A.; Gordon, P.M. Resistance exercise for muscular strength in older adults: A meta-analysis. Ageing Res. Rev. 2010, 9, 226–237. [Google Scholar] [CrossRef] [Green Version]
- Shafiee, G.; Keshtkar, A.; Soltani, A.; Ahadi, Z.; Larijani, B.; Heshmat, R. Prevalence of sarcopenia in the world: A systematic review and meta- analysis of general population studies. J. Diabetes Metab. Disord. 2017, 16, 21. [Google Scholar] [CrossRef] [Green Version]
- Raguso, C.A.; Kyle, U.; Kossovsky, M.P.; Roynette, C.; Paoloni-Giacobino, A.; Hans, D.; Genton, L.; Pichard, C. A 3-year longitudinal study on body composition changes in the elderly: Role of physical exercise. Clin Nutr 2006, 25, 573–580. [Google Scholar] [CrossRef]
- Harber, M.P.; Konopka, A.R.; Douglass, M.D.; Minchev, K.; Kaminsky, L.A.; Trappe, T.A.; Trappe, S. Aerobic exercise training improves whole muscle and single myofiber size and function in older women. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009, 297, R1452–R1459. [Google Scholar] [CrossRef] [PubMed]
- Weiss, E.P.; Racette, S.B.; Villareal, D.T.; Fontana, L.; Steger-May, K.; Schechtman, K.B.; Klein, S.; Ehsani, A.A.; Holloszy, J.O. Lower extremity muscle size and strength and aerobic capacity decrease with caloric restriction but not with exercise-induced weight loss. J. Appl. Physiol. 2007, 102, 634–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crane, J.D.; Macneil, L.G.; Tarnopolsky, M.A. Long-term aerobic exercise is associated with greater muscle strength throughout the life span. J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68, 631–638. [Google Scholar] [CrossRef] [Green Version]
- Knechtle, B.; Kohler, G. Running 338 kilometres within five days has no effect on body mass and body fat but reduces skeletal muscle mass-the Isarrun 2006. J. Sports Sci. Med. 2007, 6, 401–407. [Google Scholar]
- McClung, M. The relationship between bone mineral density and fracture risk. Curr. Osteoporos. Rep. 2005, 3, 57–63. [Google Scholar] [CrossRef]
- Sezer, A.; Altan, L.; Ozdemir, O. Multiple comparison of age groups in bone mineral density under heteroscedasticity. Biomed. Res. Int. 2015, 2015, 426847. [Google Scholar] [CrossRef]
- Demontiero, O.; Vidal, C.; Duque, G. Aging and bone loss: New insights for the clinician. Ther Adv Musculoskelet. Dis. 2012, 4, 61–76. [Google Scholar] [CrossRef] [Green Version]
- Wolff, J. Das Gesetz der Transformation der Knochen [The Law of Bone Remodeling]; Springer Verlag: Berlin/Heidelbeg, Germany, 1892. [Google Scholar]
- Gianoudis, J.; Bailey, C.A.; Sanders, K.M.; Nowson, C.A.; Hill, K.; Ebeling, P.R.; Daly, R.M. Osteo-cise: Strong bones for life: Protocol for a community-based randomised controlled trial of a multi-modal exercise and osteoporosis education program for older adults at risk of falls and fractures. BMC Musculoskelet. Disord. 2012, 13, 78. [Google Scholar] [CrossRef] [Green Version]
- Robling, A.G.; Burr, D.B.; Turner, C.H. Recovery periods restore mechanosensitivity to dynamically loaded bone. J. Exp. Biol. 2001, 204, 3389–3399. [Google Scholar]
- Fehling, P.C.; Alekel, L.; Clasey, J.; Rector, A.; Stillman, R.J. A comparison of bone mineral densities among female athletes in impact loading and active loading sports. Bone 1995, 17, 205–210. [Google Scholar] [CrossRef]
- Taaffe, D.R.; Robinson, T.L.; Snow, C.M.; Marcus, R. High-impact exercise promotes bone gain in well-trained female athletes. J. Bone Miner. Res. 1997, 12, 255–260. [Google Scholar] [CrossRef]
- Nikander, R.; Sievanen, H.; Heinonen, A.; Kannus, P. Femoral neck structure in adult female athletes subjected to different loading modalities. J. Bone Miner. Res. 2005, 20, 520–528. [Google Scholar] [CrossRef]
- Egan, E.; Reilly, T.; Giacomoni, M.; Redmond, L.; Turner, C. Bone mineral density among female sports participants. Bone 2006, 38, 227–233. [Google Scholar] [CrossRef]
- MacKelvie, K.J.; Taunton, J.E.; McKay, H.A.; Khan, K.M. Bone mineral density and serum testosterone in chronically trained, high mileage 40-55 year old male runners. Br. J. Sports Med. 2000, 34, 273–278. [Google Scholar] [CrossRef] [Green Version]
- Bailey, B.W.; LeCheminant, G.; Hope, T.; Bell, M.; Tucker, L.A. A comparison of the agreement, internal consistency, and 2-day test stability of the InBody 720, GE iDXA, and BOD POD (R) gold standard for assessing body composition. Meas. Phys. Educ. Exerc. Sci. 2018, 22, 231–238. [Google Scholar] [CrossRef]
- Speakman, J.R.; Booles, D.; Butterwick, R. Validation of dual energy X-ray absorptiometry (DXA) by comparison with chemical analysis of dogs and cats. Int. J. Obes. Relat. Metab. Disord. 2001, 25, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Tataranni, P.A.; Pettitt, D.J.; Ravussin, E. Dual energy X-ray absorptiometry: Inter-machine variability. Int. J. Obes. Relat. Metab. Disord. 1996, 20, 1048–1050. [Google Scholar] [PubMed]
- Burkhart, T.A.; Arthurs, K.L.; Andrews, D.M. Manual segmentation of DXA scan images results in reliable upper and lower extremity soft and rigid tissue mass estimates. J. Biomech. 2009, 42, 1138–1142. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, A.; De Lucia Rolfe, E.; Sleigh, A.; Kivisild, T.; Behbehani, K.; Wareham, N.J.; Brage, S.; Mohammad, T. Validity of visceral adiposity estimates from DXA against MRI in Kuwaiti men and women. Nutr. Diabetes 2017, 7, e238. [Google Scholar] [CrossRef] [PubMed]
- Rothney, M.P.; Xia, Y.; Wacker, W.K.; Martin, F.P.; Beaumont, M.; Rezzi, S.; Giusti, V.; Ergun, D.L. Precision of a new tool to measure visceral adipose tissue (VAT) using dual-energy X-Ray absorptiometry (DXA). Obesity (Silver Spring) 2013, 21, E134–E136. [Google Scholar] [CrossRef]
- de Onis, M.; Habicht, J.P. Anthropometric reference data for international use: Recommendations from a World Health Organization Expert Committee. Am. J. Clin. Nutr. 1996, 64, 650–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latt, E.; Maestu, J.; Jurimae, J. Longitudinal associations of android and gynoid fat mass on cardiovascular disease risk factors in normal weight and overweight boys during puberty. Am. J. Hum. Biol. 2018, 30, e23171. [Google Scholar] [CrossRef] [PubMed]
- Bacopoulou, F.; Efthymiou, V.; Landis, G.; Rentoumis, A.; Chrousos, G.P. Waist circumference, waist-to-hip ratio and waist-to-height ratio reference percentiles for abdominal obesity among Greek adolescents. BMC Pediatr. 2015, 15, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szulc, P.; Duboeuf, F.; Chapurlat, R. Age-related changes in fat mass and distribution in men-the cross-sectional STRAMBO Study. J. Clin. Densitom. 2017, 20, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Schrauwen-Hinderling, V.B.; Hesselink, M.K.; Schrauwen, P.; Kooi, M.E. Intramyocellular lipid content in human skeletal muscle. Obesity (Silver Spring) 2006, 14, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Ikaheimo, M.J.; Palatsi, I.J.; Takkunen, J.T. Noninvasive evaluation of the athletic heart: Sprinters versus endurance runners. Am. J. Cardiol. 1979, 44, 24–30. [Google Scholar] [CrossRef]
- Aliverti, A. Physiology masterclass: The respiratory muscles during exercise. Breathe 2016, 12, 165–168. [Google Scholar] [CrossRef] [Green Version]
- Bilanin, J.E.; Blanchard, M.S.; Russek-Cohen, E. Lower vertebral bone density in male long distance runners. Med. Sci. Sports Exerc. 1989, 21, 66–70. [Google Scholar] [CrossRef]
- Hetland, M.L.; Haarbo, J.; Christiansen, C. Low bone mass and high bone turnover in male long distance runners. J. Clin. Endocrinol. Metab. 1993, 77, 770–775. [Google Scholar] [CrossRef]
- Burrows, M.; Nevill, A.M.; Bird, S.; Simpson, D. Physiological factors associated with low bone mineral density in female endurance runners. Br. J. Sports Med. 2003, 37, 67–71. [Google Scholar] [CrossRef] [Green Version]
- Hind, K.; Truscott, J.G.; Evans, J.A. Low lumbar spine bone mineral density in both male and female endurance runners. Bone 2006, 39, 880–885. [Google Scholar] [CrossRef] [PubMed]
- Wahner, H.W.; Dunn, W.L.; Brown, M.L.; Morin, R.L.; Riggs, B.L. Comparison of dual-energy x-ray absorptiometry and dual photon absorptiometry for bone mineral measurements of the lumbar spine. Mayo Clin. Proc. 1988, 63, 1075–1084. [Google Scholar] [CrossRef]
- Nichols, D.L.; Sanborn, C.F.; Bonnick, S.L.; Ben-Ezra, V.; Gench, B.; DiMarco, N.M. The effects of gymnastics training on bone mineral density. Med. Sci. Sports Exerc. 1994, 26, 1220–1225. [Google Scholar] [CrossRef] [PubMed]
Variable | Runners (n = 9) | Control (n = 8) | t | p-Value |
---|---|---|---|---|
Age, years | 49 (4) | 51 (5) | −0.8985 | 0.382 |
Height, cm | 178.9 (4.9) | 176.0 (5.1) | 1.2134 | 0.242 |
Weight, kg | 67.8 (5.8) | 72.8 (7.1) | −1.6938 | 0.109 |
Body mass index, kg/m2 | 21.4 (1.4) | 23.7 (2.1) | −2.9082 | 0.010 |
Variable | Runners (n = 10) | Control (n = 9) | t | p-Value |
---|---|---|---|---|
Fat mass | ||||
Total body, kg | 9.9 (3.7) | 18.5 (5.1) | −4.2219 | 0.001 |
Total body, % | 17.0 (7.5) | 23.8 (6.5) | −2.0916 | 0.052 |
Arm, kg | 1.1 (0.4) | 2.0 (0.7) | −3.6310 | 0.002 |
Leg, kg | 3.3 (1.3) | 5.6 (1.4) | −3.8087 | 0.001 |
Trunk, kg | 4.6 (2.1) | 9.9 (3.2) | −4.2933 | 0.001 |
Android, kg | 0.6 (0.4) | 1.6 (0.6) | −4.2698 | 0.001 |
Gynoid, kg | 1.5 (0.7) | 2.9 (0.7) | −4.2038 | 0.001 |
Android-to-gynoid, ratio | 0.379 (0.083) | 0.545 (0.122) | −3.4972 | 0.003 |
Lean mass | ||||
Total body, kg | 56.2 (4.9) | 51.8 (4.3) | 2.0202 | 0.059 |
Total body, % | 84.8 (5.2) | 74.8 (5.2) | 3.9713 | 0.001 |
Appendicular, kg | 25.7 (2.3) | 24.7 (2.2) | 1.0122 | 0.326 |
Arm, kg | 6.9 (0.9) | 6.7 (0.5) | 0.3785 | 0.710 |
Leg, kg | 18.9 (1.8) | 17.9 (1.9) | 1.1145 | 0.281 |
Trunk, kg | 27.3 (2.6) | 23.8 (2.2) | 2.9690 | 0.010 |
Variable | Runners (n = 9) | Control (n = 8) | t | p-Value |
---|---|---|---|---|
Cross-sectional area, mm2 | 4788.2 (473.2) | 4992.9 (687.2) | −0.7067 | 0.491 |
Mean mediolateral thickness, mm | 49.6 (7) | 49.4 (6.8) | 0.6422 | 0.531 |
Mean anteroposterior thickness, mm | 133.1 (6.4) | 144.2 (18.2) | −0.5933 | 0.563 |
Variable | Runners (n = 10) | Control (n = 9) | t | p-Value |
---|---|---|---|---|
Areal bone mineral density, g/cm2 | ||||
L1 | 1.014 (0.192) | 1.102 (0.126) | −1.1588 | 0.263 |
L2 | 1.120 (0.197) | 1.220 (0.149) | −1.2484 | 0.229 |
L3 | 1.143 (0.192) | 1.268 (0.180) | −1.4505 | 0.165 |
L4 | 1.112 (0.211) | 1.230 (0.195) | −1.2594 | 0.225 |
L1-L4 | 1.099 (0.190) | 1.209 (0.161) | −1.3438 | 0.197 |
Femoral neck | 0.984 (0.117) | 0.937 (0.095) | 0.9501 | 0.355 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitchell, U.H.; Bailey, B.; Owen, P.J. Examining Bone, Muscle and Fat in Middle-Aged Long-Term Endurance Runners: A Cross-Sectional Study. J. Clin. Med. 2020, 9, 522. https://doi.org/10.3390/jcm9020522
Mitchell UH, Bailey B, Owen PJ. Examining Bone, Muscle and Fat in Middle-Aged Long-Term Endurance Runners: A Cross-Sectional Study. Journal of Clinical Medicine. 2020; 9(2):522. https://doi.org/10.3390/jcm9020522
Chicago/Turabian StyleMitchell, Ulrike H., Bruce Bailey, and Patrick J. Owen. 2020. "Examining Bone, Muscle and Fat in Middle-Aged Long-Term Endurance Runners: A Cross-Sectional Study" Journal of Clinical Medicine 9, no. 2: 522. https://doi.org/10.3390/jcm9020522
APA StyleMitchell, U. H., Bailey, B., & Owen, P. J. (2020). Examining Bone, Muscle and Fat in Middle-Aged Long-Term Endurance Runners: A Cross-Sectional Study. Journal of Clinical Medicine, 9(2), 522. https://doi.org/10.3390/jcm9020522