A Cross-Sectional Study Evaluating the Effects of Resistance Exercise on Inflammation and Neurotrophic Factors in Elderly Women with Obesity
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Research Procedure
2.3. Blood Collection and Analysis
2.4. Resistance Training Intervention
2.5. Statistical Analysis
3. Results
3.1. Change in the Body Composition
3.2. Change in Fasting Glucose Levels and Lipid Profile
3.3. Change in Serum Inflammation Markers
3.4. Change in Serum Neurotrophic Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bischof, G.N.; Park, D.C. Obesity and Aging: Consequences for Cognition, Brain Structure, and Brain Function. Psychosom. Med. 2015, 77, 697–709. [Google Scholar] [CrossRef] [Green Version]
- Solas, M.; Milagro, F.I.; Ramírez, M.J.; Martínez, J.A. Inflammation and gut-brain axis link obesity to cognitive dysfunction: Plausible pharmacological interventions. Curr. Opin. Pharmacol. 2017, 37, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Pugazhenthi, S.; Qin, L.; Reddy, P.H. Common neurodegenerative pathways in obesity, diabetes, and Alzheimer’s disease. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 1037–1045. [Google Scholar] [CrossRef] [PubMed]
- Geha, P.; Cecchi, G.; Todd Constable, R.; Abdallah, C.; Small, D.M. Reorganization of brain connectivity in obesity. Hum. Brain Mapp. 2017, 38, 1403–1420. [Google Scholar] [CrossRef] [PubMed]
- Caunca, M.R.; Gardener, H.; Simonetto, M.; Cheung, Y.K.; Alperin, N.; Yoshita, M.; DeCarli, C.; Elkind, M.S.V.; Sacco, R.L.; Wright, C.B.; et al. Measures of obesity are associated with MRI markers of brain aging: The Northern Manhattan Study. Neurology 2019, 93, e791–e803. [Google Scholar] [CrossRef]
- Heneka, M.T.; Carson, M.J.; El Khoury, J.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015, 14, 388–405. [Google Scholar] [CrossRef] [Green Version]
- Tsai, S.Y.; Gildengers, A.G.; Hsu, J.L.; Chung, K.H.; Chen, P.H.; Huang, Y.J. Inflammation associated with volume reduction in the gray matter and hippocampus of older patients with bipolar disorder. J. Affect. Disord. 2019, 244, 60–66. [Google Scholar] [CrossRef]
- Marosi, K.; Mattson, M.P. BDNF mediates adaptive brain and body responses to energetic challenges. Trends Endocrinol. Metab. 2014, 25, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Błaszczyk, E.; Gawlik, A. Neurotrophins, VEGF and matrix metalloproteinases: New markers or causative factors of metabolic syndrome components? Pediatr. Endocrinol. Diabetes Metab. 2016, 22, 125–131. [Google Scholar] [CrossRef]
- Huang, C.J.; Mari, D.C.; Whitehurst, M.; Slusher, A.; Wilson, A.; Shibata, Y. Brain-derived neurotrophic factor expression ex vivo in obesity. Physiol. Behav. 2014, 123, 76–79. [Google Scholar] [CrossRef]
- Roh, H.T.; So, W.Y. The effects of aerobic exercise training on oxidant-antioxidant balance, neurotrophic factor levels, and blood-brain barrier function in obese and non-obese men. J. Sport Health Sci. 2017, 6, 447–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandrini, L.; Di Minno, A.; Amadio, P.; Ieraci, A.; Tremoli, E.; Barbieri, S.S. Association between Obesity and Circulating Brain-Derived Neurotrophic Factor (BDNF) Levels: Systematic Review of Literature and Meta-Analysis. Int. J. Mol. Sci. 2018, 19, 2281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Gharbawy, A.H.; Adler-Wailes, D.C.; Mirch, M.C.; Theim, K.R.; Ranzenhofer, L.; Tanofsky-Kraff, M.; Yanovski, J.A. Serum brain-derived neurotrophic factor concentrations in lean and overweight children and adolescents. J. Clin. Endocrinol. Metab. 2006, 91, 3548–3552. [Google Scholar] [CrossRef] [PubMed]
- Pasarica, M.; Sereda, O.R.; Redman, L.M.; Albarado, D.C.; Hymel, D.T.; Roan, L.E.; Rood, J.C.; Burk, D.H.; Smith, S.R. Reduced adipose tissue oxygenation in human obesity: Evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes 2009, 58, 718–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedersen, B.K.; Saltin, B. Exercise as medicine-evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand. J. Med. Sci. Sports 2015, 25, 1–72. [Google Scholar] [CrossRef] [Green Version]
- Lesniewski, L.A.; Durrant, J.R.; Connell, M.L.; Henson, G.D.; Black, A.D.; Donato, A.J.; Seals, D.R. Aerobic exercise reverses arterial inflammation with aging in mice. Am. J. Physiol. Heart Circ. Physiol. 2011, 301, H1025–H1032. [Google Scholar] [CrossRef]
- Slusher, A.L.; Huang, C.J.; Acevedo, E.O. The Potential Role of Aerobic Exercise-Induced Pentraxin 3 on Obesity-Related Inflammation and Metabolic Dysregulation. Mediat. Inflamm. 2017, 2017, 92738. [Google Scholar] [CrossRef]
- Cooper, C.; Moon, H.Y.; van Praag, H. On the Run for Hippocampal Plasticity. Cold Spring Harb. Perspect. Med. 2018, 8, a029736. [Google Scholar] [CrossRef]
- Papa, E.V.; Dong, X.; Hassan, M. Resistance training for activity limitations in older adults with skeletal muscle function deficits: A systematic review. Clin. Interv. Aging 2017, 12, 955–961. [Google Scholar] [CrossRef] [Green Version]
- Dela, F.; Kjaer, M. Resistance training, insulin sensitivity and muscle function in the elderly. Essays Biochem. 2006, 42, 75–88. [Google Scholar]
- Chatzinikolaou, A.; Fatouros, I.; Petridou, A.; Jamurtas, A.; Avloniti, A.; Douroudos, I.; Mastorakos, G.; Lazaropoulou, C.; Papassotiriou, I.; Tournis, S.; et al. Adipose tissue lipolysis is upregulated in lean and obese men during acute resistance exercise. Diabetes Care 2008, 31, 1397–1399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petridou, A.; Siopi, A.; Mougios, V. Exercise in the management of obesity. Metabolism 2019, 92, 163–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bray, G.A.; Heisel, W.E.; Afshin, A.; Jensen, M.D.; Dietz, W.H.; Long, M.; Kushner, R.F.; Daniels, S.R.; Wadden, T.A.; Tsai, A.G.; et al. The Science of Obesity Management: An Endocrine Society Scientific Statement. Endocr. Rev. 2018, 39, 79–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Distefano, G.; Goodpaster, B.H. Effects of Exercise and Aging on Skeletal Muscle. Cold Spring Harb. Perspect. Med. 2018, 8, a029785. [Google Scholar] [CrossRef] [Green Version]
- Liao, C.D.; Tsauo, J.Y.; Lin, L.F.; Huang, S.W.; Ku, J.W.; Chou, L.C.; Liou, T.H. Effects of elastic resistance exercise on body composition and physical capacity in older women with sarcopenic obesity: A CONSORT-compliant prospective randomized controlled trial. Medicine 2017, 96, e7115. [Google Scholar] [CrossRef]
- Liao, C.D.; Tsauo, J.Y.; Huang, S.W.; Ku, J.W.; Hsiao, D.J.; Liou, T.H. Effects of elastic band exercise on lean mass and physical capacity in older women with sarcopenic obesity: A randomized controlled trial. Sci. Rep. 2018, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, J.J. Body composition and resting metabolic rate: The myth of feminine metabolism. Am. J. Clin. Nutr. 1982, 36, 721–726. [Google Scholar] [CrossRef] [Green Version]
- Bweir, S.; Al-Jarrah, M.; Almalty, A.M.; Maayah, M.; Smirnova, I.V.; Novikova, L.; Stehno-Bittel, L. Resistance exercise training lowers HbA1c more than aerobic training in adults with type 2 diabetes. Diabetol. Metab. Syndr. 2009, 1, 27. [Google Scholar] [CrossRef] [Green Version]
- Baldi, J.C.; Snowling, N. Resistance training improves glycaemic control in obese type 2 diabetic men. Int. J. Sports Med. 2003, 24, 419–423. [Google Scholar]
- Swift, D.L.; McGee, J.E.; Earnest, C.P.; Carlisle, E.; Nygard, M.; Johannsen, N.M. The Effects of Exercise and Physical Activity on Weight Loss and Maintenance. Prog. Cardiovasc. Dis. 2018, 61, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Tomás, C.; Chulvi-Medrano, I.; Carrasco, J.J.; Alakhdar, Y. Effect of a 1-year elastic band resistance exercise program on cardiovascular risk profile in postmenopausal women. Menopause 2018, 25, 1004–1010. [Google Scholar] [CrossRef] [PubMed]
- Guillemot-Legris, O.; Muccioli, G.G. Obesity-Induced Neuroinflammation: Beyond the Hypothalamus. Trends Neurosci. 2017, 40, 237–253. [Google Scholar] [CrossRef] [PubMed]
- Singhal, G.; Jaehne, E.J.; Corrigan, F.; Toben, C.; Baune, B.T. Inflammasomes in neuroinflammation and changes in brain function: A focused review. Front. Neurosci. 2014, 8, 315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farinha, J.B.; Steckling, F.M.; Stefanello, S.T.; Cardoso, M.S.; Nunes, L.S.; Barcelos, R.P.; Duarte, T.; Kretzmann, N.A.; Mota, C.B.; Bresciani, G.; et al. Response of oxidative stress and inflammatory biomarkers to a 12-week aerobic exercise training in women with metabolic syndrome. Sports Med. Open 2015, 1, 19. [Google Scholar] [CrossRef] [Green Version]
- Balducci, S.; Zanuso, S.; Nicolucci, A.; Fernando, F.; Cavallo, S.; Cardelli, P.; Fallucca, S.; Alessi, E.; Letizia, C.; Jimenez, A.; et al. Anti-inflammatory effect of exercise training in subjects with type 2 diabetes and the metabolic syndrome is dependent on exercise modalities and independent of weight loss. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 608–617. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.X.; Cai, Y.; Xie, K.L.; Zhang, W.L.; Zheng, F. Effects of combined aerobic and resistance training on the glycolipid metabolism and inflammation levels in type 2 diabetes mellitus. J. Phys. Ther. Sci. 2015, 27, 2365–2371. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Chu, J.M.T.; Yan, T.; Zhang, Y.; Chen, Y.; Chang, R.C.C.; Wong, G.T.C. Short-term resistance exercise inhibits neuroinflammation and attenuates neuropathological changes in 3xTg Alzheimer’s disease mice. J. Neuroinflamm. 2020, 17, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Visser, M.; Pahor, M.; Taaffe, D.R.; Goodpaster, B.H.; Simonsick, E.M.; Newman, A.B.; Nevitt, M.; Harris, T.B. Relationship of interleukin-6 and tumor necrosis factor-alpha with muscle mass and muscle strength in elderly men and women: The Health ABC Study. J. Gerontol. A Biol. Sci. Med. Sci. 2002, 57, M326–M332. [Google Scholar] [CrossRef] [Green Version]
- Snijders, T.; Verdijk, L.B.; van Loon, L.J. The impact of sarcopenia and exercise training on skeletal muscle satellite cells. Ageing Res. Rev. 2009, 8, 328–338. [Google Scholar] [CrossRef]
- Cotman, C.W.; Berchtold, N.C.; Christie, L.A. Exercise builds brain health: Key roles of growth factor cascades and inflammation. Trends Neurosci. 2007, 30, 464–472. [Google Scholar] [CrossRef] [PubMed]
- El-Sayes, J.; Harasym, D.; Turco, C.V.; Locke, M.B.; Nelson, A.J. Exercise-Induced Neuroplasticity: A Mechanistic Model and Prospects for Promoting Plasticity. Neuroscientist 2019, 25, 65–85. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.Y.; Roh, H.T. Effects of aerobic exercise training on peripheral brain-derived neurotrophic factor and eotaxin-1 levels in obese young men. J. Phys. Ther. Sci. 2016, 28, 1355–1358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araya, A.V.; Orellana, X.; Godoy, D.; Soto, L.; Fiedler, J. Effect of exercise on circulating levels of brain-derived neurotrophic factor (BDNF) in overweight and obese subjects. Horm. Metab. Res. 2013, 45, 541–544. [Google Scholar] [CrossRef]
- Park, J.; Nakamura, Y.; Kwon, Y.; Park, H. The effect of combined exercise training on carotid artery structure and function, and vascular endothelial growth factor (VEGF) in obese older women. Jpn. J. Phys. Fit. Sports Med. 2010, 59, 495–504. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.M.; Kim, J.H.; Cho, G.J.; Baik, S.H.; Park, H.S.; Kim, S.M. Effect of exercise training on plasma visfatin and eotaxin levels. Eur. J. Endocrinol. 2007, 157, 437–442. [Google Scholar] [CrossRef]
- Forti, L.N.; Van Roie, E.; Njemini, R.; Coudyzer, W.; Beyer, I.; Delecluse, C.; Bautmans, I. Dose-and gender-specific effects of resistance training on circulating levels of brain derived neurotrophic factor (BDNF) in community-dwelling older adults. Exp. Gerontol. 2015, 70, 144–149. [Google Scholar] [CrossRef]
- Gordon, B.A.; Benson, A.C.; Bird, S.R.; Fraser, S.F. Resistance training improves metabolic health in type 2 diabetes: A systematic review. Diabetes Res. Clin. Pract. 2009, 83, 157–175. [Google Scholar] [CrossRef]
Group | CG (n = 13) | EG (n = 13) | p |
---|---|---|---|
Variables | |||
Age (years) | 70.23 ± 6.06 | 70.92 ± 6.60 | 0.783 |
Height (cm) | 153.23 ± 4.75 | 153.58 ± 5.06 | 0.859 |
Weight (kg) | 60.45 ± 6.07 | 57.72 ± 4.97 | 0.222 |
BMI (kg/m2) | 25.72 ± 2.32 | 24.67 ± 1.55 | 0.186 |
SLM (kg) | 35.36 ± 3.18 | 34.57 ± 2.96 | 0.519 |
SMM (kg) | 20.12 ± 1.99 | 19.70 ± 1.82 | 0.583 |
BFM (kg) | 22.82 ± 3.76 | 20.85 ± 2.62 | 0.136 |
PBF (%) | 37.60 ± 3.40 | 36.07 ± 2.51 | 0.203 |
WHR | 0.91 ± 0.06 | 0.89 ± 0.03 | 0.322 |
BMR (kcal) | 1182.69 ± 72.15 | 1166.31 ± 67.26 | 0.555 |
Glucose (mg/dL) | 103.92 ± 11.63 | 108.23 ± 12.32 | 0.368 |
TC (mg/dL) | 189.46 ± 55.76 | 183.92 ± 43.65 | 0.780 |
TG (mg/dL) | 139.00 ± 49.64 | 166.85 ± 98.44 | 0.372 |
LDL-C (mg/dL) | 108.82 ± 56.18 | 100.48 ± 35.85 | 0.656 |
HDL-C (mg/dL) | 52.85 ± 16.80 | 50.08 ± 8.55 | 0.601 |
NF-κB (ng/mL) | 4.66 ± 1.61 | 4.51 ± 1.36 | 0.798 |
IFN-γ (pg/mL) | 10.12 ± 3.57 | 9.96 ± 3.82 | 0.913 |
BDNF (ng/mL) | 1.43 ± 0.16 | 1.55 ± 0.26 | 0.197 |
VEGF (pg/mL) | 56.88 ± 11.08 | 58.15 ± 11.08 | 0.773 |
Eotaxin-1 (pg/mL) | 8.86 ± 2.92 | 9.63 ± 2.63 | 0.485 |
Group | CG (n = 13) | EG (n = 13) | Time × Group Interaction | |||
---|---|---|---|---|---|---|
Variables | Baseline | 12-Week | Baseline | 12-Week | F | p |
Weight (kg) | 60.45 ± 6.07 | 59.25 ± 5.66 | 57.72 ± 4.97 | 57.23 ± 5.10 | 3.872 | 0.061 |
CV | 0.10 | 0.10 | 0.09 | 0.09 | ||
BMI (kg/m2) | 25.72 ± 2.32 | 25.29 ± 2.41 | 24.67 ± 1.55 | 24.38 ± 1.55 | 0.692 | 0.414 |
CV | 0.09 | 0.10 | 0.06 | 0.06 | ||
SLM (kg) | 35.36 ± 3.18 | 34.81 ± 3.13 † | 34.57 ± 2.96 | 35.17 ± 2.96 # | 12.726 | 0.002 * |
CV | 0.09 | 0.09 | 0.09 | 0.09 | ||
SMM (kg) | 20.12 ± 1.99 | 19.77 ± 1.94 † | 19.70 ± 1.82 | 20.07 ± 1.99 # | 13.861 | 0.001 * |
CV | 0.10 | 0.10 | 0.09 | 0.10 | ||
BFM (kg) | 22.82 ± 3.76 | 22.21 ± 3.67 | 20.85 ± 2.62 | 19.79 ± 2.78 | 0.942 | 0.342 |
CV | 0.16 | 0.17 | 0.13 | 0.14 | ||
PBF (%) | 37.60 ± 3.40 | 37.37 ± 3.82 | 36.07 ± 2.51 | 34.52 ± 3.08 | 24.000 | 0.057 |
CV | 0.09 | 0.10 | 0.07 | 0.09 | ||
WHR | 0.91 ± 0.06 | 0.90 ± 0.05 | 0.89 ± 0.03 | 0.90 ± 0.03 | 3.450 | 0.076 |
CV | 0.07 | 0.06 | 0.04 | 0.03 | ||
BMR (kcal) | 1182.69 ± 72.15 | 1169.69 ± 69.97 † | 1166.31 ± 67.26 | 1178.77 ± 74.72 # | 12.599 | 0.002 * |
CV | 0.06 | 0.06 | 0.06 | 0.06 |
Group | CG (n = 13) | EG (n = 13) | Time × Group Interaction | |||
---|---|---|---|---|---|---|
Variables | Baseline | 12-Week | Baseline | 12-Week | F | p |
Glucose (mg/dL) | 103.92 ± 11.63 | 106.00 ± 20.02 | 108.23 ± 12.32 | 97.77 ± 13.78 # | 5.970 | 0.022 * |
CV | 0.11 | 0.19 | 0.11 | 0.14 | ||
TC (mg/dL) | 189.46 ± 55.76 | 185.38 ± 45.64 | 183.92 ± 43.65 | 194.54 ± 43.84 | 1.177 | 0.634 |
CV | 0.29 | 0.25 | 0.24 | 0.23 | ||
TG (mg/dL) | 139.00 ± 49.64 | 102.85 ± 30.03 | 166.85 ± 98.44 | 121.23 ± 58.99 | 0.088 | 0.769 |
CV | 0.36 | 0.29 | 0.59 | 0.49 | ||
LDL-C (mg/dL) | 108.82 ± 56.18 | 109.43 ± 45.31 | 100.48 ± 35.85 | 118.06 ± 40.45 | 2.333 | 0.140 |
CV | 0.52 | 0.41 | 0.36 | 0.34 | ||
HDL-C (mg/dL) | 52.85 ± 16.80 | 55.38 ± 13.89 | 50.08 ± 8.55 | 52.23 ± 12.25 | 0.010 | 0.920 |
CV | 0.32 | 0.25 | 0.17 | 0.23 |
Group | CG (n = 13) | EG (n = 13) | Time × Group Interaction | |||
---|---|---|---|---|---|---|
Variables | Baseline | 12-Week | Baseline | 12-Week | F | p |
NF-κB (ng/mL) | 4.66 ± 1.61 | 4.78 ± 1.68 | 4.51 ± 1.36 | 4.23 ± 1.24 # | 6.084 | 0.021 * |
CV | 0.35 | 0.35 | 0.30 | 0.29 | ||
IFN-γ (pg/mL) | 10.12 ± 3.57 | 11.20 ± 4.15 | 9.96 ± 3.82 | 7.85 ± 2.80 ∫ | 6.764 | 0.016 * |
CV | 0.35 | 0.37 | 0.38 | 0.36 |
Group | CG (n = 13) | EG (n = 13) | Time × Group Interaction | |||
---|---|---|---|---|---|---|
Variables | Baseline | 12-Week | Baseline | 12-Week | F | p |
BDNF (ng/mL) | 1.43 ± 0.16 | 1.32 ± 0.18 | 1.55 ± 0.26 | 1.61 ± 0.22 #,∫ | 28.496 | <0.001 * |
CV | 0.11 | 0.14 | 0.17 | 0.14 | ||
VEGF (pg/mL) | 56.88 ± 11.08 | 55.67 ± 10.03 | 58.15 ± 11.08 | 62.64 ± 13.27 # | 11.767 | 0.002 * |
CV | 0.19 | 0.18 | 0.19 | 0.21 | ||
Eotaxin-1 (pg/mL) | 8.86 ± 2.92 | 9.50 ± 3.03 | 9.63 ± 2.63 | 8.15 ± 3.15 # | 11.341 | 0.003 * |
CV | 0.33 | 0.32 | 0.27 | 0.39 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roh, H.-T.; Cho, S.-Y.; So, W.-Y. A Cross-Sectional Study Evaluating the Effects of Resistance Exercise on Inflammation and Neurotrophic Factors in Elderly Women with Obesity. J. Clin. Med. 2020, 9, 842. https://doi.org/10.3390/jcm9030842
Roh H-T, Cho S-Y, So W-Y. A Cross-Sectional Study Evaluating the Effects of Resistance Exercise on Inflammation and Neurotrophic Factors in Elderly Women with Obesity. Journal of Clinical Medicine. 2020; 9(3):842. https://doi.org/10.3390/jcm9030842
Chicago/Turabian StyleRoh, Hee-Tae, Su-Youn Cho, and Wi-Young So. 2020. "A Cross-Sectional Study Evaluating the Effects of Resistance Exercise on Inflammation and Neurotrophic Factors in Elderly Women with Obesity" Journal of Clinical Medicine 9, no. 3: 842. https://doi.org/10.3390/jcm9030842
APA StyleRoh, H. -T., Cho, S. -Y., & So, W. -Y. (2020). A Cross-Sectional Study Evaluating the Effects of Resistance Exercise on Inflammation and Neurotrophic Factors in Elderly Women with Obesity. Journal of Clinical Medicine, 9(3), 842. https://doi.org/10.3390/jcm9030842