The Effect of Exercise Training on Brain Structure and Function in Older Adults: A Systematic Review Based on Evidence from Randomized Control Trials
Abstract
:1. Introduction
2. Method
2.1. Search Strategy
2.2. Inclusion/Exclusion Criteria
2.3. Risk of Bias Assessment
2.4. Data Collection and Extraction Process
3. Results
3.1. Study Selection
3.2. Risk of Bias Analysis of Included Studies
3.3. Exercise Prescription Analysis of Included Studies for Brain Structure
3.3.1. Frequency
3.3.2. Intensity
3.3.3. Length
3.3.4. Session Time
3.3.5. Type
3.3.6. Volume
3.3.7. Progression
3.3.8. Brain Regions and Main Interventional Findings
3.4. Exercise Prescription Analysis for Brain Functioning
3.4.1. Frequency
3.4.2. Intensity
3.4.3. Length
3.4.4. Session Time
3.4.5. Type
3.4.6. Volume
3.4.7. Progression
3.4.8. Approach and main interventional findings
4. Discussion
4.1. Summary of Search Results
4.2. Exercise Training and Brain Structure
4.3. Exercise Training and Brain Function
4.4. Limitations
4.5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- United Nations Population Fund (UNFPA). Ageing in the Twenty-First Century: A Celebration and a Challenge; United Nations Population Fund (UNFPA) and HelpAge International: New York, NY, USA, 2012. [Google Scholar]
- Sander, M.; Oxlund, B.; Jespersen, A.; Krasnik, A.; Mortensen, E.; Westendorp, R.; Rasmussen, L. The challenges of human population ageing. Age Ageing 2014, 44, 185–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haan, M.N.; Wallace, R. Can dementia be prevented? Brain aging in a population-based context. Annu. Rev. Public Health 2004, 25, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Craik, F.I.M.; Salthouse, T. The Handbook of Aging and Cognition; Psychology Press: New York, NY, USA, 2011; pp. 55–97. [Google Scholar]
- Reuter-Lorenz, P.A.; Park, D.C. Human neuroscience and the aging mind: A new look at old problems. J. Gerontol. B Psychol. Sci. 2010, 65, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Hertzog, C.; Kramer, A.F.; Wilson, R.S.; Lindenberger, U. Enrichment effects on adult cognitive development: Can the functional capacity of older adults be preserved and enhanced? Psychol. Sci. Public Interest. 2008, 9, 1–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeCarli, C.; Massaro, J.; Harvey, D.; Hald, J.; Tullberg, M.; Au, R.; Beiser, A.; D’Agostino, R.; Wolf, P.A. Measures of brain morphology and infarction in the framingham heart study: Establishing what is normal. Neurobiol. Aging 2005, 26, 491–510. [Google Scholar] [CrossRef] [PubMed]
- Alfini, A.J.; Weiss, L.R.; Nielson, K.A.; Verber, M.D.; Smith, J.C. Resting cerebral blood flow after exercise training in mild cognitive impairment. J. Alzheimers Dis. 2019, 67, 671–684. [Google Scholar] [CrossRef] [PubMed]
- Simpson, B.N.; Kim, M.; Chuang, Y.F.; Beason-Held, L.; Kitner-Triolo, M.; Kraut, M.; Lirette, S.T.; Windham, B.G.; Griswold, M.E.; Legido-Quigley, C.; et al. Blood metabolite markers of cognitive performance and brain function in aging. J. Cereb. Blood Flow Metab. 2016, 36, 1212–1223. [Google Scholar] [CrossRef] [Green Version]
- Audiffren, M.; Andre, N. The exercise-cognition relationship: A virtuous circle. J. Sport Health Sci. 2019, 8, 339–347. [Google Scholar] [CrossRef]
- Etnier, J.L.; Chang, Y.K. Exercise, cognitive function, and the brain: Advancing our understanding of complex relationships. J. Sport Health Sci. 2019, 8, 299–300. [Google Scholar] [CrossRef]
- Chen, F.T.; Chan, K.H.; Feng, S.H.; Wu, T.W.; Kao, S.C.; Chang, Y.K. New perspective: Effect of exercise and nutritional supplements on cognitive function in older adults. J. Phys. Educ. 2019, 52, 1–15. [Google Scholar] [CrossRef]
- Sofi, F.; Valecchi, D.; Bacci, D.; Abbate, R.; Gensini, G.F.; Casini, A.; Macchi, C. Physical activity and risk of cognitive decline: A meta-analysis of prospective studies. J. Intern. Med. 2011, 269, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Yaffe, K.; Barnes, D.; Nevitt, M.; Lui, L.Y.; Covinsky, K. A prospective study of physical activity and cognitive decline in elderly women: Women who walk. Arch. Intern. Med. 2001, 161, 1703–1708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albinet, C.T.; Boucard, G.; Bouquet, C.A.; Audiffren, M. Increased heart rate variability and executive performance after aerobic training in the elderly. Eur. J. Appl. Physiol. 2010, 109, 617–624. [Google Scholar] [CrossRef] [PubMed]
- Heath, M.; Shellington, E.; Titheridge, S.; Gill, D.P.; Petrella, R.J. A 24-week multi-modality exercise program improves executive control in older adults with a self-reported cognitive complaint: Evidence from the antisaccade task. J. Alzheimers Dis. 2017, 56, 167–183. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, N.; Desjardins-Crepeau, L.; Langlois, F.; Bherer, L. The effects of multi-component exercise training on cognitive functioning and health-related quality of life in older adults. Int. J. Behav. Med. 2018, 25, 617–625. [Google Scholar] [CrossRef] [PubMed]
- Kleinloog, J.P.D.; Mensink, R.P.; Ivanov, D.; Adam, J.J.; Uludag, K.; Joris, P.J. Aerobic exercise training improves cerebral blood flow and executive function: A randomized, controlled cross-over trial in sedentary older men. Front. Aging Neurosci. 2019, 11, 333. [Google Scholar] [CrossRef] [Green Version]
- Angevaren, M.; Aufdemkampe, G.; Verhaar, H.J.; Aleman, A.; Vanhees, L. Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst. Rev. 2008, 16, Cd005381. [Google Scholar] [CrossRef]
- Smith, P.J.; Blumenthal, J.A.; Hoffman, B.M.; Cooper, H.; Strauman, T.A.; Welsh-Bohmer, K.; Browndyke, J.N.; Sherwood, A. Aerobic exercise and neurocognitive performance: A meta-analytic review of randomized controlled trials. Psychosom. Med. 2010, 72, 239–252. [Google Scholar] [CrossRef]
- Colcombe, S.J.; Kramer, A.F. Fitness effects on the cognitive function of older adults: A meta-analytic study. Psychol. Sci. 2003, 14, 125–130. [Google Scholar] [CrossRef]
- Blondell, S.J.; Hammersley-Mather, R.; Veerman, J.L. Does physical activity prevent cognitive decline and dementia?: A systematic review and meta-analysis of longitudinal studies. BMC Public Health 2014, 14, 510. [Google Scholar] [CrossRef] [Green Version]
- Kalron, A.; Zeilig, G. Efficacy of exercise intervention programs on cognition in people suffering from multiple sclerosis, stroke and Parkinson’s disease: A systematic review and meta-analysis of current evidence. NeuroRehabilitation 2015, 37, 273–289. [Google Scholar] [CrossRef] [PubMed]
- Hindin, S.B.; Zelinski, E.M. Extended practice and aerobic exercise interventions benefit untrained cognitive outcomes in older adults: A meta-analysis. J. Am. Geriatr. Soc. 2012, 60, 136–141. [Google Scholar] [CrossRef] [Green Version]
- Kelly, M.E.; Loughrey, D.; Lawlor, B.A.; Robertson, I.H.; Walsh, C.; Brennan, S. The impact of exercise on the cognitive functioning of healthy older adults: A systematic review and meta-analysis. Ageing Res. Rev. 2014, 16, 12–31. [Google Scholar] [CrossRef] [PubMed]
- Strohle, A.; Schmidt, D.K.; Schultz, F.; Fricke, N.; Staden, T.; Hellweg, R.; Priller, J.; Rapp, M.A.; Rieckmann, N. Drug and exercise treatment of Alzheimer disease and mild cognitive impairment: A systematic review and meta-analysis of effects on cognition in randomized controlled trials. Am. J. Geriatr. Psychiatry 2015, 23, 1234–1249. [Google Scholar] [CrossRef] [PubMed]
- Piercy, K.L.; Troiano, R.P.; Ballard, R.M.; Carlson, S.A.; Fulton, J.E.; Galuska, D.A.; George, S.M.; Olson, R.D. The Physical Activity Guidelines for Americans. JAMA 2018, 320, 2020–2028. [Google Scholar] [CrossRef] [PubMed]
- American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription, 10th ed.; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2017. [Google Scholar]
- Sexton, C.E.; Betts, J.F.; Demnitz, N.; Dawes, H.; Ebmeier, K.P.; Johansen-Berg, H. A systematic review of MRI studies examining the relationship between physical fitness and activity and the white matter of the ageing brain. NeuroImage 2016, 131, 81–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Firth, J.; Stubbs, B.; Vancampfort, D.; Schuch, F.; Lagopoulos, J.; Rosenbaum, S.; Ward, P.B. Effect of aerobic exercise on hippocampal volume in humans: A systematic review and meta-analysis. NeuroImage 2018, 166, 230–238. [Google Scholar] [CrossRef]
- Cabral, D.F.; Rice, J.; Morris, T.P.; Rundek, T.; Pascual-Leone, A.; Gomes-Osman, J. Exercise for brain health: An investigation into the underlying mechanisms guided by dose. Neurotherapeutics 2019, 16, 580–599. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.T.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions; John Wiley and Sons Ltd.: Chichester, UK, 2011; Volume 4. [Google Scholar]
- Northey, J.M.; Cherbuin, N.; Pumpa, K.L.; Smee, D.J.; Rattray, B. Exercise interventions for cognitive function in adults older than 50: A systematic review with meta-analysis. Br. J. Sports Med. 2018, 52, 154–160. [Google Scholar] [CrossRef]
- Norton, K.; Norton, L.; Sadgrove, D. Position statement on physical activity and exercise intensity terminology. J. Sci. Med. Sport 2010, 13, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Colcombe, S.J.; Erickson, K.I.; Scalf, P.E.; Kim, J.S.; Prakash, R.; McAuley, E.; Elavsky, S.; Marquez, D.X.; Hu, L.; Kramer, A.F. Aerobic exercise training increases brain volume in aging humans. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2006, 61, 1166–1170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voss, M.W.; Heo, S.; Prakash, R.S.; Erickson, K.I.; Alves, H.; Chaddock, L.; Szabo, A.N.; Mailey, E.L.; Wójcicki, T.R.; White, S.M.; et al. The influence of aerobic fitness on cerebral white matter integrity and cognitive function in older adults: Results of a one-year exercise intervention. Hum. Brain Mapp. 2013, 34, 2972–2985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maass, A.; Düzel, S.; Goerke, M.; Becke, A.; Sobieray, U.; Neumann, K.; Lövden, M.; Lindenberger, U.; Bäckman, L.; Braun-Dullaeus, R.; et al. Vascular hippocampal plasticity after aerobic exercise in older adults. Mol. Psychiatry 2015, 20, 585–593. [Google Scholar] [CrossRef] [Green Version]
- Matura, S.; Fleckenstein, J.; Deichmann, R.; Engeroff, T.; Fuzeki, E.; Hattingen, E.; Hellweg, R.; Lienerth, B.; Pilatus, U.; Schwarz, S.; et al. Effects of aerobic exercise on brain metabolism and grey matter volume in older adults: Results of the randomised controlled SMART trial. Transl. Psychiatry 2017, 7, e1172. [Google Scholar] [CrossRef] [Green Version]
- Jonasson, L.S.; Nyberg, L.; Kramer, A.F.; Lundquist, A.; Riklund, K.; Boraxbekk, C.J. Aerobic exercise intervention, cognitive performance, and brain structure: Results from the physical influences on brain in aging (PHIBRA) study. Front. Aging Neurosci. 2016, 8, 336. [Google Scholar] [CrossRef]
- Niemann, C.; Godde, B.; Voelcker-Rehage, C. Not only cardiovascular, but also coordinative exercise increases hippocampal volume in older adults. Front. Aging Neurosci. 2014, 6, 170. [Google Scholar] [CrossRef] [Green Version]
- Burzynska, A.Z.; Jiao, Y.; Knecht, A.M.; Fanning, J.; Awick, E.A.; Chen, T.; Gothe, N.; Voss, M.W.; McAuley, E.; Kramer, A.F. White matter integrity declined over 6-months, but dance intervention improved integrity of the fornix of older adults. Front. Aging Neurosci. 2017, 9, 59. [Google Scholar] [CrossRef] [Green Version]
- Best, J.R.; Chiu, B.K.; Liang Hsu, C.; Nagamatsu, L.S.; Liu-Ambrose, T. Long-term effects of resistance exercise training on cognition and brain volume in older women: Results from a randomized controlled trial. J. Int. Neuropsychol. Soc. 2015, 21, 745–756. [Google Scholar] [CrossRef]
- Liu-Ambrose, T.; Nagamatsu, L.S.; Graf, P.; Beattie, B.L.; Ashe, M.C.; Handy, T.C. Resistance training and executive functions: A 12-month randomized controlled trial. Arch. Intern. Med. 2010, 170, 170–178. [Google Scholar] [CrossRef] [Green Version]
- Prehn, K.; Lesemann, A.; Krey, G.; Witte, A.V.; Kobe, T.; Grittner, U.; Floel, A. Using resting-state fMRI to assess the effect of aerobic exercise on functional connectivity of the DLPFC in older overweight adults. Brain Cogn. 2019, 131, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Liu, J.; Liu, W.; Huang, J.; Xue, X.; Chen, X.; Wu, J.; Zheng, G.; Chen, B.; Li, M.; et al. Tai Chi Chuan and Baduanjin increase grey matter volume in older adults: A brain imaging study. J. Alzheimers Dis. 2017, 60, 389–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erickson, K.I.; Voss, M.W.; Prakash, R.S.; Basak, C.; Szabo, A.; Chaddock, L.; Kim, J.S.; Heo, S.; Alves, H.; White, S.M.; et al. Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. USA 2011, 108, 3017–3022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosano, C.; Guralnik, J.; Pahor, M.; Glynn, N.W.; Newman, A.B.; Ibrahim, T.S.; Erickson, K.; Cohen, R.; Shaaban, C.E.; MacCloud, R.L.; et al. Hippocampal response to a 24-month physical activity intervention in sedentary older adults. Am. J. Geriatr. Psychiatry 2017, 25, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Chapman, S.B.; Aslan, S.; Spence, J.S.; Defina, L.F.; Keebler, M.W.; Didehbani, N.; Lu, H. Shorter term aerobic exercise improves brain, cognition, and cardiovascular fitness in aging. Front. Aging Neurosci. 2013, 5, 75. [Google Scholar] [CrossRef] [Green Version]
- Colcombe, S.J.; Kramer, A.F.; Erickson, K.I.; Scalf, P.; McAuley, E.; Cohen, N.J.; Webb, A.; Jerome, G.J.; Marquez, D.X.; Elavsky, S. Cardiovascular fitness, cortical plasticity, and aging. Proc. Natl. Acad. Sci. USA 2004, 101, 3316–3321. [Google Scholar] [CrossRef] [Green Version]
- Flodin, P.; Jonasson, L.S.; Riklund, K.; Nyberg, L.; Boraxbekk, C.J. Does aerobic exercise influence intrinsic brain activity? An aerobic exercise intervention among healthy old adults. Front. Aging Neurosci. 2017, 9, 267. [Google Scholar] [CrossRef]
- Nocera, J.; Crosson, B.; Mammino, K.; McGregor, K.M. Changes in cortical activation patterns in language areas following an aerobic exercise intervention in older adults. Neural Plast. 2017, 2017, 6340302. [Google Scholar] [CrossRef] [Green Version]
- Voelcker-Rehage, C.; Godde, B.; Staudinger, U.M. Cardiovascular and coordination training differentially improve cognitive performance and neural processing in older adults. Front. Aging Neurosci. 2011, 5, 26. [Google Scholar] [CrossRef] [Green Version]
- Voss, M.W.; Prakash, R.S.; Erickson, K.I.; Basak, C.; Chaddock, L.; Kim, J.S.; Alves, H.; Heo, S.; Szabo, A.N.; White, S.M.; et al. Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. Front. Aging Neurosci. 2010, 2, 32. [Google Scholar] [CrossRef] [Green Version]
- Voss, M.W.; Erickson, K.I.; Prakash, R.S.; Chaddock, L.; Kim, J.S.; Alves, H.; Szabo, A.; Phillips, S.M.; Wojcicki, T.R.; Mailey, E.L.; et al. Neurobiological markers of exercise-related brain plasticity in older adults. Brain Behav. Immun. 2013, 28, 90–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, M.T.; Tang, P.F.; Goh, J.O.S.; Chou, T.L.; Chang, Y.K.; Hsu, Y.C.; Chen, Y.J.; Chen, N.C.; Tseng, W.I.; Gau, S.S.; et al. Task-switching performance improvements after Tai Chi Chuan training are associated with greater prefrontal activation in older adults. Front. Aging Neurosci. 2018, 10, 280. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Chen, X.; Liu, J.; Egorova, N.; Xue, X.; Liu, W.; Zheng, G.; Li, M.; Wu, J.; Hu, K.; et al. Tai Chi Chuan and Baduanjin mind-body training changes resting-state low-frequency fluctuations in the frontal lobe of older adults: A resting-state fMRI study. Front. Aging Neurosci. 2017, 11, 514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, J.; Chen, X.; Egorova, N.; Liu, J.; Xue, X.; Wang, Q.; Zheng, G.; Li, M.; Hong, W.; Sun, S.; et al. Tai Chi Chuan and Baduanjin practice modulates functional connectivity of the cognitive control network in older adults. Sci. Rep. 2017, 7, 41581. [Google Scholar] [CrossRef] [Green Version]
- Tao, J.; Liu, J.; Egorova, N.; Chen, X.; Sun, S.; Xue, X.; Huang, J.; Zheng, G.; Wang, Q.; Chen, L.; et al. Increased hippocampus-medial prefrontal cortex resting-state functional connectivity and memory function after Tai Chi Chuan practice in elder adults. Front. Aging Neurosci. 2016, 8, 25. [Google Scholar] [CrossRef]
Citation | Characteristics (n, % Female, Age) | Exercise Prescription | Main Finding | ||
---|---|---|---|---|---|
Experimental Group | Control Group | Region | Comparison | ||
Best, Chiu et al. [43] | Resistance exercise once weekly (n = 52, 100%, 69.5 ± 2.7) Resistance exercise twice weekly (n = 54, 100%, 69.4 ± 3.0) | Balance-and-tone training (n = 49, 100%, 70.0 ± 3.3) |
| Whole brain | TD: Resistance exercise once weekly group showed reduced cortical white matter volume atrophy at two-year follow-up but not at one-year follow-up. |
Burzynska, Jiao et al. [42] | Dance group (n = 49, 76%, 65.88 ± 4.70) Walking group (n = 40, 68%, 64.98 ± 4.00) | Active control group (n = 43, 67%, 66.72 ± 4.65) |
| Twenty regions were selected | BD: Dance group increased RD and MD in fornix compared to walking and active control group; walking group decreased FA in fornix compared to active control group. |
Colcombe, Erickson et al. [36] | Exercise group (n = NR, NR, 65.5) | Control group (n = NR, NR, 66.9) |
| Whole brain | TD: Exercise group showed increased grey and white matter volume in prefrontal and temporal cortices. |
Erickson, Voss et al. [47] | Aerobic exercise group (n = 60, NR, 67.6 ± 5.81) | Stretching control group (n = 60, NR, 65.5 ± 5.44) |
| Hippocampus Caudate nucleus Thalamus | TD: Aerobic exercise group showed increased right and left hippocampal volume. |
Jonasson, Nyberg et al. [40] | Aerobic group (n =29, 52%, 68.40 ± 2.54) | Control group (n = 29, 59%, 68.97 ± 2.91) |
| Hippocampus dlPFC VPC ACC | TD: Neither group showed differences in cortical thickness. |
Liu-Ambrose, Nagamatsu et al. [44] | Resistance exercise once weekly (n = 54, 100%, 69.5 ± 2.7) Resistance exercise twice weekly (n = 52, 100%, 69.4 ± 3.0) | Balance-and-tone training (n = 49, 100%, 70.0 ± 3.3) |
| Whole brain | GD: Both exercise groups showed reductions in whole brain atrophy compared to balance-and-tone training group. |
Maass, Düzel et al. [38] | Aerobic exercise group (n = 21, 52%, 68.8 ± 4.5) | Relax/stretching group (n = 19, 58%, 67.9 ± 4.1) |
| Hippocampus | TD: Neither group showed changes in hippocampal volume. |
Matura, Fleckenstein et al. [39] | Exercise group (n = 29, 42%, 73.3 ± 5.5) | Waiting control group (n = 24, 52%, 77.0 ± 8.1) |
| Whole brain | TD: Exercise group did not show changes in cortical grey matter volume. |
Niemann, Godde et al. [41] | Cardiovascular training group (n = 17, 71%, 68.24 ± 2.61) Coordination training group (n = 19, 68%, 69.63 ± 5.10) | Control group (n = 13, 54%, 68.77 ± 2.56) |
| Hippocampus | TD: Both exercise groups showed increases in hippocampal volume. |
Prehn, Lesemann et al. [45] | Aerobic exercise group (n = 11, 36%, 69) | Stretching and toning group (n = 18, 56%, 65) |
| Whole brain | TD: Neither group showed significant changes in grey matter volume. |
Rosano, Guralnik et al. [48] | Physical activity group (n = 10, NR, 74.9 ± 4.4) | Health education group (n =16, NR, 76.8 ± 6.1) |
| Hippocampus | GD: Physical activity group showed greater left and right hippocampal volume and left cornu ammonis compared with health education group. |
Tao, Liu et al. [46] | Tai Chi Chuan group (n = 21, NR, 62.38 ± 2.07) Baduanjin group (n = 16, NR, 62.18 ± 2.02) | Control group (n = 24, NR, 60.16 ± 1.88) |
| Whole brain | TD: Tai Chi Chuan group increased grey matter volume in the left insula, left putamen, left parahippocampus/hippocampus, left amygdala, and left ITG as compared with control group; Baduanjin group increased grey matter volume in the insula, left hippocampus, left amygdala, bilateral putamen as compared to control group. |
Voss, Heo et al. [37] | Walking group (n = 35, 69%, 65.17 ± 4.40) | Stretching group (n = 35, 60%, 64.57 ± 4.46) |
| Whole brain | TD: The walking group showed no significant effects on FA, AD, and RD. |
Citation | Characteristics of Study (n, % Female, Age) | Exercise Prescription | Main Finding | |
---|---|---|---|---|
Experimental Group | Control Group | |||
Chapman, Aslan et al. [49] | Physical training group (n = 18, 72%, 64.0 ± 4.3) | Control group (n = 19, 74%, 64.0 ± 3.6) |
| TD: Neither group showed changes in CBF in the hippocampus. BD: Physical training group after intervention increased activation in CBF in bilateral ACC compared to the control group. |
Flodin, Jonasson et al. [51] | Aerobic exercise group (n = 30, 53%, 68.41 ± 2.59) | Control group (n = 25, 56%, 69.16 ± 3.01) |
| TD: Neither group showed changes in functional connectivity after intervention. |
Maass, Düzel et al. [38] | Aerobic exercise group (n = 21, 52%, 68.8 ± 4.5) | Relax/stretching group (n = 19, 58%, 67.9 ± 4.1) |
| TD: Aerobic exercise group showed a significant change in hippocampal perfusion (i.e., CBF and CBV). |
Prehn, Lesemann et al. [45] | Aerobic exercise group (n = 11, 36%, 69) | Stretching and toning group (n = 18, 56%, 65) |
| GD: Aerobic exercise group increased functional connectivity between dlPFC and superior parietal gyrus/precuneus as compared to stretching and toning group. |
Tao, Chen et al. [57] | Tai Chi Chuan group (n = 21, 62%, 62.38 ± 4.55) Baduanjin group (n = 15, 60%, 62.33 ± 3.88) | Control group (n = 25, 76%, 59.76 ± 4.83) |
| GD: Tai Chi Chuan group significantly increased amplitude of low-frequency and low-4 band in right dlPFC as compared to control group; Baduanjin group significantly increased amplitude of low-frequency and low-4 band in the bilateral medial PFC as compared to control group. |
Tao, Chen et al. [58] | Tai Chi Chuan group (n = 21, 62%, 62.38 ± 4.55) Baduanjin group (n = 15, 60%, 62.33 ± 3.88) | Control group (n = 25, 76%, 59.76 ± 4.83) |
| GD: Tai Chi Chuan group decreased functional connectivity in the left SFG, left dorsal anterior cingulate, and rostral ACC as compared to control group; Baduanjin group decreased resting-state functional connectivity in the left putamen/insula as compared to control group |
Tao, Liu et al. [59] | Tai Chi Chuan group (n = 21, 62%, 62.38 ± 4.55) Baduanjin group (n = 15, 60%, 62.33 ± 3.88) | Control group (n = 25, 76%, 59.76 ± 4.83) |
| GD: Tai Chi Chuan group increased functional connectivity between bilateral hippocampus and right medial PFC and left medial PFC as compared to control group; Tai Chi Chuan group increased functional connectivity between left and right hippocampus as compared to control group |
Voss, Erickson et al. [55] | Walking group (n = 30, 73%, 67.3 ± 5.8) | Flexibility, toning, balance group (n = 35, 71%, 65.4 ± 5.2) |
| The study did not provide interventional results. |
Voss, Prakash et al. [54] | Aerobic walking group (n = 30, 73%, 67.30 ± 5.80) | Control group (n = 35, 71%, 67.30 ± 5.24) |
| TD: Aerobic walking exercise group showed connection between right anterior PFC and PFC at 48 weeks into the intervention. |
Citation | Characteristics of Study (n, % Female, Age) | Exercise Prescription | Task | Main Finding | |
---|---|---|---|---|---|
Experimental Group | Control Group | ||||
Colcombe, Kramer et al. [50] | All (n = 29, 62% female, 65.60 ± 5.66) Aerobic group (NR) | Control group (NR) |
| Ericksen flanker task | GD: Aerobic exercise group showed a significantly higher activation in MFG, SFG, SPL and reduced activation in ACC compared to the control group. |
Nocera, Crosson et al. [52] | Spin group (n = 16, 63%, 69.7 ± 6.34) | Balance group (n = 14, 43%, 72.09 ± 6.43) |
| Semantic verbal fluency | GD: Spin group decreased activation in ITG and angular gyrus as compared to the balance group. |
Voelcker-Rehage, Godde et al. [53] | Cardiovascular training group (n = 17, 71%, 68.47 ± 3.06) Coordination training group (n = 16, 63%, 71.13 ± 4.59) | Control group (n = 11, 55%, 69.27 ± 3.29) |
| Ericksen flanker task | TD: Cardiovascular training decreased activation in the MFG, the left ACC, the left parahippocampal gyrus, and the right STG, and the MTG; coordination training increased activation in the IFG, thalamus, caudate, and the SPL. GD: The two exercise training groups showed no changes, but the control group increased activation in the right MFG, the left anterior and right posterior cingulate, the right parahippocampal gyrus, the right STG, and the right lentiform nucleus. |
Wu, Tang et al. [56] | Tai Chi Chuan group (n = 16, 81%, 64.9 ± 2.8) | Control group (n = 15, 100%, 64.9 ± 3.2) |
| Task-switching | TD: Tai Chi Chuan group showed increased activation in the left SFG and the right MFG in switch condition as compared to non-switch; control group decreased activation in the left SFG, the right MFG, and left IPG. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, F.-T.; Hopman, R.J.; Huang, C.-J.; Chu, C.-H.; Hillman, C.H.; Hung, T.-M.; Chang, Y.-K. The Effect of Exercise Training on Brain Structure and Function in Older Adults: A Systematic Review Based on Evidence from Randomized Control Trials. J. Clin. Med. 2020, 9, 914. https://doi.org/10.3390/jcm9040914
Chen F-T, Hopman RJ, Huang C-J, Chu C-H, Hillman CH, Hung T-M, Chang Y-K. The Effect of Exercise Training on Brain Structure and Function in Older Adults: A Systematic Review Based on Evidence from Randomized Control Trials. Journal of Clinical Medicine. 2020; 9(4):914. https://doi.org/10.3390/jcm9040914
Chicago/Turabian StyleChen, Feng-Tzu, Rachel J. Hopman, Chung-Ju Huang, Chien-Heng Chu, Charles H. Hillman, Tsung-Min Hung, and Yu-Kai Chang. 2020. "The Effect of Exercise Training on Brain Structure and Function in Older Adults: A Systematic Review Based on Evidence from Randomized Control Trials" Journal of Clinical Medicine 9, no. 4: 914. https://doi.org/10.3390/jcm9040914
APA StyleChen, F. -T., Hopman, R. J., Huang, C. -J., Chu, C. -H., Hillman, C. H., Hung, T. -M., & Chang, Y. -K. (2020). The Effect of Exercise Training on Brain Structure and Function in Older Adults: A Systematic Review Based on Evidence from Randomized Control Trials. Journal of Clinical Medicine, 9(4), 914. https://doi.org/10.3390/jcm9040914