Timing of Initiation of Renal Replacement Therapy in Sepsis-Associated Acute Kidney Injury
Abstract
:1. Introduction
2. Timing of Initiation of RRT
3. Limitations
4. Future Perspectives
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Chertow, G.; Burdick, E.; Honour, M.; Bonventre, J.; Bates, D. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J. Am. Soc. Nephrol. 2005, 16, 3365–3370. [Google Scholar] [CrossRef] [Green Version]
- Kellum, J.A.; Prowle, J.R. Paradigms of acute kidney injury in the intensive care setting. Nat. Rev. Nephrol. 2018, 14, 217–230. [Google Scholar] [CrossRef] [PubMed]
- Uchino, S.; Kellum, J.A.; Bellomo, R.; Doig, G.S.; Morimatsu, H.; Morgera, S. Acute renal failure in critically ill patients: A multinational, multicenter study. JAMA 2005, 294, 813–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoste, E.A.; Bagshaw, S.M.; Bellomo, R.; Cely, C.M.; Colman, R.; Cruz, D.N.; Honoré, P. Epidemiology of acute kidney injury in critically ill patients: The multinational AKI-EPI study. Intensive Care Med. 2015, 41, 1411–1423. [Google Scholar] [CrossRef] [PubMed]
- Bellomo, R. The epidemiology of acute renal failure: 1975 versus 2005. Curr. Opin. Crit. Care 2006, 12, 557–560. [Google Scholar] [CrossRef]
- Lafrance, J.P.; Miller, D.R. Acute kidney injury associates with increased long-term mortality. J. Am. Soc. Nephrol. 2010, 21, 345–352. [Google Scholar] [CrossRef]
- Thongprayoon, C.; Kaewput, W.; Thamcharoen, N.; Bathini, T.; Watthanasuntorn, K.; Lertjitbanjong, P.; Kröner, P.T. Incidence and Impact of Acute Kidney Injury after Liver Transplantation: A Meta-Analysis. J. Clin. Med. 2019, 8, 372. [Google Scholar] [CrossRef] [Green Version]
- Lertjitbanjong, P.; Thongprayoon, C.; Cheungpasitporn, W.; O’Corragain, O.A.; Srivali, N.; Bathini, T.; Watthanasuntorn, K.; Aeddula, N.R.; Salim, S.A.; Ungprasert, P.; et al. Acute Kidney Injury after Lung Transplantation: A Systematic Review and Meta-Analysis. J. Clin. Med. 2019, 8, 1713. [Google Scholar] [CrossRef] [Green Version]
- Thongprayoon, C.; Kaewput, W.; Thamcharoen, N.; Bathini, T.; Watthanasuntorn, K.; Salim, S.A.; Ungprasert, P.; Lertjitbanjong, P.; Aeddula, N.R.; Torres-Ortiz, A.; et al. Acute Kidney Injury in Patients Undergoing Total Hip Arthroplasty: A Systematic Review and Meta-Analysis. J. Clin. Med. 2019, 8, 66. [Google Scholar] [CrossRef] [Green Version]
- Bellomo, R.; Ronco, C.; Kellum, J.A.; Mehta, R.L.; Palevsky, P. Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: The Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit. Care 2004, 8, R204–R212. [Google Scholar] [CrossRef] [Green Version]
- Lassnigg, A.; Schmidlin, D.; Mouhieddine, M.; Bachmann, L.M.; Druml, W.; Bauer, P.; Hiesmayr, M. Minimal changes of serum creatinine predict prognosis in patients after cardiothoracic surgery: A prospective cohort study. J. Am. Soc. Nephrol. 2004, 15, 1597–1605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehta, R.L.; Kellum, J.A.; Shah, S.V.; Molitoris, B.A.; Ronco, C.; Warnock, D.G.; Levin, A. Acute Kidney Injury Network: Report of an initiative to improve outcomes in acute kidney injury. Crit. Care 2007, 11, R31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int. Suppl. 2012, 2, S1–S138. [Google Scholar]
- Chawla, L.S.; Bellomo, R.; Bihorac, A.; Goldstein, S.L.; Siew, E.D.; Bagshaw, S.M.; Bittleman, D.; Cruz, D.; Endre, Z.; Fitzgerald, S.L.; et al. Acute kidney disease and renal recovery: Consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup. Nat. Rev. Nephrol. Nat. Res. 2017, 13, 241–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murugan, R.; Kellum, J.A. Acute kidney injury: What’s the prognosis? Nat. Rev. Nephrol. 2011, 7, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Doyle, J.F.; Forni, L.G. Acute kidney injury: Short-term and long-term effects. Crit. Care 2016, 20, 188. [Google Scholar] [CrossRef] [Green Version]
- Bellomo, R.; Cass, A.; Cole, L.; Finfer, S.; Gallagher, M.; Lee, J.; Lo, S.; McArthur, C.; McGuiness, S.; Norton, R.; et al. An observational study fluid balance and patient outcomes in the Randomized Evaluation of Normal vs. Augmented Level of Replacement Therapy trial. Crit. Care Med. 2012, 40, 1753–1760. [Google Scholar]
- Payen, D.; de Pont, A.C.; Sakr, Y.; Spies, C.; Reinhart, K.; Vincent, J.L. A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit. Care 2008, 12, R74. [Google Scholar] [CrossRef] [Green Version]
- Bouchard, J.; Soroko, S.B.; Chertow, G.M.; Himmelfarb, J.; Ikizler, T.A.; Paganini, E.P.; Mehta, R.L. Fluid accumulation, survival and recovery of kidney function in critically ill patients with AKI. Kidney Int. 2009, 76, 422–427. [Google Scholar] [CrossRef] [Green Version]
- Davison, D.; Junker, C. Advances in critical care for the nephrologist: Hemodynamic monitoring and volume management. Clin. J. Am. Soc. Nephrol. 2008, 3, 554–561. [Google Scholar] [CrossRef]
- Finfer, S.; Chittock, D.R.; Su, S.Y.; Blair, D.; Foster, D.; Dhingra, V.; Bellomo, R.; Cook, D.; Dodek, P.; Henderson, W.R.; et al. Intensive versus conventional glucose control in critically ill patients. N. Engl. J. Med. 2009, 360, 1283–1297. [Google Scholar] [PubMed] [Green Version]
- Boccardo, P.; Remuzzi, G.; Galbusera, M. Platelet dysfunction in renal failure. Semin. Thromb. Hemost. 2004, 30, 579–589. [Google Scholar] [CrossRef] [PubMed]
- Vanmassenhove, J.; Kielstein, J.; Joerres, A.; Biesen, W.V. Management of patients at risk of AKI. Lancet 2017, 389, 2139–2151. [Google Scholar] [CrossRef]
- Wald, R.; Adhikari, N.K.; Smith, O.M.; Weir, M.A.; Pope, K.; Cohen, A.; Thorpe, K.; McIntyre, L.; Lamontagne, F.; Soth, M.; et al. Comparison of standard and accelerated initiation of renal replacement therapy in acute kidney injury. Kidney Int. 2015, 88, 897–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamale, T.E.; Hase, N.K.; Kulkarni, M.; Pradeep, K.J.; Keskar, V.; Jawale, S.; Mahajan, D. Earlier-start versus usual-start dialysis in patients with community-acquired acute kidney injury: A randomized controlled trial. Am. J. Kidney Dis. 2013, 62, 1116–1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaudry, S.; Hajage, D.; Schortgen, F.; Martin-Lefevre, L.; Pons, B.; Boulet, E.; Boyer, A.; Chevrel, G.; Lerolle, N.; Carpentier, D.; et al. Initiation Strategies for Renal-Replacement Therapy in the Intensive Care Unit. N. Engl. J. Med. 2016, 375, 122. [Google Scholar] [CrossRef]
- Zarbock, A.; Kellum, J.A.; Schmidt, C.; Van Aken, H.; Wempe, C.; Pavenstädt, H.; Boanta, A.; Gerß, J.; Meersch, M. Effect of Early vs. Delayed Initiation of Renal Replacement Therapy on Mortality in Critically Ill Patients With Acute Kidney Injury: The ELAIN Randomized Clinical Trial. JAMA 2016, 315, 2190. [Google Scholar] [CrossRef] [Green Version]
- Wierstra, B.T.; Kadri, S.; Alomar, S.; Burbano, X.; Barrisford, G.W.; Kao, R.L.C. The impact of “early” versus “late” initiation of renal replacement therapy in critical care patients with acute kidney injury: A systematic review and evidence synthesis. Crit. Care 2016, 20, 122. [Google Scholar] [CrossRef] [Green Version]
- Besen, B.A.M.P.; Romano, T.G.; Mendes, P.V.; Gallo, C.A.; Zampieri, F.G.; Nassar, A.P., Jr.; Park, M. Early Versus Late Initiation of Renal Replacement Therapy in Critically Ill Patients: Systematic Review and Meta-Analysis. J. Intensive Care Med. 2019, 34, 714. [Google Scholar] [CrossRef]
- Bagshaw, S.M.; Uchino, S.; Bellomo, R.; Morimatsu, H.; Morgera, S.; Schetz, M.; Tan, I.; Bouman, C.; Macedo, E.; Gibney, M.; et al. Septic acute kidney injury in critically ill patients: Clinical characteristics and outcomes. Clin. J. Am. Soc. Nephrol. 2007, 2, 431–439. [Google Scholar] [CrossRef] [Green Version]
- Cruz, M.G.; Dantas, J.G.; Levi, T.M.; Rocha, M.; de Souza, S.P.; Boa-Sorte, N.; de Moura, C.G.; Cruz, C.M. Septic versus non-septic acute kidney injury in critically ill patients: Characteristics and clinical outcomes. Rev. Bras Ter. Intensiva. 2014, 26, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Prowle, J.R.; Bellomo, R. Sepsis-associated acute kidney injury: Macrohemodynamic and microhemodynamic alterations in the renal circulation. Semin. Nephrol. 2015, 35, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Poston, J.T.; Koyner, J.L. Sepsis associated acute kidney injury. BMJ 2019, 364, k4891. [Google Scholar] [CrossRef] [PubMed]
- Gomez, H.; Ince, C.; De Backer, D.; Pickkers, P.; Payen, D.; Hotchkiss, J.; Kellum, J.A. A unified theory of sepsis- induced acute kidney injury: Inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to injury. Shock 2014, 41, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Pannu, N.; Gibney, R.N. Renal replacement therapy in the intensive care unit. Ther. Clin. Risk Manag. 2005, 1, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Karvellas, C.J.; Farhat, M.R.; Sajjad, I.; Mogensen, S.S.; Leung, A.A.; Wald, R.; Bagshaw, S.M. A comparison of early versus late initiation of renal replacement therapy in critically ill patients with acute kidney injury: A systematic review and meta-analysis. Crit. Care 2011, 15, R72. [Google Scholar] [CrossRef] [Green Version]
- Matson, J.; Zydney, A.; Honore, P.M. Blood filtration: New opportunities and the implications of systems biology. Crit. Care Resusc. 2004, 6, 209–217. [Google Scholar]
- Sugahara, S.; Suzuki, H. Early start on continuous hemodialysis therapy improves survival rate in patients with acute renal failure following coronary bypass surgery. Hemodial Int. 2004, 8, 320–325. [Google Scholar] [CrossRef]
- Bagshaw, S.M.; Uchino, S.; Bellomo, R.; Morimatsu, H.; Morgera, S.; Schetz, M.; Tan, I.; Bouman, C.; Macedo, E.; Gibney, M.; et al. Timing of renal replacement therapy and clinical outcomes in critically ill patients with severe acute kidney injury. J. Crit. Care 2009, 24, 129–140. [Google Scholar] [CrossRef]
- Liu, K.D.; Himmelfarb, J.; Paganini, E.; Ikizler, T.A.; Soroko, S.H.; Mehta, R.L.; Chertow, G.M. Timing of initiation of dialysis in critically ill patients with acute kidney injury. Clin. J. Am. Soc. Nephrol. 2006, 1, 915–919. [Google Scholar] [CrossRef] [Green Version]
- Leite, T.T.; Macedo, E.; Pereira, S.M.; Bandeira, S.R.; Pontes, P.H.; Garcia, A.S.; Militão, F.R.; Sobrinho, I.M.; Assunção, L.M.; Libório, A.B. Timing of renal replacement therapy initiation by AKIN classification system. Crit. Care 2013, 17, R62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shingarev, R.; Wille, K.; Tolwani, A. Management of complications in renal replacement therapy. Semin. Dial 2011, 24, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Moreira, F.T.; Palomba, H.; Chaves, R.C.F.; Bouman, C.; Schultz, M.J.; Serpa Neto, A. Early versus delayed initiation of renal replacement therapy for acute kidney injury: An updated systematic review, meta-analysis, meta-regression and trial sequential analysis of randomized controlled trials. Rev. Bras Ter. Intensiva 2018, 30, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Elseviers, M.M.; Lins, R.L.; Van der Niepen, P.; Hoste, E.; Malbrain, M.L.; Damas, P.; Devriendt, J. Renal replacement therapy is an independent risk factor for mortality in critically ill patients with acute kidney injury. Crit. Care 2010, 14, R221. [Google Scholar] [CrossRef] [Green Version]
- Combes, A.; Brechot, N.; Amour, J.; Cozic, N.; Lebreton, G.; Guidon, C.; Zogheib, E.; Thiranos, J.C.; Rigal, J.C.; Bastien, O.; et al. Early high-volume hemofiltration versus standard care for post-cardiac surgery shock. The HEROICS study. Am. J. Respir. Crit. Care Med. 2015, 192, 1179–1190. [Google Scholar] [CrossRef]
- Oh, H.J.; Kim, M.H.; Ahn, J.Y.; Ku, N.S.; Park, J.T.; Han, S.H.; Choi, J.Y.; Han, S.H.; Yoo, T.H.; Song, Y.G.; et al. Can early initiation of continuous renal replacement therapy improve patient survival with septic acute kidney injury when enrolled in early goal-directed therapy? J. Crit. Care 2016, 35, 51–56. [Google Scholar] [CrossRef]
- Chon, G.R.; Chang, J.W.; Huh, J.W.; Lim, C.M.; Koh, Y.; Park, S.K.; Park, J.S.; Hong, S.B. A comparison of the time from sepsis to inception of continuous renal replacement therapy versus RIFLE criteria in patients with septic acute kidney injury. Shock 2012, 38, 30–36. [Google Scholar] [CrossRef]
- Yoon, B.R.; Leem, A.Y.; Park, M.S.; Kim, Y.S.; Chung, K.S. Optimal timing of initiating continuous renal replacement therapy in septic shock patients with acute kidney injury. Sci. Rep. 2019, 9, 11981. [Google Scholar] [CrossRef]
- Baek, S.D.; Yu, H.; Shin, S.; Park, H.S.; Kim, M.S.; Kim, S.M.; Lee, E.K.; Chang, J.W. Early continuous renal replacement therapy in septic acute kidney injury could be defined by its initiation within 24 h of vasopressor infusion. J. Crit. Care 2017, 39, 108–114. [Google Scholar] [CrossRef]
- Carl, D.E.; Grossman, C.; Behnke, M.; Sessler, C.N.; Gehr, T.W. Effect of timing of dialysis on mortality in critically ill, septic patients with acute renal failure. Hemodial Int. 2010, 14, 11–17. [Google Scholar] [CrossRef]
- Tian, H.; Sun, T.; Hao, D.; Wang, T.; Li, Z.; Han, S.; Qi, Z.; Dong, Z.; Lv, C.; Wang, X. The optimal timing of continuous renal replacement therapy for patients with sepsis-induced acute kidney injury. Int. Urol. Nephrol. 2014, 46, 2009–2014. [Google Scholar] [CrossRef] [PubMed]
- Payen, D.; Mateo, J.; Cavaillon, J.M.; Fraisse, F.; Floriot, C.; Vicaut, E. Impact of continuous venovenous hemofiltration on organ failure during the early phase of severe sepsis: A randomized controlled trial. Crit. Care Med. 2009, 37, 803–810. [Google Scholar] [CrossRef] [PubMed]
- Shum, H.P.; Chan, K.C.; Kwan, M.C.; Yeung AW, T.; Cheung EW, S.; Yan, W.W. Timing for initiation of continuous renal replacement therapy in patients with septic shock and acute kidney injury. Ther. Apher. Dial. 2013, 17, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Chou, Y.H.; Huang, T.M.; Wu, V.C.; Wang, C.Y.; Shiao, C.C.; Lai, C.F.; Tsai, H.B.; Chao, C.T.; Young, G.H.; Wang, W.J.; et al. Impact of timing of renal replacement therapy initiation on outcome of septic acute kidney injury. Crit. Care 2011, 15, R134. [Google Scholar] [CrossRef] [Green Version]
- Barbar, S.D.; Clere-Jehl, R.; Bourredjem, A.; Hernu, R.; Montini, F.; Bruyère, R.; Lebert, C.; Bohé, J.; Badie, J.; Eraldi, J.P.; et al. Investigators I-IT, the CTN. Timing of renal-replacement therapy in patients with acute kidney injury and sepsis. N. Engl. J. Med. 2018, 379, 1431–1442. [Google Scholar] [CrossRef]
- Bouman, C.S.; Oudemans-Van Straaten, H.M.; Tijssen, J.G.; Zandstra, D.F.; Kesecioglu, J. Effects of early high-volume continuous venovenous hemofiltration on survival and recovery of renal function in intensive care patients with acute renal failure: A prospective, randomized trial. Crit. Care Med. 2002, 30, 2205–2211. [Google Scholar] [CrossRef]
- Lim, C.C.; Tan, C.S.; Kaushik, M.; Tan, H.K. Initiating acute dialysis at earlier Acute Kidney Injury Network stage in critically ill patients without traditional indications does not improve outcome: A prospective cohort study. Nephrology (Carlton) 2015, 20, 148–154. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, D.; Tang, X.; Li, P.; Zhang, Y.; Tao, Y. Timing of initiation of renal replacement therapy in acute kidney injury: An updated meta-analysis of randomized controlled trials. Ren Fail. 2020, 42, 77–88. [Google Scholar] [CrossRef]
- Lopes, J.A.; Jorge, S. The RIFLE and AKIN classifications for acute kidney injury: A critical and comprehensive review. Clin. Kidney J. 2013, 6, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Jiang, L.; Du, B.; Wen, Y.; Wang, M.; Xi, X. A comparison of different diagnostic criteria of acute kidney injury in critically ill patients. Crit. Care 2014, 18, R144. [Google Scholar] [CrossRef] [Green Version]
- Xiao, L.; Jia, L.; Li, R.; Zhang, Y.; Ji, H.; Faramand, A. Early versus late initiation of renal replacement therapy for acute kidney injury in critically ill patients: A systematic review and meta-analysis. PLoS ONE 2019, 14, e0223493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Li, H.; Zhang, D. Timing of continuous renal replacement therapy in patients with septic AKI: A systematic review and meta-analysis. Medicine (Baltimore) 2019, 98, e16800. [Google Scholar] [CrossRef] [PubMed]
- STARRT-AKI Investigators. STandard versus Accelerated initiation of Renal Replacement Therapy in Acute Kidney Injury: Study Protocol for a Multi-National, Multi-Center, Randomized Controlled Trial. Can. J. Kidney Health Dis. 2019, 6, 2054358119852937. [Google Scholar]
Acute Kidney Injury Staging According to Kidney Disease Improving Global Outcomes (KDIGO) Classification | ||
---|---|---|
Stage | SCr | UO |
1 | ↑ SCr ≥ 26.5 μmol/l (≥ 0.3 mg/dl) or ↑ SCr ≥ 150–200% (1.5–1.9×) | <0.5 mL/kg/h (>12 h) |
2 | ↑ SCr > 200–300% (> 2–2.9×) | <0.5 mL/kg/h (>12 h) |
3 | ↑ SCr > 300% (≥3×) or ↑ SCr to ≥ 353.6 μmol/l (≥4 mg/dl) or initiation of renal replacement therapy | <0.3 mL/kg/h (24 h) or anuria (12 h) |
Study | Design | N | RRT Modality | Early RRT Start | Late RRT Start | Follow-Up | Mortality Early vs. Late RRT Start | AUROC |
---|---|---|---|---|---|---|---|---|
Baek, 2017 | Retrospective, single-center, cohort study | 177 | CRRT | initiation within 24 h of vasopressor treatment (Tvaso-CRRT less than 24 h) | initiation beyond 24 h of vasopressor treatment (Tvaso-CRRT over 24 h) | 28 days, 90 days | 28 days - 33.6% vs. 61.5% (p = 0.001) adjusted OR 0.449 (95% CI 0.211–0.956), p = 0.038 90 days - 44.0% vs. 75.0% (p < 0.001) adjusted OR 0.369 (95% CI 0.165–0.825), p = 0.015 | Tvaso-CRRT >24 h, AUC, 0.634; 95% CI, 0.559–0.705, p = 0.001; |
Barbar, 2018 | Multicenter, RCT | 488 | RRT | RRT within 12 h after documentation of failure-stage AKI | RRT after 48 h if renal recovery had not occurred | 28 days, 90 days, 180 days | 28 days - 45% vs. 42% (p = 0.48) 90 days - 58% vs. 54% (p = 0.38) 180 days - 61% vs. 57% (p = 0.37) | - |
Carl, 2010 | Retrospective, single-center, cohort study | 147 | RRT | BUN < 100 mg/dL + AKIN stage ≥ 2 | BUN ≥ 100 mg/dL + AKIN stage ≥ 2 | 14 days, 28 days, 365 days | 14 days - 33% vs. 53.3% (p = 0.01) adjusted OR 3.6 (95% CI 1.7–7.6), p = 0.001 28 days - 52.3% vs. 68.3% (p < 0.05) adjusted OR 2.6 (95% CI 1.2–5.7), p = 0.01 365 days - 69.3% vs. 86.7% (p < 0.05) adjusted OR 3.5 (95% CI 1.2–10), p = 0.02 | - |
Chon, 2012 | Retrospective, single-center, cohort study | 55 | CRRT | ≤24 h (mean time to RRT = 12.5 h) RIFLE-I and RIFLE-F | >24 h (mean time to RRT = 42.2 h) RIFLE-I and RIFLE-F | 28 days, 90 days | 28 days - 19.4% vs. 47.4% (p = 0.030) adjusted HR 3.378 (95% CI 1.174–9.722), p = 0.024 90 days - 38.2% vs. 61.1% (p = 0.115) | - |
Chou, 2011 | Retrospective, single-center, cohort study | 370 | RRT | sRIFLE-0 or -Risk | sRIFLE-Injury or -Failure | during ICU stay | 70.8% vs. 69.7%, p = 0.98 | - |
Oh, 2016 | Retrospective, single-center cohort study | 60 | CRRT | ≤26.4 h mean time between EGDT and CRRT initiation 7.9 h (1.0–25.1 h) | >26.4 h mean time between EGDT and CRRT initiation 61.5 h (32.3–137.6 h) | 28 days | 30.0% vs. 56.7%, p = 0.037 Late CRRT treatment (vs. early CRRT treatment) adjusted HR 2.461 (95% CI 1.044–5.800), p = 0.040 | - |
Payen, 2009 | Prospective, randomized, multicenter study | 76 | CRRT | RRT for at least 96 h within 24 h of randomization, | No RRT unless metabolic renal failure and classic indications for RRT present | 28 days | CRRT vs. control (54% vs. 44%; p < 0.49) | - |
Shum, 2013 | Retrospective, single center, cohort study | 120 | CRRT | simplified RIFLE-Risk (Mean time from ICU admission to RRT = 20.7 h) | simplified RIFLE-Injury or Failure (Mean time from ICU admission to RRT = 10.8 h) | 28 days, 3 months and 6 months | 28 days - 48.4% vs. 48.3% (p = 0.994) 3 months - 58.1% vs. 55.1% (p = 0.771) 6 months - 61.3% vs. 56.2% (p = 0.62) | - |
Tian, 2014 | Retrospective, single center, cohort study | 160 | CRRT | CRRT group | control group | 28 days | AKIN 1 - 21.7% vs. 42.3% (NS) AKIN 2 - 38.7% vs. 66.7% (p = 0.048) AKIN 3 - 67.4% vs. 84.6% (NS) adjusted OR 0.254 (95% CI 0.072–0.897), p = 0.033 | |
Yoon, 2018 | Retrospective, single center, cohort study | 158 | CRRT | <16.5 h | ≥16.5 h | 28 days, 60 days, 90 days | 28 days - 40.7% vs. 70.8% HR 2.118 (95% CI 1.375–3.261), p < 0.001 60 days - HR 2.244 (95% CI 1.497–3.363), p < 0.001 90 days - HR 2.115 (95% CI 1.424–3.141), p < 0.001 Interval time from AKI to CRRT initiation Adjusted HR 1.016 (95% CI 1.008–1.025; p < 0.001) | interval time from AKI to CRRT initiation for ICU mortality AUC 0.786 (95% CI, 0.716–0.856; p < 0.001) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agapito Fonseca, J.; Gameiro, J.; Marques, F.; Lopes, J.A. Timing of Initiation of Renal Replacement Therapy in Sepsis-Associated Acute Kidney Injury. J. Clin. Med. 2020, 9, 1413. https://doi.org/10.3390/jcm9051413
Agapito Fonseca J, Gameiro J, Marques F, Lopes JA. Timing of Initiation of Renal Replacement Therapy in Sepsis-Associated Acute Kidney Injury. Journal of Clinical Medicine. 2020; 9(5):1413. https://doi.org/10.3390/jcm9051413
Chicago/Turabian StyleAgapito Fonseca, José, Joana Gameiro, Filipe Marques, and José António Lopes. 2020. "Timing of Initiation of Renal Replacement Therapy in Sepsis-Associated Acute Kidney Injury" Journal of Clinical Medicine 9, no. 5: 1413. https://doi.org/10.3390/jcm9051413
APA StyleAgapito Fonseca, J., Gameiro, J., Marques, F., & Lopes, J. A. (2020). Timing of Initiation of Renal Replacement Therapy in Sepsis-Associated Acute Kidney Injury. Journal of Clinical Medicine, 9(5), 1413. https://doi.org/10.3390/jcm9051413