Bleeding Severity in Percutaneous Coronary Intervention (PCI) and Its Impact on Short-Term Clinical Outcomes
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Definitions
2.3. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Type | Definition |
---|---|
0 | No bleeding |
1 | Bleeding that is not actionable and does not cause the patient to seek unscheduled performance of studies, hospitalisation, or treatment by a healthcare professional. May include episodes leading to self-discontinuation of medical therapy by the patient without consulting a healthcare professional |
2 | Any overt, actionable sign of haemorrhage (e.g., more bleeding than would be expected for a clinical circumstance, including bleeding found by imaging alone) that does not fit the criteria for type 3, 4, or 5, but does meet at least one of the following criteria: (1) requiring nonsurgical, medical intervention by a healthcare professional, (2) leading to hospitalisation or increased level of care, or (3) prompting evaluation |
3 a |
|
3 b |
|
3 c |
|
4 |
|
5 a | Probable fatal bleeding: no autopsy or imaging confirmation but clinically suspicious |
5 b | Definite fatal bleeding: overt bleeding or autopsy or imaging confirmation |
References
- Vranckx, P.; Frigoli, E.; Rothenbuhler, M.; Tomassini, F.; Garducci, S.; Ando, G.; Picchi, A.; Sganzerla, P.; Paggi, A.; Ugo, F.; et al. Radial versus femoral access in patients with acute coronary syndromes with or without ST-segment elevation. Eur. Heart J. 2017, 38, 1069–1080. [Google Scholar] [CrossRef]
- Ndrepepa, G.; Neumann, F.J.; Richardt, G.; Schulz, S.; Tolg, R.; Stoyanov, K.M.; Gick, M.; Ibrahim, T.; Fiedler, K.A.; Berger, P.B.; et al. Prognostic value of access and non-access sites bleeding after percutaneous coronary intervention. Circ. Cardiovasc. Interv. 2013, 6, 354–361. [Google Scholar] [CrossRef] [Green Version]
- Kwok, C.S.; Khan, M.A.; Rao, S.V.; Kinnaird, T.; Sperrin, M.; Buchan, I.; de Belder, M.A.; Ludman, P.F.; Nolan, J.; Loke, Y.K.; et al. Access and non-access site bleeding after percutaneous coronary intervention and risk of subsequent mortality and major adverse cardiovascular events: Systematic review and meta-analysis. Circ. Cardiovasc. Interv. 2015, 8, e001645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinnaird, T.; Anderson, R.; Ossei-Gerning, N.; Gallagher, S.; Large, A.; Strange, J.; Ludman, P.; de Belder, M.; Nolan, J.; Hildick-Smith, D.; et al. Vascular Access Site and Outcomes among 26,807 Chronic Total Coronary Occlusion Angioplasty Cases from the British Cardiovascular Interventions Society National Database. JACC Cardiovasc. Interv. 2017, 10, 635–644. [Google Scholar] [CrossRef] [PubMed]
- Komocsi, A.; Aradi, D.; Kehl, D.; Ungi, I.; Thury, A.; Pinter, T.; Di Nicolantonio, J.J.; Tornyos, A.; Vorobcsuk, A. Meta-analysis of randomized trials on access site selection for percutaneous coronary intervention in ST-segment elevation myocardial infarction. Arch. Med. Sci. 2014, 10, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Ferrante, G.; Rao, S.V.; Juni, P.; Da Costa, B.R.; Reimers, B.; Condorelli, G.; Anzuini, A.; Jolly, S.S.; Bertrand, O.F.; Krucoff, M.W.; et al. Radial Versus Femoral Access for Coronary Interventions Across the Entire Spectrum of Patients With Coronary Artery Disease: A Meta-Analysis of Randomized Trials. JACC Cardiovasc. Interv. 2016, 9, 1419–1434. [Google Scholar] [CrossRef] [PubMed]
- Karrowni, W.; Vyas, A.; Giacomino, B.; Schweizer, M.; Blevins, A.; Girotra, S.; Horwitz, P.A. Radial versus femoral access for primary percutaneous interventions in ST-segment elevation myocardial infarction patients: A meta-analysis of randomized controlled trials. JACC Cardiovasc. Interv. 2013, 6, 814–823. [Google Scholar] [CrossRef] [Green Version]
- Valgimigli, M.; Gagnor, A.; Calabro, P.; Frigoli, E.; Leonardi, S.; Zaro, T.; Rubartelli, P.; Briguori, C.; Ando, G.; Repetto, A.; et al. Radial versus femoral access in patients with acute coronary syndromes undergoing invasive management: A randomised multicentre trial. Lancet 2015, 385, 2465–2476. [Google Scholar] [CrossRef]
- Wlodarczyk, J.; Ajani, A.E.; Kemp, D.; Andrianopoulos, N.; Brennan, A.L.; Duffy, S.J.; Clark, D.J.; Reid, C.M. Incidence, Predictors and Outcomes of Major Bleeding in Patients Following Percutaneous Coronary Interventions in Australia. Heart Lung Circ. 2016, 25, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Pilgrim, T.; Windecker, S. Antiplatelet therapy for secondary prevention of coronary artery disease. Heart 2014, 100, 1750–1756. [Google Scholar] [CrossRef]
- Mehran, R.; Rao, S.V.; Bhatt, D.L.; Gibson, C.M.; Caixeta, A.; Eikelboom, J.; Kaul, S.; Wiviott, S.D.; Menon, V.; Nikolsky, E.; et al. Standardized bleeding definitions for cardiovascular clinical trials: A consensus report from the Bleeding Academic Research Consortium. Circulation 2011, 123, 2736–2747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, T.J.; Faxon, D.P.; Gunnar, R.M.; Kennedy, J.W.; King, S.B., 3rd; Loop, F.D.; Peterson, K.L.; Reeves, T.J.; Williams, D.O.; Winters, W.L., Jr.; et al. Guidelines for percutaneous transluminal coronary angioplasty. A report of the American College of Cardiology/American Heart Association Task Force on Assessment of Diagnostic and Therapeutic Cardiovascular Procedures (Subcommittee on Percutaneous Transluminal Coronary Angioplasty). Circulation 1988, 78, 486–502. [Google Scholar] [PubMed] [Green Version]
- Noaman, S.; Goh, C.Y.; Vogrin, S.; Brennan, A.L.; Andrianopoulos, N.; Dinh, D.T.; Lefkovits, J.; Reid, C.M.; Walton, A.; Al-Mukhtar, O.; et al. Comparison of short-term clinical outcomes of proximal versus nonproximal lesion location in patients treated with primary percutaneous coronary intervention for ST-elevation myocardial infarction: The PROXIMITI study. Catheter. Cardiovasc. Interv. 2019, 93, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.V.; Eikelboom, J.A.; Granger, C.B.; Harrington, R.A.; Califf, R.M.; Bassand, J.P. Bleeding and blood transfusion issues in patients with non-ST-segment elevation acute coronary syndromes. Eur. Heart J. 2007, 28, 1193–1204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Numasawa, Y.; Kohsaka, S.; Ueda, I.; Miyata, H.; Sawano, M.; Kawamura, A.; Noma, S.; Suzuki, M.; Nakagawa, S.; Momiyama, Y.; et al. Incidence and predictors of bleeding complications after percutaneous coronary intervention. J. Cardiol. 2017, 69, 272–279. [Google Scholar] [CrossRef] [Green Version]
- Idris, H.; French, J.K.; Shugman, I.M.; Hopkins, A.P.; Juergens, C.P.; Thomas, L. Influence of Age and Gender on Clinical Outcomes Following Percutaneous Coronary Intervention for Acute Coronary Syndromes. Heart Lung Circ. 2017, 26, 554–565. [Google Scholar] [CrossRef]
- D’Ascenzo, F.; Grosso, A.; Abu-Assi, E.; Kinnaird, T.; Ariza-Sole, A.; Manzano-Fernandez, S.; Templin, C.; Velicki, L.; Xanthopoulou, I.; Cerrato, E.; et al. Incidence and predictors of bleeding in ACS patients treated with PCI and prasugrel or ticagrelor: An analysis from the RENAMI registry. Int. J. Cardiol. 2018, 273, 29–33. [Google Scholar] [CrossRef]
- Kwok, C.S.; Rao, S.V.; Myint, P.K.; Keavney, B.; Nolan, J.; Ludman, P.F.; de Belder, M.A.; Loke, Y.K.; Mamas, M.A. Major bleeding after percutaneous coronary intervention and risk of subsequent mortality: A systematic review and meta-analysis. Open Heart 2014, 1, e000021. [Google Scholar] [CrossRef] [Green Version]
- Moscucci, M.; Fox, K.A.; Cannon, C.P.; Klein, W.; Lopez-Sendon, J.; Montalescot, G.; White, K.; Goldberg, R.J. Predictors of major bleeding in acute coronary syndromes: The Global Registry of Acute Coronary Events (GRACE). Eur. Heart J. 2003, 24, 1815–1823. [Google Scholar] [CrossRef]
- Chhatriwalla, A.K.; Amin, A.P.; Kennedy, K.F.; House, J.A.; Cohen, D.J.; Rao, S.V.; Messenger, J.C.; Marso, S.P.; National Cardiovascular Data Registry. Association between bleeding events and in-hospital mortality after percutaneous coronary intervention. JAMA 2013, 309, 1022–1029. [Google Scholar] [CrossRef] [Green Version]
- Redfors, B.; Genereux, P.; Witzenbichler, B.; Kirtane, A.J.; McAndrew, T.; Weisz, G.; Stuckey, T.D.; Henry, T.D.; Maehara, A.; Mehran, R.; et al. Bleeding Severity after Percutaneous Coronary Intervention. Circ. Cardiovasc. Interv. 2018, 11, e005542. [Google Scholar] [CrossRef] [PubMed]
- Ndrepepa, G.; Schuster, T.; Hadamitzky, M.; Byrne, R.A.; Mehilli, J.; Neumann, F.J.; Richardt, G.; Schulz, S.; Laugwitz, K.L.; Massberg, S.; et al. Validation of the Bleeding Academic Research Consortium definition of bleeding in patients with coronary artery disease undergoing percutaneous coronary intervention. Circulation 2012, 125, 1424–1431. [Google Scholar] [CrossRef] [PubMed]
- Vranckx, P.; White, H.D.; Huang, Z.; Mahaffey, K.W.; Armstrong, P.W.; Van de Werf, F.; Moliterno, D.J.; Wallentin, L.; Held, C.; Aylward, P.E.; et al. Validation of BARC Bleeding Criteria in Patients with Acute Coronary Syndromes: The TRACER Trial. J. Am. Coll. Cardiol. 2016, 67, 2135–2144. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.V.; Dai, D.; Subherwal, S.; Weintraub, W.S.; Brindis, R.S.; Messenger, J.C.; Lopes, R.D.; Peterson, E.D. Association between periprocedural bleeding and long-term outcomes following percutaneous coronary intervention in older patients. JACC Cardiovasc. Interv. 2012, 5, 958–965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunadian, V.; Qiu, W.; Lagerqvist, B.; Johnston, N.; Sinclair, H.; Tan, Y.; Ludman, P.; James, S.; Sarno, G.; National Institute for Cardiovascular Outcomes Research; et al. Gender Differences in Outcomes and Predictors of All-Cause Mortality after Percutaneous Coronary Intervention (Data from United Kingdom and Sweden). Am. J. Cardiol. 2017, 119, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Manoukian, S.V.; Feit, F.; Mehran, R.; Voeltz, M.D.; Ebrahimi, R.; Hamon, M.; Dangas, G.D.; Lincoff, A.M.; White, H.D.; Moses, J.W.; et al. Impact of major bleeding on 30-day mortality and clinical outcomes in patients with acute coronary syndromes: An analysis from the ACUITY Trial. J. Am. Coll. Cardiol. 2007, 49, 1362–1368. [Google Scholar] [CrossRef] [Green Version]
- Kinnaird, T.D.; Stabile, E.; Mintz, G.S.; Lee, C.W.; Canos, D.A.; Gevorkian, N.; Pinnow, E.E.; Kent, K.M.; Pichard, A.D.; Satler, L.F.; et al. Incidence, predictors, and prognostic implications of bleeding and blood transfusion following percutaneous coronary interventions. Am. J. Cardiol. 2003, 92, 930–935. [Google Scholar] [CrossRef]
- Chew, D.P.; Scott, I.A.; Cullen, L.; French, J.K.; Briffa, T.G.; Tideman, P.A.; Woodruffe, S.; Kerr, A.; Branagan, M.; Aylward, P.E.; et al. National Heart Foundation of Australia & Cardiac Society of Australia and New Zealand: Australian Clinical Guidelines for the Management of Acute Coronary Syndromes 2016. Heart Lung Circ. 2016, 25, 895–951. [Google Scholar]
- Bellemain-Appaix, A.; Brieger, D.; Beygui, F.; Silvain, J.; Pena, A.; Cayla, G.; Barthelemy, O.; Collet, J.P.; Montalescot, G. New P2 Y12 inhibitors versus clopidogrel in percutaneous coronary intervention: A meta-analysis. J. Am. Coll. Cardiol. 2010, 56, 1542–1551. [Google Scholar] [CrossRef] [Green Version]
- Chan, W.; Ajani, A.E.; Clark, D.J.; Stub, D.; Andrianopoulos, N.; Brennan, A.L.; New, G.; Sebastian, M.; Johnston, R.; Walton, A.; et al. Impact of periprocedural atrial fibrillation on short-term clinical outcomes following percutaneous coronary intervention. Am. J. Cardiol. 2012, 109, 471–477. [Google Scholar] [CrossRef]
- Yudi, M.B.; Clark, D.J.; Farouque, O.; Eccleston, D.; Andrianopoulos, N.; Duffy, S.J.; Brennan, A.; Lefkovits, J.; Ramchand, J.; Yip, T.; et al. Clopidogrel, prasugrel or ticagrelor in patients with acute coronary syndromes undergoing percutaneous coronary intervention. Intern. Med. J. 2016, 46, 559–565. [Google Scholar] [CrossRef]
- Urban, P.; Mehran, R.; Colleran, R.; Angiolillo, D.J.; Byrne, R.A.; Capodanno, D.; Cuisset, T.; Cutlip, D.; Eerdmans, P.; Eikelboom, J.; et al. Defining High Bleeding Risk in Patients Undergoing Percutaneous Coronary Intervention. Circulation 2019, 140, 240–261. [Google Scholar] [CrossRef]
- Spencer, F.A.; Moscucci, M.; Granger, C.B.; Gore, J.M.; Goldberg, R.J.; Steg, P.G.; Goodman, S.G.; Budaj, A.; FitzGerald, G.; Fox, K.A.; et al. Does comorbidity account for the excess mortality in patients with major bleeding in acute myocardial infarction? Circulation 2007, 116, 2793–2801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doyle, B.J.; Rihal, C.S.; Gastineau, D.A.; Holmes, D.R., Jr. Bleeding, blood transfusion, and increased mortality after percutaneous coronary intervention: Implications for contemporary practice. J. Am. Coll. Cardiol. 2009, 53, 2019–2027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holroyd, E.W.; Mustafa, A.H.; Khoo, C.W.; Butler, R.; Fraser, D.G.; Nolan, J.; Mamas, M.A. Major Bleeding and Adverse Outcome following Percutaneous Coronary Intervention. Interv. Cardiol. 2015, 10, 22–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Najjar, S.S.; Rao, S.V.; Melloni, C.; Raman, S.V.; Povsic, T.J.; Melton, L.; Barsness, G.W.; Prather, K.; Heitner, J.F.; Kilaru, R.; et al. Intravenous erythropoietin in patients with ST-segment elevation myocardial infarction: REVEAL: A randomized controlled trial. JAMA 2011, 305, 1863–1872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neumann, F.J.; Sousa-Uva, M.; Ahlsson, A.; Alfonso, F.; Banning, A.P.; Benedetto, U.; Byrne, R.A.; Collet, J.P.; Falk, V.; Head, S.J.; et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Kardiol. Pol. 2018, 76, 1585–1664. [Google Scholar] [CrossRef] [Green Version]
- Biswas, S.; Duffy, S.J.; Lefkovits, J.; Andrianopoulos, N.; Brennan, A.; Walton, A.; Chan, W.; Noaman, S.; Shaw, J.A.; Dawson, L.; et al. Australian Trends in Procedural Characteristics and Outcomes in Patients Undergoing Percutaneous Coronary Intervention for ST-Elevation Myocardial Infarction. Am. J. Cardiol. 2018, 121, 279–288. [Google Scholar] [CrossRef]
BARC 0 (n = 34,555) | BARC 1&2 (n = 3007) | BARC 3&5 (n = 324) | p-Value | |
---|---|---|---|---|
CLINICAL CHARACTERISTICS | ||||
Age—years, mean ± SD | 65.7 (11.9) | 67.6 (12.2) | 68.4 (12.7) | <0.001 *† |
Male, n (% of BARC) | 26,637 (77.1%) | 2117 (70.4%) | 214 (66.0%) | <0.001 *† |
Female, n (% of BARC) | 7918 (22.9%) | 890 (29.6%) | 110 (34.0%) | <0.001 *† |
BMI (kg/m2), mean ± SD | 28.9 (5.4) | 28.3 (5.5) | 27.7 (5.4) | <0.001 *† |
Diabetes mellitus on medication, n (%) | 7599 (22.0%) | 658 (21.9%) | 72 (22.2%) | 0.98 |
Diabetes on insulin, n (%) | 2602 (7.5%) | 208 (6.9%) | 31 (9.6%) | 0.11 |
Diabetes on oral medications, n (%) | 4997 (14.5%) | 450 (15.0%) | 41 (12.7%) | 0.11 |
Peripheral vascular disease, n (%) | 1230 (3.6%) | 101 (3.4%) | 22 (6.8%) | 0.01 †‡ |
Cerebrovascular disease, n (%) | 1281 (3.7%) | 119 (4.0%) | 20 (6.2%) | 0.051 |
Previous CABG, n (%) | 2645 (7.7%) | 252 (8.4%) | 14 (4.3%) | 0.03 †‡ |
Previous PCI, n (%) | 11,366 (32.9%) | 913 (30.4%) | 81 (23.1%) | <0.001 *†‡ |
Chronic oral anticoagulant therapy, n (%) | 2029 (5.9%) | 183 (6.1%) | 21 (6.5%) | 0.80 |
eGFR <30, n (%) | 838 (2.4%) | 108 (3.6%) | 28 (8.6%) | <0.001 *†‡ |
eGFR 30–59, n (%) | 5629 (16.3%) | 652 (21.7%) | 93 (28.7%) | <0.001 *†‡ |
eGFR >60, n (%) | 25,287 (73.2%) | 2088 (69.4%) | 185 (57.1%) | <0.001 *†‡ |
Dialysis, n (%) | 377 (1.1%) | 54 (1.8%) | 10 (3.1%) | <0.001 *† |
LVEF, n (%) | - | - | - | - |
1 = Normal function (>50%) | 20,112 (58.2%) | 1606 (53.4%) | 126 (38.9%) | <0.001 *†‡ |
2 = Mild dysfunction/impairment (45–50%) | 5664 (16.4%) | 557 (18.5%) | 59 (18.2%) | <0.001 *†‡ |
3 = Moderate dysfunction/impairment (35–44%) | 3055 (8.8%) | 290 (9.6%) | 56 (17.3%) | <0.001 *†‡ |
4 = Severe dysfunction/impairment (<35%) | 1352 (3.9%) | 182 (6.1%) | 50 (15.4%) | <0.001 *†‡ |
Out of Hospital Cardiac Arrest, n (%) | 723 (2.1%) | 116 (3.9%) | 56 (17.3%) | <0.001 *†‡ |
Cardiogenic shock, n (%) | 734 (2.1%) | 123 (4.1%) | 83 (25.6%) | <0.001 *†‡ |
In-hospital pre-procedure cardiac arrest, n (%) | 500 (1.4%) | 77 (2.6%) | 32 (9.9%) | <0.001 *†‡ |
Pre-procedure intubation, n (%) | 536 (1.6%) | 106 (3.5%) | 61 (18.8%) | <0.001 *†‡ |
Glycoprotein IIb/IIIa inhibitors, n (%) | 3377 (9.8%) | 452 (15.0%) | 98 (30.2%) | <0.001 *†‡ |
Anti-thrombotic therapy, n (%) | 30,588 (88.5%) | 2757 (91.7%) | 292 (90.1%) | <0.001 * |
Aspirin pre-loading, n (%) | 31,102 (90.0%) | 2822 (93.8%) | 288 (88.9%) | <0.001 *‡ |
Thienopyridine pre-loading, n (%) | 14,891 (43.1%) | 1176 (39.1%) | 92 (28.4%) | <0.001 *†‡ |
Ticagrelor pre-loading, n (%) | 13,237 (38.3%) | 1402 (46.6%) | 140 (43.2%) | <0.001 *† |
Fibrinolytic therapy, n (%) | 1000 (2.9%) | 135 (4.5%) | 27 (8.3%) | <0.001 *†‡ |
Fibrinolytic therapy ≤24 h prior to PCI, n (%) | 754 (2.2%) | 110 (3.7%) | 24 (7.4%) | 0.09 |
BARC 0 (n = 34,555) | BARC 1&2 (n = 3007) | BARC 3&5 (n = 324) | p-Value | |
---|---|---|---|---|
PROCEDURAL CHARACTERISTICS | ||||
Door-to-balloon time (minutes), median (IQR) | 73.0 (46.0, 125.0) | 74.0 (47.0, 125.0) | 71.0 (47.0, 126.0) | 0.76 |
Symptom-to-balloon time (minutes), median (IQR) | 234.0 (152.0, 507.0) | 246.5 (156.0, 541.0) | 217.0 (146.0, 488.0) | 0.28 |
PCI indication, n (%) | - | - | - | - |
1 = Early Primary PCI for STEMI < 12 hours | 5336 (15.4%) | 574 (19.1%) | 127 (39.2%) | <0.001 *†‡ |
2 = Late Primary PCI for STEMI | 776 (2.2%) | 105 (3.5%) | 18 (5.6%) | <0.001 *†‡ |
3 = Thrombolytics for STEMI | 971 (2.8%) | 135 (4.5%) | 27 (8.3%) | <0.001 *†‡ |
4 = PCI post cardiac arrest or cardiogenic shock (non-MI) | 99 (0.3%) | 14 (0.5%) | 9 (2.8%) | <0.001 *†‡ |
5 = PCI for ACS other than STEMI | 11,897 (34.4%) | 1083 (36.0%) | 89 (27.5%) | <0.001 *†‡ |
6 = Stable angina | 12,916 (37.4%) | 925 (30.8%) | 41 (12.7%) | <0.001 *†‡ |
7 = Other | 2560 (7.4%) | 171 (5.7%) | 13 (4.0%) | <0.001 *†‡ |
Femoral percutaneous entry, n (%) | 16,710 (48.4%) | 1772 (58.9%) | 218 (67.3%) | <0.001 *†‡ |
Radial percutaneous entry, n (%) | 17,789 (51.5%) | 1232 (41.0%) | 101 (31.2%) | <0.001 *†‡ |
Intra-vascular ultrasound, n (%) | 334 (1.0%) | 88 (2.9%) | 7 (2.2%) | <0.001 *† |
Thrombus aspiration device, n (%) | 1327 (3.8%) | 165 (5.5%) | 42 (13.0%) | <0.001 *†‡ |
Fractional flow reserve, n (%) | 934 (2.7%) | 72 (2.4%) | 7 (2.2%) | 0.51 |
Procedural intubation required, n (%) | 262 (0.8%) | 43 (1.4%) | 34 (10.5%) | <0.001 *†‡ |
Intra-aortic balloon pump (IABP), n (%) | 116 (0.3%) | 22 (0.7%) | 18 (5.6%) | <0.001 *†‡ |
Extracorporeal mechanical support, n (%) | 12 (0.0%) | 3 (0.1%) | 14 (4.3%) | <0.001 †‡ |
Location of PCI, n (%) | - | - | - | - |
LAD artery | 13,962 (40.4%) | 1237 (41.1%) | 148 (45.7%) | 0.12 |
RCA | 10,701 (31.0%) | 997 (33.2%) | 118 (36.4%) | 0.006 *† |
LCx artery | 5383 (15.6%) | 441 (14.7%) | 38 (11.7%) | 0.07 |
LMCA | 600 (1.7%) | 75 (2.5%) | 17 (5.2%) | <0.001 *†‡ |
Graft vessel | 668 (1.9%) | 75 (2.5%) | 3 (0.9%) | 0.042 * |
Other: PCI on any other vessel | 7349 (21.3%) | 564 (18.8%) | 58 (17.9%) | 0.002 * |
Coronary lesion type, n (%) total | - | - | - | - |
Type A | 3788 (11.0%) | 378 (12.6%) | 29 (9.0%) | 0.013 * |
Type B1 | 12,977 (37.6%) | 1211 (40.3%) | 93 (28.7%) | <0.001 *†‡ |
Type B2/C | 20,031 (58.0%) | 1650 (54.9%) | 225 (69.4%) | <0.001 *†‡ |
Stent thrombosis, n (%) | 361 (1.0%) | 36 (1.2%) | 16 (4.9%) | <0.001 †‡ |
Type of stent(s), n (%) total | - | - | - | - |
None | 2143 (6.2%) | 218 (7.2%) | 47 (14.5%) | <0.001 †‡ |
Bare metal stent | 3696 (10.7%) | 310 (10.3%) | 64 (19.8%) | <0.001 †‡ |
Drug eluting stent | 28,230 (81.7%) | 2441 (81.2%) | 209 (64.5%) | <0.001 †‡ |
Type of balloon(s) used, n (%) total | - | - | - | - |
No balloon | 32,400 (93.8%) | 2794 (92.9%) | 279 (86.1%) | <0.001 †‡ |
Plain balloon | 1954 (5.7%) | 194 (6.5%) | 44 (13.6%) | <0.001 †‡ |
Drug eluting balloon | 206 (0.6%) | 21 (0.7%) | 1 (0.3%) | 0.62 |
Multivessel PCI, n (%) | 2037 (5.9%) | 181 (6.0%) | 30 (9.3%) | 0.038 †‡ |
BARC 0 | BARC 1&2 | BARC 3&5 | p-Value | |
---|---|---|---|---|
IN-HOSPITAL OUTCOMES | ||||
Length of stay (days), mean ± SD | 2.0 (1.0, 4.0) | 3.0 (1.0, 5.0) | 8.5 (5.0, 16.5) | <0.001 *†‡ |
New renal impairment, n (%) | 668 (1.9%) | 169 (5.6%) | 82 (25.3%) | <0.001 *†‡ |
New requirement for dialysis, n (%) | 91 (0.3%) | 24 (0.8%) | 38 (11.7%) | <0.001 *†‡ |
Cardiogenic shock, n (%) | 500 (1.4%) | 86 (2.9%) | 78 (24.1%) | <0.001 *†‡ |
Recurrent myocardial infarction, n (%) | 236 (0.7%) | 38 (1.3%) | 17 (5.2%) | <0.001 *†‡ |
PCI, n (%) | 986 (2.9%) | 139 (4.6%) | 9 (2.8%) | <0.001 * |
Planned PCI, n (%) | 847 (2.5%) | 112 (3.7%) | 5 (1.5%) | 0.015 †‡ |
TVR (PCI), n (%) | 198 (0.6%) | 38 (1.3%) | 2 (0.6%) | 0.14 |
TLR, n (%) | 160 (0.5%) | 28 (0.9%) | 1 (0.3%) | 0.36 |
CABG, n (%) | 188 (0.5%) | 43 (1.4%) | 41 (12.7%) | <0.001 *†‡ |
Planned CABG, n (%) | 94 (0.3%) | 24 (0.8%) | 10 (3.1%) | 0.005 †‡ |
TVR (CABG), n (%) | 129 (0.4%) | 25 (0.8%) | 26 (8.0%) | 0.39 |
Definite stent thrombosis n (%) | 62 (0.2%) | 17 (0.6%) | 3 (0.9%) | <0.001 *†‡ |
Probable stent thrombosis n (%) | 24 (0.1%) | 5 (0.2%) | 2 (0.6%) | <0.001 *†‡ |
Possible stent thrombosis n (%) | 9 (0.0%) | 3 (0.1%) | 3 (0.9%) | <0.001 *†‡ |
No stent thrombosis n (%) | 34,460 (99.7%) | 2982 (99.2%) | 316 (97.5%) | <0.001 *†‡ |
Stroke, n (%) | - | - | - | - |
Haemorrhagic | 11 (0.0%) | 7 (0.2%) | 17 (5.2%) | <0.001 †‡ |
Ischaemic | 56 (0.2%) | 12 (0.4%) | 5 (1.5%) | <0.001 †‡ |
Mortality, n (%) | 555 (1.6%) | 89 (3.0%) | 73 (22.5%) | <0.001 *†‡ |
MACE, n (%) | 882 (2.6%) | 156 (5.2%) | 88 (27.2%) | <0.001 *†‡ |
MACCE, n (%) | 932 (2.7%) | 168 (5.6%) | 100 (30.9%) | <0.001 *†‡ |
OUTCOMES UP TO 30 DAYS (EXCLUDING IN-HOSPITAL OUTCOMES) | ||||
New heart failure, n (%) | 261 (0.8%) | 54 (1.8%) | 12 (3.7%) | <0.001 *†‡ |
30-day myocardial infarction, n (%) | 150 (0.4%) | 17 (0.6%) | 1 (0.3%) | <0.001 *†‡ |
30-day definite stent thrombosis, n (%) | 82 (0.2%) | 7 (0.2%) | 1 (0.3%) | <0.001 *†‡ |
30-day probable stent thrombosis, n (%) | 9 (0.0%) | - | 2 (0.6%) | <0.001 *†‡ |
30-day possible stent thrombosis, n (%) | 12 (0.0%) | 4 (0.1%) | - | <0.001 *†‡ |
30-day stroke, n (%) | - | - | - | - |
1 = Haemorrhagic | 9 (0.0%) | 3 (0.1%) | - | 0.36 |
2 = Ischaemic | 30 (0.1%) | 2 (0.1%) | - | 0.36 |
Rehospitalisation, n (%) | 4339 (12.6%) | 368 (12.2%) | 51 (15.7%) | <0.001 *†‡ |
Cardiac readmission, n (%) | 2941 (8.5%) | 230 (7.6%) | 19 (5.9%) | <0.001 *†‡ |
30-day Mortality, n (%) | 169 (0.5%) | 22 (0.7%) | 7 (2.2%) | <0.001 *†‡ |
Cardiac Mortality, n (%) | 72 (0.2%) | 10 (0.3%) | 3 (0.9%) | 0.54 |
30-day MACE, n (%) | 438 (1.3%) | 47 (1.6%) | 8 (3.4%) | 0.007 *†‡ |
30-day MACCE, n (%) | 472 (1.4%) | 51 (1.8%) | 7 (3.1%) | 0.03 *†‡ |
BARC 0 | BARC 1&2 | BARC 3&5 | p-Value | |
---|---|---|---|---|
Aspirin, n (%) | 33,014 (95.5%) | 2841 (94.5%) | 232 (71.6%) | <0.001 †‡ |
Thienopyridine, n (%) | 17,868 (51.7%) | 1370 (45.6%) | 119 (36.7%) | <0.001 *†‡ |
Ticagrelor, n (%) | 15,470 (44.8%) | 1468 (48.8%) | 95 (29.3%) | <0.001 *†‡ |
Beta blockers, n (%) | 23,390 (67.7%) | 2213 (73.6%) | 198 (61.1%) | <0.001 *† |
ACE-I/ARB*, n (%) | 24,211 (70.1%) | 2193 (72.9%) | 159 (49.1%) | <0.001 *†‡ |
Statin, n (%) | 24,211 (70.1%) | 2193 (72.9%) | 159 (49.1%) | <0.001 *†‡ |
Other dyslipidaemia medications, n (%) | 2745 (7.9%) | 212 (7.1%) | 18 (5.6%) | 0.12 |
Oral anticoagulation, n (%) | 2425 (7.0%) | 226 (7.5%) | 33 (10.2%) | <0.001 *†‡ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murali, S.; Vogrin, S.; Noaman, S.; Dinh, D.T.; Brennan, A.L.; Lefkovits, J.; Reid, C.M.; Cox, N.; Chan, W. Bleeding Severity in Percutaneous Coronary Intervention (PCI) and Its Impact on Short-Term Clinical Outcomes. J. Clin. Med. 2020, 9, 1426. https://doi.org/10.3390/jcm9051426
Murali S, Vogrin S, Noaman S, Dinh DT, Brennan AL, Lefkovits J, Reid CM, Cox N, Chan W. Bleeding Severity in Percutaneous Coronary Intervention (PCI) and Its Impact on Short-Term Clinical Outcomes. Journal of Clinical Medicine. 2020; 9(5):1426. https://doi.org/10.3390/jcm9051426
Chicago/Turabian StyleMurali, Shashank, Sara Vogrin, Samer Noaman, Diem T. Dinh, Angela L. Brennan, Jeffrey Lefkovits, Christopher M. Reid, Nicholas Cox, and William Chan. 2020. "Bleeding Severity in Percutaneous Coronary Intervention (PCI) and Its Impact on Short-Term Clinical Outcomes" Journal of Clinical Medicine 9, no. 5: 1426. https://doi.org/10.3390/jcm9051426
APA StyleMurali, S., Vogrin, S., Noaman, S., Dinh, D. T., Brennan, A. L., Lefkovits, J., Reid, C. M., Cox, N., & Chan, W. (2020). Bleeding Severity in Percutaneous Coronary Intervention (PCI) and Its Impact on Short-Term Clinical Outcomes. Journal of Clinical Medicine, 9(5), 1426. https://doi.org/10.3390/jcm9051426