Robust Association between Acute Kidney Injury after Radical Nephrectomy and Long-term Renal Function
Abstract
:1. Introduction
2. Methods
2.1. Patient Selection
2.2. Patient Data and Outcome Measurements
2.3. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Cho, A.; Lee, J.E.; Kwon, G.Y.; Huh, W.; Lee, H.M.; Kim, Y.G.; Kim, D.J.; Oh, H.Y.; Choi, H.Y. Post-operative acute kidney injury in patients with renal cell carcinoma is a potent risk factor for new-onset chronic kidney disease after radical nephrectomy. Nephrol. Dial. Transpl. 2011, 26, 3496–3501. [Google Scholar] [CrossRef] [Green Version]
- Garofalo, C.; Liberti, M.E.; Russo, D.; Russo, L.; Fuiano, G.; Cianfrone, P.; Conte, G.; De Nicola, L.; Minutolo, R.; Borrelli, S. Effect of post-nephrectomy acute kidney injury on renal outcome: A retrospective long-term study. World J. Urol. 2018, 36, 59–63. [Google Scholar] [CrossRef]
- Shin, S.; Han, Y.; Park, H.; Chung, Y.S.; Ahn, H.; Kim, C.S.; Cho, Y.P.; Kwon, T.W. Risk factors for acute kidney injury after radical nephrectomy and inferior vena cava thrombectomy for renal cell carcinoma. J. Vasc. Surg. 2013, 58, 1021–1027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chawla, L.S.; Eggers, P.W.; Star, R.A.; Kimmel, P.L. Acute kidney injury and chronic kidney disease as interconnected syndromes. N. Engl. J. Med. 2014, 371, 58–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, A.B. The Environment and disease: Association or causation? Proc. R. Soc. Med. 1965, 58, 295–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zabell, J.; Isharwal, S.; Dong, W.; Abraham, J.; Wu, J.; Suk-Ouichai, C.; Palacios, D.A.; Remer, E.; Li, J.; Campbell, S.C. Acute Kidney Injury after Partial Nephrectomy of Solitary Kidneys: Impact on Long-Term Stability of Renal Function. J. Urol. 2018, 200, 1295–1301. [Google Scholar] [CrossRef]
- Miller, I.J.; Suthanthiran, M.; Riggio, R.R.; Williams, J.J.; Riehle, R.A.; Vaughan, E.D.; Stubenbord, W.T.; Mouradian, J.; Cheigh, J.S.; Stenzel, K.H. Impact of renal donation. Long-term clinical and biochemical follow-up of living donors in a single center. Am. J. Med. 1985, 79, 201–208. [Google Scholar] [CrossRef]
- Ibrahim, H.N.; Foley, R.; Tan, L.; Rogers, T.; Bailey, R.F.; Guo, H.; Gross, C.R.; Matas, A.J. Long-term consequences of kidney donation. N. Engl. J. Med. 2009, 360, 459–469. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.J.; Bae, J.; Kwon, Y.; Jang, H.S.; Yoo, S.; Jeong, C.W.; Kim, J.T.; Kim, W.H. General Anesthetic Agents and Renal Function after Nephrectomy. J. Clin. Med. 2019, 8, 1530. [Google Scholar] [CrossRef] [Green Version]
- Levey, A.S.; Bosch, J.P.; Lewis, J.B.; Greene, T.; Rogers, N.; Roth, D. A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation. Modification of Diet in Renal Disease Study Group. Ann. Intern. Med. 1999, 130, 461–470. [Google Scholar] [CrossRef]
- Levey, A.S.; Coresh, J.; Balk, E.; Kausz, A.T.; Levin, A.; Steffes, M.W.; Hogg, R.J.; Perrone, R.D.; Lau, J.; Eknoyan, G. National Kidney Foundation practice guidelines for chronic kidney disease: Evaluation, classification, and stratification. Ann. Intern. Med. 2003, 139, 137–147. [Google Scholar] [CrossRef]
- KDIGO working group. KDIGO 2012 clinical practice guidelines for evaluation and management of chronic kidney disease. Kidney Int. 2013, 3, 1–150. [Google Scholar]
- Thomas, M.E.; Blaine, C.; Dawnay, A.; Devonald, M.A.; Ftouh, S.; Laing, C.; Latchem, S.; Lewington, A.; Milford, D.V.; Ostermann, M. The definition of acute kidney injury and its use in practice. Kidney Int. 2015, 87, 62–73. [Google Scholar] [CrossRef]
- Shin, S.R.; Kim, W.H.; Kim, D.J.; Shin, I.W.; Sohn, J.T. Prediction and Prevention of Acute Kidney Injury after Cardiac Surgery. Biomed. Res. Int. 2016, 2016, 2985148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Govindarajulu, U.S.; Spiegelman, D.; Thurston, S.W.; Ganguli, B.; Eisen, E.A. Comparing smoothing techniques in Cox models for exposure-response relationships. Stat. Med. 2007, 26, 3735–3752. [Google Scholar] [CrossRef] [PubMed]
- Durrleman, S.; Simon, R. Flexible regression models with cubic splines. Stat. Med. 1989, 8, 551–561. [Google Scholar] [CrossRef] [PubMed]
- Demler, O.V.; Paynter, N.P.; Cook, N.R. Tests of calibration and goodness-of-fit in the survival setting. Stat. Med. 2015, 34, 1659–1680. [Google Scholar] [CrossRef] [Green Version]
- Harrell, F.E., Jr.; Lee, K.L.; Mark, D.B. Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat. Med. 1996, 15, 361–387. [Google Scholar] [CrossRef]
- Yokoyama, M.; Fujii, Y.; Iimura, Y.; Saito, K.; Koga, F.; Masuda, H.; Kawakami, S.; Kihara, K. Longitudinal change in renal function after radical nephrectomy in Japanese patients with renal cortical tumors. J. Urol. 2011, 185, 2066–2071. [Google Scholar] [CrossRef]
- Barlow, L.J.; Korets, R.; Laudano, M.; Benson, M.; McKiernan, J. Predicting renal functional outcomes after surgery for renal cortical tumours: A multifactorial analysis. BJU Int. 2010, 106, 489–492. [Google Scholar] [CrossRef]
- Huang, W.C.; Levey, A.S.; Serio, A.M.; Snyder, M.; Vickers, A.J.; Raj, G.V.; Scardino, P.T.; Russo, P. Chronic kidney disease after nephrectomy in patients with renal cortical tumours: A retrospective cohort study. Lancet Oncol. 2006, 7, 735–740. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Lau, W.L.; Rhee, C.M.; Harley, K.; Kovesdy, C.P.; Sim, J.J.; Jacobsen, S.; Chang, A.; Landman, J.; Kalantar-Zadeh, K. Risk of chronic kidney disease after cancer nephrectomy. Nat. Rev. Nephrol. 2014, 10, 135–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, H.D.; Pierorazio, P.M.; Johnson, M.H.; Sharma, R.; Iyoha, E.; Allaf, M.E.; Bass, E.B.; Sozio, S.M. Renal Functional Outcomes after Surgery, Ablation, and Active Surveillance of Localized Renal Tumors: A Systematic Review and Meta-Analysis. Clin. J. Am. Soc. Nephrol. 2017, 12, 1057–1069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McIntosh, A.G.; Parker, D.C.; Egleston, B.L.; Uzzo, R.G.; Haseebuddin, M.; Joshi, S.S.; Viterbo, R.; Greenberg, R.E.; Chen, D.Y.T.; Smaldone, M.C.; et al. Prediction of significant estimated glomerular filtration rate decline after renal unit removal to aid in the clinical choice between radical and partial nephrectomy in patients with a renal mass and normal renal function. BJU Int. 2019, 124, 999–1005. [Google Scholar] [CrossRef]
- Fergany, A.F.; Hafez, K.S.; Novick, A.C. Long-term results of nephron sparing surgery for localized renal cell carcinoma: 10-year followup. J. Urol. 2000, 163, 442–445. [Google Scholar] [CrossRef]
- Patard, J.J.; Shvarts, O.; Lam, J.S.; Pantuck, A.J.; Kim, H.L.; Ficarra, V.; Cindolo, L.; Han, K.R.; De La Taille, A.; Tostain, J.; et al. Safety and efficacy of partial nephrectomy for all T1 tumors based on an international multicenter experience. J. Urol. 2004, 171, 2181–2185. [Google Scholar] [CrossRef]
- Klarenbach, S.; Moore, R.B.; Chapman, D.W.; Dong, J.; Braam, B. Adverse renal outcomes in subjects undergoing nephrectomy for renal tumors: A population-based analysis. Eur. Urol. 2011, 59, 333–339. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.; Bianchi, M.; Hansen, J.; Trinh, Q.D.; Abdollah, F.; Tian, Z.; Sammon, J.; Shariat, S.F.; Graefen, M.; Montorsi, F.; et al. Chronic kidney disease after nephrectomy in patients with small renal masses: A retrospective observational analysis. Eur. Urol. 2012, 62, 696–703. [Google Scholar] [CrossRef]
- Alam, R.; Patel, H.D.; Osumah, T.; Srivastava, A.; Gorin, M.A.; Johnson, M.H.; Trock, B.J.; Chang, P.; Wagner, A.A.; McKiernan, J.M.; et al. Comparative effectiveness of management options for patients with small renal masses: A prospective cohort study. BJU Int. 2019, 123, 42–50. [Google Scholar] [CrossRef]
- Campbell, S.C.; Novick, A.C.; Belldegrun, A.; Blute, M.L.; Chow, G.K.; Derweesh, I.H.; Faraday, M.M.; Kaouk, J.H.; Leveillee, R.J.; Matin, S.F.; et al. Guideline for management of the clinical T1 renal mass. J. Urol. 2009, 182, 1271–1279. [Google Scholar] [CrossRef]
- Coca, S.G.; Singanamala, S.; Parikh, C.R. Chronic kidney disease after acute kidney injury: A systematic review and meta-analysis. Kidney Int. 2012, 81, 442–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishani, A.; Xue, J.L.; Himmelfarb, J.; Eggers, P.W.; Kimmel, P.L.; Molitoris, B.A.; Collins, A.J. Acute kidney injury increases risk of ESRD among elderly. J. Am. Soc. Nephrol. 2009, 20, 223–228. [Google Scholar] [CrossRef] [Green Version]
- Lo, L.J.; Go, A.S.; Chertow, G.M.; McCulloch, C.E.; Fan, D.; Ordonez, J.D.; Hsu, C.Y. Dialysis-requiring acute renal failure increases the risk of progressive chronic kidney disease. Kidney Int. 2009, 76, 893–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.S.; Kim, Y.J.; Ryoo, S.M.; Sohn, C.H.; Seo, D.W.; Ahn, S.; Lim, K.S.; Kim, W.Y. One—Year Progression and Risk Factors for the Development of Chronic Kidney Disease in Septic Shock Patients with Acute Kidney Injury: A Single-Centre Retrospective Cohort Study. J. Clin. Med. 2018, 7, 554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hori, D.; Katz, N.M.; Fine, D.M.; Ono, M.; Barodka, V.M.; Lester, L.C.; Yenokyan, G.; Hogue, C.W. Defining oliguria during cardiopulmonary bypass and its relationship with cardiac surgery-associated acute kidney injury. Br. J. Anaesth. 2016, 117, 733–740. [Google Scholar] [CrossRef] [Green Version]
- Mizota, T.; Yamamoto, Y.; Hamada, M.; Matsukawa, S.; Shimizu, S.; Kai, S. Intraoperative oliguria predicts acute kidney injury after major abdominal surgery. Br. J. Anaesth. 2017, 119, 1127–1134. [Google Scholar] [CrossRef] [Green Version]
- Gaffney, A.M.; Sladen, R.N. Acute kidney injury in cardiac surgery. Curr. Opin. Anaesthesiol. 2015, 28, 50–59. [Google Scholar] [CrossRef] [Green Version]
- Anderson, R.J.; Linas, S.L.; Berns, A.S.; Henrich, W.L.; Miller, T.R.; Gabow, P.A.; Schrier, R.W. Nonoliguric acute renal failure. N. Engl. J. Med. 1977, 296, 1134–1138. [Google Scholar] [CrossRef]
- Anderson, R.G.; Bueschen, A.J.; Lloyd, L.K.; Dubovsky, E.V.; Burns, J.R. Short-term and long-term changes in renal function after donor nephrectomy. J. Urol. 1991, 145, 11–13. [Google Scholar] [CrossRef]
- Vincenti, F.; Amend, W.J., Jr.; Kaysen, G.; Feduska, N.; Birnbaum, J.; Duca, R.; Salvatierra, O. Long-term renal function in kidney donors. Sustained compensatory hyperfiltration with no adverse effects. Transplantation 1983, 36, 626–629. [Google Scholar] [CrossRef]
- Talseth, T.; Fauchald, P.; Skrede, S.; Djoseland, O.; Berg, K.J.; Stenstrom, J.; Heilo, A.; Brodwall, E.K.; Flatmark, A. Long-term blood pressure and renal function in kidney donors. Kidney Int. 1986, 29, 1072–1076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Najarian, J.S.; Chavers, B.M.; McHugh, L.E.; Matas, A.J. 20 years or more of follow-up of living kidney donors. Lancet 1992, 340, 807–810. [Google Scholar] [CrossRef]
- Giglio, M.; Dalfino, L.; Puntillo, F.; Brienza, N. Hemodynamic goal-directed therapy and postoperative kidney injury: An updated meta-analysis with trial sequential analysis. Crit. Care 2019, 23, 232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hur, M.; Park, S.K.; Yoo, S.; Choi, S.N.; Jeong, C.W.; Kim, W.H.; Kim, J.T.; Kwak, C.; Bahk, J.H. The association between intraoperative urine output and postoperative acute kidney injury differs between partial and radical nephrectomy. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Jeon, H.G.; Jeong, I.G.; Lee, J.W.; Lee, S.E.; Lee, E. Prognostic factors for chronic kidney disease after curative surgery in patients with small renal tumors. Urology 2009, 74, 1064–1068. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.Y.; Hong, J.H.; Koh, D.H.; Lee, J.; Nam, H.J.; Kim, S.Y. Effect of Diabetes Mellitus on Acute Kidney Injury after Minimally Invasive Partial Nephrectomy: A Case-Matched Retrospective Analysis. J. Clin. Med. 2019, 8, 468. [Google Scholar] [CrossRef] [Green Version]
- Bijol, V.; Mendez, G.P.; Hurwitz, S.; Rennke, H.G.; Nose, V. Evaluation of the nonneoplastic pathology in tumor nephrectomy specimens: Predicting the risk of progressive renal failure. Am. J. Surg. Pathol. 2006, 30, 575–584. [Google Scholar] [CrossRef]
- Kil, H.K.; Kim, J.Y.; Choi, Y.D.; Lee, H.S.; Kim, T.K.; Kim, J.E. Effect of Combined Treatment of Ketorolac and Remote Ischemic Preconditioning on Renal Ischemia-Reperfusion Injury in Patients Undergoing Partial Nephrectomy: Pilot Study. J. Clin. Med. 2018, 7, 470. [Google Scholar] [CrossRef] [Green Version]
- Bravi, C.A.; Larcher, A.; Capitanio, U.; Mari, A.; Antonelli, A.; Artibani, W.; Barale, M.; Bertini, R.; Bove, P.; Brunocilla, E.; et al. Perioperative Outcomes of Open, Laparoscopic, and Robotic Partial Nephrectomy: A Prospective Multicenter Observational Study (The RECORd 2 Project). Eur. Urol. Focus 2019. [Google Scholar] [CrossRef] [Green Version]
Variables | Patients | Proportion without Missing (%) |
---|---|---|
Demographic data | ||
Age, year | 60 (51–68) | 100 |
Female, n | 171 (30.6) | 100 |
Body-mass index, kg/m2 | 24.4 (22.6–26.2) | 100 |
Baseline medical status | ||
Hypertension, n | 287 (51.4) | 100 |
Diabetes mellitus, n | 98 (17.6) | 100 |
Cerebrovascular accident, n | 11 (2.0) | 100 |
Angina pectoris, n | 9 (1.6) | 100 |
Preoperative hemoglobin, g/dL | 13.5 (12.0–14.6) | 100 |
Preoperative serum albumin level, mg/dL | 4.3 (4.1–4.6) | 99.8 |
Preoperative proteinuria, n | 67 (12.0) | 100 |
Preoperative hematuria, n | 53 (9.5) | 100 |
Preoperative eGFR, mL/min/1.73 m2 | 100 | |
eGFR ≥ 90 mL/min/m2 | 153 (27.4) | |
eGFR 60–89 mL/min/1.73m2 | 405 (72.6) | |
Surgical parameters | ||
Surgery type, n | 100 | |
Laparoscopic | 223 (40.0) | |
Robot-assisted | 9 (1.6) | |
Open | 325 (58.2) | |
Clinical stage, n | 100 | |
T1a/ T1b | 141 (25.3)/152 (27.2) | |
T2a/ T2b | 154 (27.6)/61 (10.9) | |
T3a/T3b/T3c | 19 (3.4)/ 17 (3.0)/14 (2.5) | |
N 0/1 | 514 (92.1)/44 (7.9) | |
M 0/1 | 520 (93.2)/38 (6.8) | |
R.E.N.A.L. score | 100 | |
Low (4–6) | 225 (40.3) | |
Intermediate (7–9) | 286 (51.3) | |
High (10–12) | 47 (8.4) | |
Tumor maximal diameter, cm | 5.5 (3.2–7.8) | 100 |
Operation time, min | 130 (100–170) | 100 |
Bleeding and transfusion amount | ||
pRBC transfusion, n | 52 (9.3) | 100 |
Estimated blood loss, mL | 200 (100–400) | 99.6 |
Anesthesia-related parameters | ||
Volatile anesthetics use, n | 494 (88.5) | |
Total intravenous anesthesia, n | 64 (11.5) | |
Crystalloid administration, mL | 1100 (750–1500) | 100 |
Colloid administration, mL | 0 (0–300) | 100 |
Vasopressor infusion during surgery | 29 (5.2) | 100 |
Variable | Hazard Ratio | 95% CI | p-Value |
---|---|---|---|
Age, years | 1.05 | 1.00–1.09 | 0.043 |
Female | 1.30 | 0.81–2.10 | 0.368 |
Body-mass index, kg/m2 | 1.01 | 0.95–1.08 | 0.769 |
History of hypertension | 1.70 | 1.07–2.78 | 0.022 |
History of diabetes mellitus | 1.95 | 1.13–3.44 | 0.012 |
Preoperative hemoglobin, g/dL | 1.14 | 0.99–1.30 | 0.064 |
Preoperative albumin, g/dL | 0.63 | 0.33–1.12 | 0.077 |
Preoperative proteinuria, n | 0.82 | 0.42–1.80 | 0.547 |
Preoperative hematuria, n | 1.12 | 0.57–1.74 | 0.657 |
Preoperative estimated glomerular filtration rate, mL/min/1.73m2 | 0.99 | 0.98–0.99 | 0.042 |
Postoperative acute kidney injury | 2.46 | 1.70–3.63 | <0.001 |
No acute kidney injury | baseline | ||
Acute kidney injury stage 1 | 1.71 | 1.25–2.32 | <0.001 |
Acute kidney injury stage 2 or 3 | 2.72 | 1.78–4.10 | <0.001 |
Preoperative tumor maximal diameter, cm | 1.05 | 0.97–1.12 | 0.164 |
Open surgery (vs. laparoscopic or robot-assisted) | 0.74 | 0.49–1.15 | 0.255 |
Operation time, hour | 0.96 | 0.81–1.18 | 0.847 |
Total intravenous anesthesia | 0.89 | 0.61–1.35 | 0.558 |
Intraoperative crystalloid administration, per 100 mL | 0.87 | 0.62–1.28 | 0.415 |
Intraoperative colloid administration, per 100 mL | 1.06 | 0.98–1.16 | 0.176 |
Intraoperative vasopressor infusion, n | 0.94 | 0.92–1.17 | 0.514 |
Red blood cell transfusion, n | 0.82 | 0.37–1.75 | 0.427 |
Variable | β ± Standard Error | p-Value | VIF |
---|---|---|---|
Age, years | 0.012 ± 0.001 | 0.057 | 1.69 |
Female | 0.037 ± 0.031 | 0.240 | 1.30 |
Body-mass index, kg/m2 | 0.002 ± 0.005 | 0.647 | 1.14 |
History of hypertension | −0.030 ± 0.011 | 0.047 | 1.52 |
History of diabetes mellitus | −0.044 ± 0.018 | 0.044 | 1.24 |
Preoperative hemoglobin concentration, g/dL | 0.007 ± 0.010 | 0.411 | 2.06 |
Preoperative albumin level, mg/dL | 0.033 ± 0.041 | 0.481 | 1.82 |
Preoperative proteinuria | −0.034 ± 0.047 | 0.470 | 1.45 |
Preoperative estimated glomerular filtration rate, per 10 mL/min/1.73 m2 | 0.170 ± 0.122 | 0.002 | 1.26 |
Postoperative acute kidney injury | −0.168 ± 0.322 | 0.011 | 1.16 |
Maximal diameter of renal mass, cm | 0.002 ± 0.004 | 0.572 | 1.28 |
Open surgery (vs. laparoscopic or robot-assisted) | −0.030 ± 0.028 | 0.228 | 1.19 |
Operation time, hour | −0.016 ± 0.012 | 0.179 | 1.20 |
Total intravenous anesthesia | 0.069 ± 0.056 | 0.375 | 1.10 |
Intraoperative crystalloid administration, mL/kg | −0.011 ± 0.023 | 0.724 | 1.45 |
Intraoperative colloid administration, mL/kg | −0.001 ± 0.004 | 0.717 | 1.37 |
Intraoperative red cell transfusion, n | 0.096 ± 0.049 | 0.150 | 1.39 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, W.H.; Shin, K.W.; Ji, S.-H.; Jang, Y.-E.; Lee, J.-H.; Jeong, C.W.; Kwak, C.; Lim, Y.-J. Robust Association between Acute Kidney Injury after Radical Nephrectomy and Long-term Renal Function. J. Clin. Med. 2020, 9, 619. https://doi.org/10.3390/jcm9030619
Kim WH, Shin KW, Ji S-H, Jang Y-E, Lee J-H, Jeong CW, Kwak C, Lim Y-J. Robust Association between Acute Kidney Injury after Radical Nephrectomy and Long-term Renal Function. Journal of Clinical Medicine. 2020; 9(3):619. https://doi.org/10.3390/jcm9030619
Chicago/Turabian StyleKim, Won Ho, Kyung Won Shin, Sang-Hwan Ji, Young-Eun Jang, Ji-Hyun Lee, Chang Wook Jeong, Cheol Kwak, and Young-Jin Lim. 2020. "Robust Association between Acute Kidney Injury after Radical Nephrectomy and Long-term Renal Function" Journal of Clinical Medicine 9, no. 3: 619. https://doi.org/10.3390/jcm9030619
APA StyleKim, W. H., Shin, K. W., Ji, S. -H., Jang, Y. -E., Lee, J. -H., Jeong, C. W., Kwak, C., & Lim, Y. -J. (2020). Robust Association between Acute Kidney Injury after Radical Nephrectomy and Long-term Renal Function. Journal of Clinical Medicine, 9(3), 619. https://doi.org/10.3390/jcm9030619