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Abstract: Background: Microelectrode recordings (MER) are used to optimize lead placement during
subthalamic nucleus deep brain stimulation (STN-DBS). To obtain reliable MER, surgery is usually
performed while patients are awake. Procedural sedation and analgesia (PSA) is often desirable to
improve patient comfort, anxiolysis and pain relief. The effect of these agents on MER are largely
unknown. The objective of this study was to determine the effects of commonly used PSA agents,
dexmedetomidine, clonidine and remifentanil and patient characteristics on MER during DBS surgery.
Methods: Data from 78 patients with Parkinson’s disease (PD) who underwent STN-DBS surgery
were retrospectively reviewed. The procedures were performed under local anesthesia or under PSA
with dexmedetomidine, clonidine or remifentanil. In total, 4082 sites with multi-unit activity (MUA)
and 588 with single units were acquired. Single unit firing rates and coefficient of variation (CV),
and MUA total power were compared between patient groups. Results: We observed a significant
reduction in MUA, an increase of the CV and a trend for reduced firing rate by dexmedetomidine.
The effect of dexmedetomidine was dose-dependent for all measures. Remifentanil had no effect
on the firing rate but was associated with a significant increase in CV and a decrease in MUA.
Clonidine showed no significant effect on firing rate, CV or MUA. In addition to anesthetic effects,
MUA and CV were also influenced by patient-dependent variables. Conclusion: Our results showed
that PSA influenced neuronal properties in the STN and the dexmedetomidine (DEX) effect was
dose-dependent. In addition, patient-dependent characteristics also influenced MER.
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1. Introduction

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a well-established procedure
for the treatment of refractory Parkinson’s disease (PD) [1]. The clinical outcome of the surgery largely
depends on correct positioning of the stimulating electrode in the sensorimotor region of the STN [2,3].
Microelectrode recordings (MER) of single-cell and multi-unit neuronal activity are commonly used
to verify the borders of the STN [4]. To obtain reliable MER, DBS surgery is traditionally performed
under local anesthesia alone, as the sedative and anesthetic agents may interfere with neural activity.
However, patients may experience pain, anxiety or other forms of discomfort. To improve patient
comfort and tolerance of the DBS implantation procedure, procedural sedation and/or analgesia (PSA)
may be applied [5].

Propofol is commonly used for sedation during DBS implantation. It exerts its clinical effect
through an agonist effect on the gamma-aminobutyric acid type A (GABAA) receptor [6]. Several
studies have shown that GABAergic agents alter STN activity in a dose-dependent manner [7–9]. In the
past decade experience has been gained with non-GABA-mediated agents, including the α2-agonists
clonidine (CLONI) and dexmedetomidine (DEX), which possess sedative and mild analgesic effects,
and the ultrashort acting opioid, remifentanil (REMI) which provides potent analgesia and mild
sedation. Since the pharmacokinetic effects of these drugs are not mediated by GABAA receptors, their
influence on STN neuronal activity is postulated to be less pronounced than of GABAergic agents.
However, the available literature on non-GABA-mediated PSA effects on STN neuronal activity is
sparse and consists largely of small uncontrolled retrospective case series with poor control over
heterogeneity in patient cohorts [10–16].

The primary aim of this study was to determine the effect of the non-GABAergic PSA agents DEX,
CLONI and REMI on MER in patients with PD during DBS electrode implantation surgery. In addition
to PSA-related effects on MER, we analyzed patient characteristics such as age, disease severity and
disease duration to control for heterogeneity in the sample.

2. Materials and Methods

2.1. Subjects

After gaining the approval of the local ethical committee (METC Maastricht University Medical
Center, the Netherlands, protocol number 184214) we conducted a retrospective analysis of data from
all PD patients who underwent DBS surgery in Maastricht UMC+ between January 2009 and December
2018. We acquired patient demographics and anesthetic data and retrieved the raw MER data for
offline processing and analysis.

2.2. Anesthetic Management

All patients underwent a multidisciplinary preoperative assessment of eligibility for DBS surgery.
In the operating room, standard monitoring was applied including a five-lead electrocardiogram, pulse
oximetry, inspiratory and expiratory O2 and CO2 monitoring and invasive blood pressure monitoring.
DBS surgery was performed under local anesthesia alone or in combination with PSA administered at
the discretion of the responsible anesthesiologist. The goal of PSA was to maintain mild to moderate
sedation, with the patient responsive to verbal command (so-called conscious sedation). The skin
puncture sites of the stereotactic frame pins, and the surgical incision sites, were infiltrated with a 50:50
mixture of lidocaine 1% and levobupivacaine 0.5% with epinephrine (1:100.000). During the procedure
some patients received no sedative drugs, whereas some received one or more of DEX, CLONI or REMI
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by continuous intravenous infusion for PSA. Some patients received DEX only in the first phase of the
surgery until around 20 min before the start of MER (Table 1). After DBS electrode implantation, all
patients underwent general anesthesia for tunneling of the extension cables and placement of the pulse
generator. Postoperatively, patients were transferred to the post-anesthesia care unit for hemodynamic-
and neuro-monitoring.

Table 1. Demographic and clinical data of all patients.

Group Patients
M/F

Hemispheres
(n)

Electrodes
(n)

SU/MUA
(n) Age (y) UPDRS III Dose Range

Awake

No PSA 15/6 42 149 165/1257 59.4 ± 8.3 38.2 ± 16.5

PSA
discon 4/3 14 42 51/339 59.3 ± 7.6 42.0 ± 8.5

Sedation

DEX 7/4 22 70 86/565 60.9 ± 5.9 33.4 ± 12.4 0.07–0.6 µg kg−1 h−1

REMI 8/6 28 99 93/636 58.1 ± 8.0 37.9 ± 14.3 0.02–0.25 µg kg−1 min−1

CLONI 6/2 16 56 41/339 64.8 ± 8.3 35.8 ± 11.9 20–50 µg h−1 or 30–150 µg IV in
bolus

DEX +
REMI 4/1 10 35 46/267 65.8 ± 6.5 34.3 ± 7.8 DEX 0.3–0.5 µg

kg−1 h−1
REMI 0.02–0.05
µg kg−1 min−1

CLONI
+ REMI 6/6 24 84 106/679 59.5 ± 7.3 36.4 ± 9.1

CLONI 20 µg
h−1 or 45–150
µg IV in bolus

REMI 0.01–0.09
µg kg−1 min−1

Total 50/28 156 535 588/4082 60.5 ± 7.7 37.0 ± 12.8

Values are expressed in mean ± SD. UPDRS III scores are preoperative scores in OFF-state. DEX: dexmedetomidine;
CLONI: clonidine; REMI: remifentanil; MUA: multi-unit activity; PSA: procedural sedation and analgesia; SU: single
unit; UPDRS III: Unified Parkinson Disease Rating Scale part III; n: number; y: year.

2.3. Surgical Procedure

After placement of a Leksell stereotactic frame (Elekta, Stockholm, Sweden), a computed
tomography (CT) scan of the head was performed. The CT-image was co-registered with a magnetic
resonance imaging (MRI) that had been performed before surgery. Following target identification and
trajectory planning, a burr hole was drilled, micro-electrodes (model 230766, Medizintechnik GmbH,
Emmendingen, Germany) were implanted and recordings were performed. Visual and auditory
confirmation of the target was performed by a neurophysiologist. Then, macrostimulation and
neurological testing were carried out. The presence of good quality electrophysiological recordings and
few or no side effects indicated the optimal contact point at which a quadripolar electrode (model 3387
or 3389; Medtronic, Minneapolis, USA) was placed. A postoperative CT scan was performed within
24 h in order to exclude intracerebral hemorrhages and to evaluate the final position of the electrodes.

2.4. MER Acquisition

Up to 5 microelectrodes were used to record neuronal activity along the planned trajectory in
order to identify the target. Data were recorded from 10 mm above to 5 to 7 mm below the target in
steps of 0.5–1 mm for approximately 30 s at each recording location (mean 35.94 s, SD 15.93). Data
from a typical electrode track is shown in Figure 1A.

The target for all patients was the STN. The electrodes classically passed through the thalamus,
zona incerta, STN and sometimes reached into the dorsal border of the substantia nigra reticulata.
The electrode signal was sampled at 20 or 25 kHz, bandpass filtered online, (V3.15; Inomed
Medizintechnik GmbH, Emmendingen, Germany) and saved for offline analysis. The first 41 patients
were recorded with a high-pass filter 160 Hz, thereafter the high-pass filter was at 0 Hz, low-pass filter
was at 5000 Hz.
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with the spike detection threshold set by A.M.A.S. (blue) and M.J.B. (purple); (C) clusters of the spike 
waveforms identified from the example recording by A.M.A.S. and M.J.B.; (D) spike waveform (mean: 
thick lines, thin lines: standard deviation) of the spike sorted from the example recording by A.M.A.S. 
and M.J.B.; (E) Autocorrelation of the spike times from the example recording by A.M.A.S. and M.J.B.; 
(F) The proportion of sites with identified single units (SU)s (discovery rate) was quite similar, 
indicating that all sorters applied comparable criteria. (G) Nevertheless, the mean firing rate of STN 
neurons differed somewhat between sorters. 
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Custom-written MATLAB scripts (V2017B; MathWorks) were used to conduct the data-analysis. 
For each recording, the raw data were high-pass filtered at 300 Hz prior to visual and auditory 
inspection. To identify single unit (SU) activity, periods of interest were manually selected to exclude 
periods of high noise or unstable SU activity. Spike times were identified by signal crossings of a 
manually set threshold (Figure 1B). Spikes representing SUs were selected using principal component 

Figure 1. Overview of the sorting process. (A) Example recording trajectory of one electrode with 5 s
of data shown at each site. Grey shading indicates sites identified as within the subthalamic nucleus
(STN). (B) Expanded view of data from one recording site (region highlighted by a dashed box in
A) with the spike detection threshold set by A.M.A.S. (blue) and M.J.B. (purple); (C) clusters of the
spike waveforms identified from the example recording by A.M.A.S. and M.J.B.; (D) spike waveform
(mean: thick lines, thin lines: standard deviation) of the spike sorted from the example recording by
A.M.A.S. and M.J.B.; (E) Autocorrelation of the spike times from the example recording by A.M.A.S.
and M.J.B.; (F) The proportion of sites with identified single units (SU)s (discovery rate) was quite
similar, indicating that all sorters applied comparable criteria. (G) Nevertheless, the mean firing rate of
STN neurons differed somewhat between sorters.

2.5. Data Processing and Analysis

Custom-written MATLAB scripts (V2017B; MathWorks) were used to conduct the data-analysis.
For each recording, the raw data were high-pass filtered at 300 Hz prior to visual and auditory inspection.
To identify single unit (SU) activity, periods of interest were manually selected to exclude periods of
high noise or unstable SU activity. Spike times were identified by signal crossings of a manually set
threshold (Figure 1B). Spikes representing SUs were selected using principal component analysis and
K means clustering (Figure 1C). Manual selection was used for sorting SU clusters. SU clusters were
confirmed as SUs by inspecting their autocorrelation, with a minimum gap of 2 ms between spikes
representing the refractory period. For added robustness, this analysis was independently performed
by 4 authors (A.M.A.S., M.J.B., R.B. and M.J.R.) (Figure 1C–G). For the main analysis data sorted by
A.M.A.S. was used, who inspected all recording sites in our sample. Firing rate (spikes per second) of
the SUs were calculated by dividing the number of spikes by the recording time. The coefficient of
variation (CV) was defined by dividing the standard deviation of the inter-spike interval by the mean.

To identify multi-unit activity (MUA) we calculated the power-spectral density of the signal
within the bandwidth of 100 and 500 Hz. Periods of high noise were automatically identified and
rejected by calculating the root-mean squared (RMS) of the high-pass filtered data in segments of
50 ms. Periods in which the RMS exceeded the median RMS + 3 standard deviations were excluded
from further analysis [17]. Following this procedure, the surviving raw (unfiltered) data were cut into
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non-overlapping snips of 250 ms and the power-spectral density was calculated using a multitaper
method with discrete prolate spheroidal sequences using the Fieldtrip MATLAB toolbox [18]. To account
for non-biological differences between recording tracts (electrode and tissue impedance etc.) power at
each frequency was expressed as a ratio with respect to power at the first 5 recording sites. Finally,
MUA total power, hereafter referred to simply as MUA, was calculated as the sum of all baseline
corrected power above 300 Hz.

2.6. Statistical Analysis

Statistical analyses was performed using custom-written MATLAB scripts (V2017B; MathWorks)
to test the effect of PSA agents and other variables on electrophysiological measures. For all tests,
the threshold for statistical significance was set to α = 0.05. Patients were divided into 7 groups
according to their sedative administration (no PSA (control group)), PSA discontinued (discontinued
before MER), DEX, REMI, CLONI, DEX and REMI, CLONI and REMI (Table 1)).

As a first step of the statistical analysis, one-way ANOVAs were conducted for each
electrophysiological measure to test for differences between groups. This was followed by multiple
two-sample t-tests comparing data from each PSA group with data from the no PSA group. P-values
were corrected for multiple comparison using the Benjamini & Hochberg method for control of the
false discovery rate (FDR) [19].

For further insight, linear regression analysis was conducted using the applied PSA drugs, and
clinical and demographic variables as predictors to test their effect on firing rate, CV and MUA.
Additional linear regression analysis with a random effect grouped by patient ID were conducted,
considering the clustered nature of the data.

Finally, we tested the effect of the PSA dose. We focused on DEX since the dose of CLONI was not
consistent, which made impossible to run a dose-dependent analysis, while the effect of REMI was
small. We conducted a correlation analysis including data from patients who received either DEX alone,
or a combination of DEX and REMI. A standard linear model (no random effects) was constructed.

3. Results

3.1. Demographics

From January 2009 to December 2018 a total of 93 PD patients underwent STN-DBS insertion.
Data from 13 patients were excluded from analysis because of incomplete data. Two patients
underwent surgery under general anesthesia and were also excluded from further analysis.
Anesthetic and electrophysiological data from the remaining 78 patients were analyzed, thus yielding
electrophysiological date from 156 cerebral hemispheres (Table 1).

Data were first grouped into clusters depending on whether data were acquired when patients
were awake or sedated. The awake cluster included data from two patient groups: the first group
received no sedatives and the second group of patients received DEX or a combination of DEX and
REMI which was discontinued approximately 20 min before MER. The data in the sedation cluster was
sub-divided according to the PSA applied during surgery: DEX, CLONI, REMI, or a combination of
DEX and REMI or REMI and CLONI (Table 1).

To control for systematic differences between groups, we tested whether demographic
characteristics (age, disease duration, Unified Parkinson Disease Rating Scale (UPDRS), side of
onset, sex and weight) were equivalent across groups. One-way ANOVA showed no difference for any
of these variables (respectively F(6,71) = 1.14, p = 0.35; F(6,71) = 0.59, p = 0.74; F(6,71) = 0.40, p = 0.88;
F(6,71) = 0.39, p = 0.88; F(6,71) = 0.46, p = 0.83, F(6,71) = 0.39, p = 0.88 no correction for multiple
comparisons were applied since we were here more concerned with minimizing type 2 errors).
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3.2. Discontinuation of Sedative Agents

In 7 patients, PSA agents (DEX n = 4, DEX and REMI n = 3) were given during the first part of the
operation and were discontinued approximately 20 min before the start of MER. While these patients
appeared clinically to be awake during surgery, it is possible that these compounds might still have
affected the electrophysiological properties of the STN even after their discontinuation [14]. Therefore,
we tested whether the group who received no PSA drugs and the group of patients in whom PSA was
discontinued should be considered as distinct groups for further analysis. We conducted a t-test for
comparison of the electrophysiological measures (firing rate (sp/sec), CV and MUA) between these
groups. In SU activity there was a trend towards decreased firing rate (t(214) = 1.63, p = 0.11), but no
difference in the CV (t(214) = −0.18, p = 0.86). MUA was significantly reduced in the discontinued
drug group (t(1571) = 5.67, p < 0.0001). Given these findings (Figure 2) we considered the patients
in whom PSA agents were discontinued as a separate group from patients who received no PSA for
further analysis.

J. Clin. Med. 2020, 9, 1229 6 of 15 

 

REMI which was discontinued approximately 20 min before MER. The data in the sedation cluster 
was sub-divided according to the PSA applied during surgery: DEX, CLONI, REMI, or a combination 
of DEX and REMI or REMI and CLONI (Table 1). 

To control for systematic differences between groups, we tested whether demographic 
characteristics (age, disease duration, Unified Parkinson Disease Rating Scale (UPDRS), side of onset, 
sex and weight) were equivalent across groups. One-way ANOVA showed no difference for any of 
these variables (respectively F(6,71) = 1.14, p = 0.35; F(6,71) = 0.59, p = 0.74; F(6,71) = 0.40, p = 0.88; 
F(6,71) = 0.39, p = 0.88; F(6,71) = 0.46, p = 0.83, F(6,71) = 0.39, p = 0.88 no correction for multiple 
comparisons were applied since we were here more concerned with minimizing type 2 errors). 

3.2. Discontinuation of Sedative Agents 

In 7 patients, PSA agents (DEX n = 4, DEX and REMI n = 3) were given during the first part of 
the operation and were discontinued approximately 20 min before the start of MER. While these 
patients appeared clinically to be awake during surgery, it is possible that these compounds might 
still have affected the electrophysiological properties of the STN even after their discontinuation [14]. 
Therefore, we tested whether the group who received no PSA drugs and the group of patients in 
whom PSA was discontinued should be considered as distinct groups for further analysis. We 
conducted a t-test for comparison of the electrophysiological measures (firing rate (sp/sec), CV and 
MUA) between these groups. In SU activity there was a trend towards decreased firing rate 
(t(214) = 1.63, p = 0.11), but no difference in the CV (t(214) = −0.18, p = 0.86). MUA was significantly 
reduced in the discontinued drug group (t(1571) = 5.67, p < 0.0001). Given these findings (Figure 2) 
we considered the patients in whom PSA agents were discontinued as a separate group from patients 
who received no PSA for further analysis. 

 
Figure 2. Bar plot and t-test for within awake group analysis for firing rate, defined in spikes per 
seconds, coefficient of variation and multi-unit activity, defined as activity above 300HZ. Mean and 
standard error are shown in each bar. *** p < 0.001. PSA: procedural sedation and analgesia. 

3.3. Effect of PSA Agents on Firing Rate, Coefficient of Variation and Multi-Unit Activity. 

A one-way ANOVA was conducted between the seven groups for each electrophysiological 
measure. Significant, or trending differences between groups for all measures were observed (Firing 
rate, F(6,581) =2.08, p < 0.054; CV, F(6,581) = 3.69, p < 0.001; MUA, F(6,4088) = 15.93, p < 0.0001). To 
further test for differences between groups, a post-hoc two-sample t-tests was conducted to compare 
each PSA drug against the control group (n = 165) with respect to firing rate, CV and MUA.  

No significant differences in the firing rate between groups after FDR correction for multiple 
comparisons were found, although DEX and REMI, and REMI in combination with CLONI showed 
a trend towards significance (t(209) = 2.64, p = 0.0531; t(269) = 2.28, p = 0.0695). 

For CV, there were significant differences between the no drug group and the groups DEX (t(249) 
= −3.84, p = 0.00092), REMI (t(256) = −2.65, p = 0.013), DEX and REMI group (t(209) = −3.05, p = 0.0078), 
and REMI and CLONI (t(269) = −2.62, p = 0.013). 

All PSA drug groups except REMI showed a significant decrease in MUA (n = 1255, PSA 
discontinued, t(1594) = 4.95, p < 0.0001; DEX, t(1820) = 6.73, p < 0.0001; CLONI, t(1594) = 4.45, p < 0.0001; 

Figure 2. Bar plot and t-test for within awake group analysis for firing rate, defined in spikes per
seconds, coefficient of variation and multi-unit activity, defined as activity above 300HZ. Mean and
standard error are shown in each bar. *** p < 0.001. PSA: procedural sedation and analgesia.

3.3. Effect of PSA Agents on Firing Rate, Coefficient of Variation and Multi-Unit Activity

A one-way ANOVA was conducted between the seven groups for each electrophysiological
measure. Significant, or trending differences between groups for all measures were observed (Firing rate,
F(6,581) =2.08, p < 0.054; CV, F(6,581) = 3.69, p < 0.001; MUA, F(6,4088) = 15.93, p < 0.0001). To further
test for differences between groups, a post-hoc two-sample t-tests was conducted to compare each PSA
drug against the control group (n = 165) with respect to firing rate, CV and MUA.

No significant differences in the firing rate between groups after FDR correction for multiple
comparisons were found, although DEX and REMI, and REMI in combination with CLONI showed a
trend towards significance (t(209) = 2.64, p = 0.0531; t(269) = 2.28, p = 0.0695).

For CV, there were significant differences between the no drug group and the groups DEX
(t(249) = −3.84, p = 0.00092), REMI (t(256) = −2.65, p = 0.013), DEX and REMI group (t(209) = −3.05,
p = 0.0078), and REMI and CLONI (t(269) = −2.62, p = 0.013).

All PSA drug groups except REMI showed a significant decrease in MUA (n = 1255, PSA
discontinued, t(1594) = 4.95, p < 0.0001; DEX, t(1820) = 6.73, p < 0.0001; CLONI, t(1594) = 4.45,
p < 0.0001; DEX and REMI, t(1522) = 3.94, p < 0.0001; and REMI and CLONI, t(1934) = 3.69, p < 0.0001),
REMI (t(1891) = 1.31, p = 0.19). All p values were corrected for multiple comparison using FDR
(Figure 3).
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Ipsilateral 

(*) 
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Figure 3. Bar plot (error bars show standard error) and t-test for the No PSA group against each
PSA group for firing rate, coefficient of variation and multi-unit activity. * p < 0.05, ** p < 0.01,
*** p < 0.001. CLONI: clonidine; DEX: dexmedetomidine; REMI: remifentanil; PSA: procedural sedation
and analgesia.

To account for variance in the patient groups, we conducted a linear regression analysis to test the
effect of the PSA agents with clinical and demographic variables included as factors. For DEX, CLONI,
REMI, sex, recording location with respect to onset side of the disease, and left or right hemisphere
were defined as categorical variables. We further included age at surgery (years), weight (Kg), UPDRS
III pre-operative off medication, disease duration at surgery (months) and depth of the recording site
within the STN (mm from the dorsal border) as continuous variables in the model (Table 2).

Table 2. Standard linear regression model for firing rate, CV and MUA.

Variable
Firing Rate Coefficient of Variation Multi-Unit Activity

Estimate p-Value Estimate p-Value Estimate p-Value

DEX Yes −3.121 0.068 0.313 0.001 −88.814 <0.001
REMI Yes −2.105 0.141 0.163 0.040 2.607 0.806

CLONI Yes −2.156 0.203 −0.004 0.963 −50.923 0.675
PSA

(DISCONTINUED) Yes −3.836 0.120 −0.011 0.933 −115.240 <0.001

SEX Male 0.379 0.808 −0.031 0.720 −2.112 0.855
ONSET SIDE Ipsilateral (*) −1.840 0.152 0.100 0.161 −16.353 0.090

HEMISPHERE Right 1.854 0.150 −0.087 0.222 24.785 0.010
AGE Years −0.091 0.314 0.001 0.788 −43.996 <0.001

WEIGHT Kg −0.004 0.931 −0.003 0.337 0.452 0.181
UPDRS III 0.068 0.196 0.002 0.428 −0.026 0.946

DISEASE DURATION Months −0.002 0.914 −0.002 0.020 −0.018 0.882
STN DEPTH mm 0.560 0.130 −0.008 0.681 25.024 <0.001

Model data

R-squared: 0.035
Adjusted R-Squared

0.0149
p-value = 0.0553

R-squared: 0.0511
Adjusted R-Squared

0.0313
p-value = 0.00241

R-squared: 0.0586
Adjusted R-Squared

0.0558
p-value = 9.1e−46

In the analysis, we included demographic and clinical variables as sex, onset side (recording site ipsi- or contralateral
to the onset side of the disease), hemisphere (right or left), age, weight, UPDRS III pre-operative off medication and
disease duration. Estimate indicate the slope of the line, when negative indicates decrease and positive indicates
increase. * ipsilateral to body side with onset of disease. CLONI: clonidine; DEX: dexmedetomidine; REMI:
remifentanil; PSA: procedural sedation and analgesia; UPDRS III: Unified Parkinson’s Disease Rating Scale part III.

There were no significant effects of the PSA agents in the firing rate, but we could observe some
trends. Notably, DEX was weakly associated with a reduced firing rate. For CV, DEX showed a
significant effect and REMI showed a small effect. DEX and PSA discontinued showed significant
effects in the MUA, while CLONI and REMI did not. The slope (estimates) indicated the direction of
the effect. In this sense, the effect of the PSA agents in CV indicates an increase, while the slope for
MUA indicates a decrease. These findings supported our previous analysis, except CLONI, where
effects identified in the t-test were not significant in this analysis.
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In addition to effects of PSA agents, we found that electrophysiological measures were affected by
several clinical and demographic variables. Disease duration showed a negative effect on CV, thus
CV decreased as disease advanced. Age showed a significant impact on MUA, thus MUA decreased
with increased age. Hemisphere (left or right) was also significantly associated with MUA, thus right
hemisphere showed higher power than the left hemisphere. Finally, STN depth had a significant
impact on MUA (Table 2).

Taking into consideration that we were working with multiple observations within each patient,
we also conducted a linear regression model with a random effect grouped by patient for all three
electrophysiological measures. This more conservative analysis brings a reduction in the statistical
power, nevertheless for CV, the effect of DEX, REMI and disease duration remained significant.
For MUA, the effect of DEX, PSA discontinued, hemisphere and age also remained significant.
The non-significant effect on firing rate also remained (supplementary material Table S1).

3.4. Interrater Reliability

SUs were identified and sorted by hand which is an inevitably subjective process (Figure 1). To test
whether the effects we report were robust, every recording was inspected by at least two individuals
(every site was inspected A.M.A.S. and one of M.J.B., M.J.R. or R.B.). We repeated the linear regression
analysis for SU data (spikes/seconds and CV) using data for units identified by M.J.B., M.J.R. or R.B.,
including the sorter ID as an additional categorical variable. All main effects we report on were
replicated in this analysis (supplementary material Table S2).

3.5. Dose-Dependent Effect of DEX

Our analysis showed that DEX had a significant impact on electrophysiological measures. To test
whether these effects were dose-dependent, we conducted further analysis focused only on patients
who received DEX during surgery. We first performed a simple correlation analysis between each
measure and DEX dose (Figure 4). The correlations were significant, but the correlation coefficient
was low for all measures. For illustration, we extrapolated the regression line to include 0 dose and
plotted the data for the 0 dose patients (not included PSA discontinued group). For both firing rate
and CV the regression line passed close to the mean of the 0 dose data, while this was not the case for
MUA. This may indicate a non-linear effect of DEX on MUA whereby even a small dose leads to strong
suppression. This interpretation would be in line with our finding that discontinuation of DEX, 20 min
before recordings MUA also had a large impact. One interesting point is that the analysis of firing rate
was significant, showing a decrease in firing rate with increased dose. This might mean that the trend
observed in the t-test and linear regression analysis is a true effect.
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4. Discussion

In this retrospective analysis, we studied the influence of the non-GABAergic drugs DEX, CLONI
and REMI on the firing rate and CV of single neuron activity, as well as the power of MUA in the STN
of PD patients undergoing DBS surgery. The results of the present study demonstrated that, even when
PSA was discontinued around 20 min prior to MER, this still had significant effect on MUA. A trend
was observed for a reduced firing rate by DEX, which was significant on the correlation analysis.
Both DEX and REMI showed an increase in CV, but only DEX showed a decrease in MUA. The effect of
DEX was dose-dependent. CLONI showed no effect on all measures. Lastly, several patient-dependent
variables, such as age, disease duration and left or right hemisphere influenced MUA and CV.

4.1. Effect of Procedural Sedation and Analgesia on Micro-Electrode Recordings

The use of PSA agents and their effects on neuronal activity has been debated since the initiation
of DBS surgery. Traditionally, the anesthetic management approach comprised local anesthesia
with monitored care to facilitate MER. However, recent work has shown that 40% of patients suffer
from pain, severe OFF-symptoms and intolerable exhaustion during the hours of awake surgery [5].
To improve patient acceptance, sedation is thus commonly administered. Propofol, a GABAergic
agent, has been most frequently used when sedation is required. As stated before, several clinical
reports showed a dose-dependent effect of propofol on STN neuronal activity in patients with
PD [7–9,20]. Propofol reduces neuronal activity by enhancing inhibitory neurotransmission and
reducing excitatory neurotransmission [21]. Although some studies showed good quality MER with
low-dose propofol, potent GABAergic agents such as propofol should not be the first choice for PSA
during DBS surgery [22–24].

Alternatively, α2-agonists (non-GABAergic) are useful in this regard. Currently, two different
α2-agonists are commonly used in clinical practice: CLONI and DEX. While both drugs have anxiolytic,
sedative and analgesic properties, DEX is a more selective α2-receptor agonist than CLONI. Since
central α1-receptor activation counteracts sedative α2 effects, DEX has a more profound sedative
effect [25]. The sedative effects of α2-agonists are mediated through activation of pre- and postsynaptic
α2-receptors in the locus coeruleus which has noradrenergic afferent connections with the STN [26,27].
This route provides a plausible mechanism for the effects observed in the current study, since it has
been shown that noradrenergic modulation with α1 and α2-agonists change firing rate and firing
patterns of STN neurons, in line with our findings [28,29].

4.1.1. Dexmedetomidine

In this study we analyzed quantitative effects of DEX on MER following two different PSA protocols.
In the first protocol PSA agents (DEX alone or DEX and REMI) were discontinued approximately
20 min before the start of MER. It can be speculated that the effects on MER in the discontinued group
are solely DEX effects, since REMI has a very short context-sensitive half-time of 3–4 min. In these
patients, MUA was significantly suppressed while, SU activity showed a trend towards a lower firing
rate but no change in CV. Interestingly, an earlier study by Mathews et al., in which a similar PSA
protocol was used (discontinuation of PSA agents before the MER), reported no difference in firing
rate, but showed a significant decrease in CV [14]. Their protocol was not identical to ours. Patients
received either REMI in bolus (the control group in that study), or DEX and REMI in bolus prior to MER.
Moreover, the dose of DEX was higher in their study (0.1–1.0 µg kg−1 h−1 versus 0.2–0.5 µg kg−1 h−1).
In another case series by Kwon et al., patients received a loading dose of DEX 0.9 µg kg−1 followed
by a maintenance dose of 0.5 µg kg−1 h−1 combined with REMI at 0.05 µg kg−1 min−1 and propofol
was administered in small boluses. Using this protocol, the depth of sedation was maintained at a
level of slight sedation (Bispectral index (BIS) of 80). All PSA agents were discontinued 20 min before
MER. In that study, firing rates of STN neurons were significantly reduced compared to the control
group who received no sedatives [15]. The suppression of firing rates in this protocol (that included
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higher DEX dose in addition to the high loading does) is in line with our finding of a dose-dependent
suppression, although it is challenging to compare previous studies in which DEX was discontinued
before MER with our findings, due to different dose regimens. Taken together, the previous literature
and our data suggest that DEX still has an effect on MER after 20 min of discontinuation.

In our study, a second group of patients received continuous DEX infusions, alone or in combination
with REMI during MER. Firing rates were not significantly altered, but there was a trend to lowering.
Both CV and MUA were significantly affected whereby CV was increased and MUA decreased.
Correlation analysis showed that these effects were dose-dependent, including lowering of the firing
rate. A small case series reported a suppression of neuronal activity in patients who received DEX
sedation throughout the full procedure (range 0.1–0.4 µg kg−1 h−1) in comparison to patients in which
DEX was discontinued before recordings [12]. In another study, patients received a bolus DEX of
0.5–1.0 µg kg−1 followed by a maintenance infusion of 0.1–1.0 µg kg−1 h−1. They reported a slight
increase in firing rate and a significant decrease in burst index (decreased number of spikes within a
burst) compared to patients who received no sedation [13]. Thus, these findings appear contradictory
to our findings as well as with previous literature. A possible explanation for the differences with our
findings is the dose they used, which included a bolus followed by a relatively high maintenance dose.

To summarize our results, dexmedetomidine caused a trend toward decreased firing rates,
significantly suppressed MUA and increased CV. These effects were present even at low dose and even
after discontinuation of DEX. However, direct comparison of our findings with previous studies is
challenging, because of the variability of the sedation protocols, patients groups and methodology.

4.1.2. Clonidine

CLONI is a α2-receptor agonist with a pharmacodynamic profile almost identical to DEX but is
less selective for the α2-receptor than DEX. As a consequence, effects on the locus coeruleus are less
profound and therefore CLONI would be expected to have less impact on STN neural firing compared
to DEX. To our knowledge, no studies have yet reported effects of CLONI on MER during DBS surgery.

In our study, patients received CLONI alone or in combination with REMI. Compared to the no
PSA group, these patients showed no significant differences in neuronal firing rates, CV or MUA,
although firing rates and MUA showed a trend towards a decrease. Moreover, in our linear regression
analysis the effect estimate associated with CLONI was consistently lower than the estimate associated
with DEX. Thus, in line with our expectation, CLONI appeared to show a similar but less profound
effect on STN neurons compared to DEX. It should be noted however, that direct comparison between
the two agents is complex because of the difference in pharmacokinetic profiles. In our study the
comparison was further limited due to the heterogeneity in CLONI doses and the lower number of
patients in the CLONI group.

4.1.3. Remifentanil

The last PSA agent we investigated was remifentanil. Remifentanil is an ultrashort-acting
µ-receptor opioid agonist with a rapid time to peak activity after a bolus dose and a short
context-sensitive half-time of less than 4 min without regard to infusion duration [30]. In rats,
opioids have been reported to exert an inhibitory modulation of GABAergic and glutamatergic
synaptic transmission in the STN via presynaptic µ- and δ-receptors [31,32]. Only a limited number
of studies have addressed effects of opioids during STN-DBS surgery [9,22,23,33]. In these studies,
neurophysiological data were obtained while patients received propofol in combination with opioids.
Therefore, the opioid effects on neuronal activity could not be well characterized. To our knowledge
only one other study has assessed the effect of REMI on STN neurons in PD patients [24]. In that study,
single cell activity of 4 neurons were analyzed before and after a bolus of 0.5 µg kg−1. REMI did not
significantly alter short interval discharge activity, a measure related to firing rate. Our results also
showed no significant effect of REMI on firing rates or MUA. The use of REMI was only associated
with a significant increase in CV compared to the control group.
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4.2. Effect of Clinical and Demographic Variables on Microelectrode Recordings

In addition to the effects of the PSA agents, clinical and demographic variables might
affect neuronal firing properties of the STN. Therefore, we tested the effect of these variables on
electrophysiological recordings.

One interesting finding was that the CV increased in patients with a longer disease duration.
An increase in burst activity is generally observed in animal models of PD [34,35]. One potential
explanation of this phenomenon is that neuronal firing becomes more strongly locked to a more powerful
beta rhythm, seen with advanced disease, thereby reducing variability in the interspike-interval.
The underlying mechanism of our finding therefore remains elusive. Finally, while CV was related to
disease duration, no relation with the UPDRS III score, side of onset or age of the patients was observed.

The hemisphere of the recordings significantly influenced MUA with the right STN having higher
power than the left. Currently no study to our knowledge has reported lateralization of MUA in the
STN during rest. Interestingly, several studies in humans and animals have shown that the left and right
cortex are related to different functions. In line with functional lateralization in the cortex, emotions
seems to be processed in the right STN [36–39]. We therefore speculate that the difference we observed
may be related to functional lateralization of the STN; a hypothesis that needs further validation.

Finally, the age of the patient significantly influenced MUA. Within the STN, older patients
showed lower power compared to younger patients. An effect of aging on neuronal power spectrum in
the cortex has been reported previously [40–42]. In contrast to our findings, these studies all reported
an increase in high frequency power with age, which they discuss in terms of the neuronal noise
hypothesis of aging [43]. A number of interesting hypothesis may account for the reversal of this
pattern that we observed in STN. First, our population was generally older than the older adults in these
papers, to the extent that our younger patients would be considered to belong to their ‘older’ groups.
One interpretation of these data could be that the relationship between age and neural population
power is non-linear such that adults in late middle age show the highest power. Second, there may
be task effects, since our data were recorded with the patient not performing a cognitive task, while
previous reports have all been in the context of active cognitive tasks. Third, our data may show a
genuine difference in the effect of aging in the STN compared to the cortex. Finally, the possibility
exists that the change in power we observed reflects age-related changes in shape and location of
the STN [44]. According to this hypothesis, recording sites at the same stereotaxic coordinates may
represent different functional domains, with different neuronal properties, within the STN in different
age groups. Future work may elucidate these possibilities.

Multi-Unit Activity

MUA is an important measure to identify the entrance of the STN. Both through visual and
auditory inspection and by automatic identification algorithms, an increase in neuronal activity,
compared to the overlying white matter zone, is one of the most widely used signs of the dorsal
border of the STN [45]. Our results show that sedatives, either continuous or discontinued, as well as
a number of patient specific characteristics, influence MUA. To our knowledge, no previous studies
have investigated the effect of PSA agents on MUA, despite its usefulness as a clinical marker. More
research is necessary to define whether these effects are large enough to be clinically relevant.

4.3. Limitations

Our study had some limitations. First, it was a retrospective study, involving patients for whom
there was no standardized PSA protocol and uncontrolled variability in PSA drug choices and doses.
We found that demographic and clinical characteristics did not differ systematically between the
groups, therefore these factors could be accounted for with a regression analysis thanks to our large
overall sample size. Since no standardized PSA protocol was used we were limited when testing for
dose-dependent effects. Second, while we compared our findings to previous reports, the available
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literature is sparse and characterized by heterogeneity in PSA protocols, patient characteristics and
MER data analysis. Our findings suggest that some differences among previous reports may be
accounted for by dose-dependent effects (e.g. on firing rates). Prospective studies with standardized
PSA protocols are required to confirm these findings. Also, we did not assess spectral changes in the
local field potential. Investigating the effect of PSA on the presence of pathologic oscillations remains
unanswered. Another limitation is that this study did not assess the effects of the various agents on
intraoperative clinical measures such as tremor. A follow-up study is needed to assess the effects of the
various PSA protocols on STN depth and size. Moreover, it is important for clinical practice to address
in future studies whether the use of PSA influences clinical outcome of STN DBS.

5. Conclusions

When administering sedation during DBS electrode implantation, the aim is always to achieve an
optimal balance between patient comfort and good quality MER, to allow optimal placement of the
probe. Our results showed that PSA influenced neuronal properties in the STN and that the DEX effect
was dose-dependent. Moreover, patient dependent characteristics influenced MER. Whether these
effects are large enough to be clinically relevant was not addressed in this study.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0383/9/4/1229/s1,
Table S1: random effects modeling with patient as a random variable, Table S2: random effects modeling with
sorter as a random variable.
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