Summary-Based Methylome-Wide Association Analyses Suggest Potential Genetically Driven Epigenetic Heterogeneity of Alzheimer’s Disease
Abstract
:1. Introduction
2. Methods
2.1. GWAS Data
2.2. mQTLs Data
2.3. MWA Analysis
2.4. Pathway Enrichment Analysis
2.5. Ethics Approval
3. Results
3.1. Blood-Based MWA Analyses
3.2. Brain-Specific MWA Analyses
3.3. Comparison of Blood-Based and Brain-Specific MWA Results
3.4. Group-Specific Findings
3.5. Comparison of MWA and GWAS Results
3.6. Comparison of MWA and TWA Results
3.7. Pathway Enrichment Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ABCA7 | ATP Binding Cassette Subfamily A Member 7 |
AD | Alzheimer’s Disease |
ADCY8 | Adenylate Cyclase 8 |
AIM2 | Absent in Melanoma 2 |
ANK1 | Ankyrin 1 |
AP2A2 | Adaptor Related Protein Complex 2 Subunit Alpha 2 |
APOC1 | Apolipoprotein C1 |
APOE | Apolipoprotein E |
APP | Amyloid Beta Precursor Protein |
Aβ | Amyloid-β |
BIN1 | Bridging Integrator 1 |
BPGM | Bisphosphoglycerate Mutase |
BRD2 | Bromodomain Containing 2 |
BUG22 | Basal Body Upregulated Gene 22 |
C10orf54 | Chromosome 10 Open Reading Frame 54 |
C16orf80 | Chromosome 16 Open Reading Frame 80 |
CDH23 | Cadherin Related 23 |
CFAP20 | Cilia and Flagella Associated Protein 20 |
CHRNA2 | Cholinergic Receptor Nicotinic Alpha 2 Subunit |
CHS | Cardiovascular Health Study |
CLIC1 | Chloride Intracellular Channel 1 |
CLU | Clusterin |
CMIP | C-Maf Inducing Protein |
COL11A2 | Collagen Type XI Alpha 2 Chain |
dbGaP | The Database of Genotypes and Phenotypes |
DGUOK | Deoxyguanosine Kinase |
DUSP22 | Dual Specificity Phosphatase 22 |
EBF4 | Early B Cell Factor Family Member 4 |
EGFL8 | Epidermal Growth Factor-Like Like Domain Multiple 8 |
eQTL | Expression Quantitative trait Locus |
FAM193B | Family with Sequence Similarity 193 Member B |
FDR | False Discovery Rate |
FHS | Framingham Heart Study |
GABA | Gamma-Aminobutyric Acid |
GRASP | Genome-Wide Repository of Associations Between SNPs and Phenotypes |
GSA | Gene Set Analysis |
GSA-SNP2 | Gene Set Analysis-Single-Nucleotide-Polymorphism-2 |
GSEA | Gene Set Enrichment Analysis |
GWAS | Genome-Wide Association Study |
HEIDI | Heterogeneity in Dependent Instruments |
HLA-DPB1 | Human Leukocyte Antigen Class II, DP Beta 1 |
HLA-DQA2 | Human Leukocyte Antigen Class II, DQ Alpha 2 |
HLA-DQB2 | Human Leukocyte Antigen Class II, DQ Beta 2 |
HLA-DRB1 | Human Leukocyte Antigen Class II, DR Beta 1 |
HLA-DRB5 | Human Leukocyte Antigen Class II, DR Beta 5 |
HRS | Health and Retirement Study |
HTN | Hypertension |
ICD-9 | International Classification of Disease codes, Ninth revision |
IGR | Inter-Genic Region |
IL-18 | Interleukin 18 |
IL-1β | Interleukin 1 Beta |
IRB | Institutional Review Board |
ITIH2 | Inter-Alpha-Trypsin Inhibitor Heavy Chain 2 |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
KRTAP5-11 | Keratin Associated Protein 5-11 |
L1CAM | L1 Cell Adhesion Molecule |
LECT1 | Leukocyte Cell Derived Chemotaxin 1 |
LOADFS | Late-Onset Alzheimer's Disease Family Study |
LOC100288866 | Uncharacterized LOC100288866 |
LOC154449 | Uncharacterized LOC154449 |
MAPT | Microtubule Associated Protein Tau |
MB | Methylene Blue |
MHC | Major Histocompatibility Complex |
mQTL | Methylation Quantitative trait Locus |
MUM1 | Melanoma Ubiquitous Mutated Protein 1 |
MWA | Methylome-Wide Association |
NABA | Matrisome Project |
NANOS2 | Nanos C2HC-Type Zinc Finger 2 |
NDUFA4 | NDUFA4 Mitochondrial Complex Associated |
NGFR | Nerve Growth Factor Receptor |
NHGRI-EBI GWAS | National Human Genome Research Institute-European Bioinformatics Institute Genome-Wide Association Studies Catalog |
NINCDS-ADRDA | National Institute of Neurological and Communicative Disorders and Stroke of the United States-the Alzheimer’s Disease and Related Disorders Association |
NLRC4 | Nucleotide-Binding Oligomerization Domain, Leucine Rich Repeat and Caspase Recruitment Domain Containing 4 |
NLRP3 | Nucleotide-Binding Oligomerization Domain, Leucine Rich Repeat and Pyrin Domain Containing 3 |
PHLDA1 | Pleckstrin Homology Like Domain Family A Member 1 |
PID | Pathway Interaction Database |
PPT2-EGFL8 | Palmitoyl-Protein Thioesterase 2-Epidermal Growth Factor-Like Like Domain Multiple 8 Readthrough |
PSEN1 | Presenilin 1 |
PSTK | Phosphoseryl-TRNA Kinase |
RHBDF2 | Rhomboid 5 Homolog 2 |
RPL13 | Ribosomal Protein L13 |
SIGLEC12 | Sialic Acid Binding Immunoglobulin Like Lectin 12 |
SLC24A4 | Solute Carrier Family 24 Member 4 |
SLC25A2 | Solute Carrier Family 25 Member 2 |
SLC35C1 | Solute Carrier Family 35 Member C1 |
SLC6A7 | Solute Carrier Family 6 Member 7 |
SMR | Summary Data-Based Mendelian Randomization |
SNP | Single-Nucleotide Polymorphism |
SORBS3 | Sorbin And SH3 Domain Containing 3 |
SORL1 | Sortilin Related Receptor 1 |
ST14 | Suppression of Tumorigenicity 14 |
TCA | Tricarboxylic Acid |
TOMM40 | Translocase of Outer Mitochondrial Membrane 40 |
TREM1 | Triggering Receptor Expressed on Myeloid Cells 1 |
TWA | Transcriptome-Wide Association |
ZNF394 | Zinc Finger Protein 394 |
ZNF598 | Zinc Finger Protein 598 |
References
- Alzheimer’s Association. 2016 Alzheimer’s disease facts and figures. Alzheimers Dement. 2016, 12, 459–509. [Google Scholar] [CrossRef] [PubMed]
- Ridge, P.G.; Hoyt, K.B.; Boehme, K.; Mukherjee, S.; Crane, P.K.; Haines, J.L.; Mayeux, R.; Farrer, L.A.; Pericak-Vance, M.A.; Schellenberg, G.D.; et al. Assessment of the genetic variance of late-onset Alzheimer’s disease. Neurobiol. Aging 2016, 41, 200.e13–200.e20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raghavan, N.; Tosto, G. Genetics of Alzheimer’s disease: The importance of polygenic and epistatic components. Curr. Neurol. Neurosci. Rep. 2017, 17, 78. [Google Scholar] [CrossRef] [PubMed]
- Leslie, R.; O’Donnell, C.J.; Johnson, A.D. GRASP: Analysis of genotype-phenotype results from 1390 genome-wide association studies and corresponding open access database. Bioinformatics 2014, 30, i185–i194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacArthur, J.; Bowler, E.; Cerezo, M.; Gil, L.; Hall, P.; Hastings, E.; Junkins, H.; McMahon, A.; Milano, A.; Morales, J.; et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 2017, 45, D896–D901. [Google Scholar] [CrossRef]
- Sanchez-Mut, J.V.; Gräff, J. Epigenetic alterations in Alzheimer’s disease. Front. Behav. Neurosci. 2015, 9, 347. [Google Scholar] [CrossRef]
- Daviglus, M.L.; Bell, C.C.; Berrettini, W.; Bowen, P.E.; Connolly, E.S.; Cox, N.J.; Dunbar-Jacob, J.M.; Granieri, E.C.; Hunt, G.; McGarry, K.; et al. NIH state-of-the-science conference statement: Preventing Alzheimer’s disease and cognitive decline. NIH Consens. State Sci. Statements 2010, 27, 1–30. [Google Scholar]
- Power, M.C.; Weuve, J.; Gagne, J.J.; McQueen, M.B.; Viswanathan, A.; Blacker, D. The association between blood pressure and incident Alzheimer disease: A systematic review and meta-analysis. Epidemiology 2011, 22, 646–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lahiri, D.K.; Zawia, N.H.; Greig, N.H.; Sambamurti, K.; Maloney, B. Early-life events may trigger biochemical pathways for Alzheimer’s disease: The “LEARn” model. Biogerontology 2008, 9, 375–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yokoyama, A.S.; Rutledge, J.C.; Medici, V. DNA methylation alterations in Alzheimer’s disease. Environ. Epigenet. 2017, 3, dvx008. [Google Scholar] [CrossRef]
- Sanchez-Mut, J.V.; Aso, E.; Panayotis, N.; Lott, I.; Dierssen, M.; Rabano, A.; Urdinguio, R.G.; Fernandez, A.F.; Astudillo, A.; Martin-Subero, J.I.; et al. DNA methylation map of mouse and human brain identifies target genes in Alzheimer’s disease. Brain 2013, 136, 3018–3027. [Google Scholar] [CrossRef] [PubMed]
- Wen, K.-X.; Miliç, J.; El-Khodor, B.; Dhana, K.; Nano, J.; Pulido, T.; Kraja, B.; Zaciragic, A.; Bramer, W.M.; Troup, J.; et al. The role of DNA methylation and histone modifications in neurodegenerative diseases: A systematic review. PLoS ONE 2016, 11, e0167201. [Google Scholar] [CrossRef]
- Liu, X.; Jiao, B.; Shen, L. The epigenetics of Alzheimer’s disease: Factors and therapeutic implications. Front. Genet. 2018, 9, 579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwata, A.; Nagata, K.; Hatsuta, H.; Takuma, H.; Bundo, M.; Iwamoto, K.; Tamaoka, A.; Murayama, S.; Saido, T.; Tsuji, S. Altered CpG methylation in sporadic Alzheimer’s disease is associated with APP and MAPT dysregulation. Hum. Mol. Genet. 2014, 23, 648–656. [Google Scholar] [CrossRef] [PubMed]
- Foraker, J.; Millard, S.P.; Leong, L.; Thomson, Z.; Chen, S.; Keene, C.D.; Bekris, L.M.; Yu, C.-E. The APOE gene is differentially methylated in Alzheimer’s disease. J. Alzheimers Dis. 2015, 48, 745–755. [Google Scholar] [CrossRef] [PubMed]
- De Jager, P.L.; Srivastava, G.; Lunnon, K.; Burgess, J.; Schalkwyk, L.C.; Yu, L.; Eaton, M.L.; Keenan, B.T.; Ernst, J.; McCabe, C.; et al. Alzheimer’s disease: Early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nat. Neurosci. 2014, 17, 1156–1163. [Google Scholar] [CrossRef] [PubMed]
- Lunnon, K.; Smith, R.; Hannon, E.; De Jager, P.L.; Srivastava, G.; Volta, M.; Troakes, C.; Al-Sarraj, S.; Burrage, J.; Macdonald, R.; et al. Methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer’s disease. Nat. Neurosci. 2014, 17, 1164–1170. [Google Scholar] [CrossRef] [Green Version]
- Semick, S.A.; Bharadwaj, R.A.; Collado-Torres, L.; Tao, R.; Shin, J.H.; Deep-Soboslay, A.; Weiss, J.R.; Weinberger, D.R.; Hyde, T.M.; Kleinman, J.E.; et al. Integrated DNA methylation and gene expression profiling across multiple brain regions implicate novel genes in Alzheimer’s disease. Acta Neuropathol. 2019, 137, 557–569. [Google Scholar] [CrossRef]
- Sanchez-Mut, J.V.; Aso, E.; Heyn, H.; Matsuda, T.; Bock, C.; Ferrer, I.; Esteller, M. Promoter hypermethylation of the phosphatase DUSP22 mediates PKA-dependent TAU phosphorylation and CREB activation in Alzheimer’s disease. Hippocampus 2014, 24, 363–368. [Google Scholar] [CrossRef] [Green Version]
- Siegmund, K.D.; Connor, C.M.; Campan, M.; Long, T.I.; Weisenberger, D.J.; Biniszkiewicz, D.; Jaenisch, R.; Laird, P.W.; Akbarian, S. DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons. PLoS ONE 2007, 2, e895. [Google Scholar] [CrossRef]
- Lord, J.; Cruchaga, C. The epigenetic landscape of Alzheimer’s disease. Nat. Neurosci. 2014, 17, 1138–1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, L.; Chibnik, L.B.; Srivastava, G.P.; Pochet, N.; Yang, J.; Xu, J.; Kozubek, J.; Obholzer, N.; Leurgans, S.E.; Schneider, J.A.; et al. Association of Brain DNA methylation in SORL1, ABCA7, HLA-DRB5, SLC24A4, and BIN1 with pathological diagnosis of Alzheimer disease. JAMA Neurol. 2015, 72, 15–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fetahu, I.S.; Ma, D.; Rabidou, K.; Argueta, C.; Smith, M.; Liu, H.; Wu, F.; Shi, Y.G. Epigenetic signatures of methylated DNA cytosine in Alzheimer’s disease. Sci. Adv. 2019, 5, eaaw2880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marioni, R.E.; Harris, S.E.; Zhang, Q.; McRae, A.F.; Hagenaars, S.P.; Hill, W.D.; Davies, G.; Ritchie, C.W.; Gale, C.R.; Starr, J.M.; et al. GWAS on family history of Alzheimer’s disease. Transl. Psychiatry 2018, 8, 99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, T.; Hu, Y.; Zang, T.; Wang, Y. Integrate GWAS, eQTL, and mQTL data to identify Alzheimer’s disease-related genes. Front. Genet. 2019, 10, 1021. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Zhang, F.; Hu, H.; Bakshi, A.; Robinson, M.R.; Powell, J.E.; Montgomery, G.W.; Goddard, M.E.; Wray, N.R.; Visscher, P.M.; et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 2016, 48, 481–487. [Google Scholar] [CrossRef]
- Nazarian, A.; Yashin, A.I.; Kulminski, A.M. Genome-wide analysis of genetic predisposition to Alzheimer’s disease and related sex disparities. Alzheimers Res. Ther. 2019, 11, 5. [Google Scholar] [CrossRef] [Green Version]
- Nazarian, A.; Arbeev, K.G.; Yashkin, A.P.; Kulminski, A.M. Genetic heterogeneity of Alzheimer’s disease in subjects with and without hypertension. GeroScience 2019, 41, 137–154. [Google Scholar] [CrossRef]
- McRae, A.F.; Marioni, R.E.; Shah, S.; Yang, J.; Powell, J.E.; Harris, S.E.; Gibson, J.; Henders, A.K.; Bowdler, L.; Painter, J.N.; et al. Identification of 55,000 Replicated DNA Methylation QTL. Sci. Rep. 2018, 8, 17605. [Google Scholar] [CrossRef] [Green Version]
- Qi, T.; Wu, Y.; Zeng, J.; Zhang, F.; Xue, A.; Jiang, L.; Zhu, Z.; Kemper, K.; Yengo, L.; Zheng, Z.; et al. Identifying gene targets for brain-related traits using transcriptomic and methylomic data from blood. Nat. Commun. 2018, 9, 2282. [Google Scholar] [CrossRef] [Green Version]
- Genin, E.; Hannequin, D.; Wallon, D.; Sleegers, K.; Hiltunen, M.; Combarros, O.; Bullido, M.J.; Engelborghs, S.; De Deyn, P.; Berr, C.; et al. APOE and Alzheimer disease: A major gene with semi-dominant inheritance. Mol. Psychiatry 2011, 16, 903–907. [Google Scholar] [CrossRef] [PubMed]
- Andersen, K.; Launer, L.J.; Dewey, M.E.; Letenneur, L.; Ott, A.; Copeland, J.R.; Dartigues, J.F.; Kragh-Sorensen, P.; Baldereschi, M.; Brayne, C.; et al. Gender differences in the incidence of AD and vascular dementia: The EURODEM Studies. EURODEM incidence research group. Neurology 1999, 53, 1992–1997. [Google Scholar] [CrossRef] [PubMed]
- Carter, C.L.; Resnick, E.M.; Mallampalli, M.; Kalbarczyk, A. Sex and gender differences in Alzheimer’s disease: Recommendations for future research. J. Womens Health (Larchmt.) 2012, 21, 1018–1023. [Google Scholar] [CrossRef] [PubMed]
- Mayeux, R. Epidemiology of neurodegeneration. Annu. Rev. Neurosci. 2003, 26, 81–104. [Google Scholar] [CrossRef]
- Mielke, M.M.; Vemuri, P.; Rocca, W.A. Clinical epidemiology of Alzheimer’s disease: Assessing sex and gender differences. Clin. Epidemiol. 2014, 6, 37–48. [Google Scholar] [CrossRef] [Green Version]
- Henderson, V.W.; Buckwalter, J.G. Cognitive deficits of men and women with Alzheimer’s disease. Neurology 1994, 44, 90–96. [Google Scholar] [CrossRef]
- Barnes, L.L.; Wilson, R.S.; Bienias, J.L.; Schneider, J.A.; Evans, D.A.; Bennett, D.A. Sex differences in the clinical manifestations of Alzheimer disease pathology. Arch. Gen. Psychiatry 2005, 62, 685–691. [Google Scholar] [CrossRef]
- Faraco, G.; Iadecola, C. Hypertension: A harbinger of stroke and dementia. Hypertension 2013, 62, 810–817. [Google Scholar] [CrossRef] [Green Version]
- Csiszar, A.; Tarantini, S.; Fülöp, G.A.; Kiss, T.; Valcarcel-Ares, M.N.; Galvan, V.; Ungvari, Z.; Yabluchanskiy, A. Hypertension impairs neurovascular coupling and promotes microvascular injury: Role in exacerbation of Alzheimer’s disease. GeroScience 2017, 39, 359–372. [Google Scholar] [CrossRef]
- Lloyd-Jones, L.R.; Holloway, A.; McRae, A.; Yang, J.; Small, K.; Zhao, J.; Zeng, B.; Bakshi, A.; Metspalu, A.; Dermitzakis, M.; et al. The genetic architecture of gene expression in peripheral blood. Am. J. Hum. Genet. 2017, 100, 228–237. [Google Scholar] [CrossRef] [Green Version]
- GTEx Consortium Genetic effects on gene expression across human tissues. Nature 2017, 550, 204–213. [CrossRef] [PubMed]
- Fried, L.P.; Borhani, N.O.; Enright, P.; Furberg, C.D.; Gardin, J.M.; Kronmal, R.A.; Kuller, L.H.; Manolio, T.A.; Mittelmark, M.B.; Newman, A. The cardiovascular health study: Design and rationale. Ann. Epidemiol. 1991, 1, 263–276. [Google Scholar] [CrossRef]
- Dawber, T.R.; Meadors, G.F.; Moore, F.E. Epidemiological approaches to heart disease: The Framingham study. Am. J. Public Health Nations Health 1951, 41, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Feinleib, M.; Kannel, W.B.; Garrison, R.J.; McNamara, P.M.; Castelli, W.P. The Framingham offspring study: Design and preliminary data. Prev. Med. 1975, 4, 518–525. [Google Scholar] [CrossRef]
- Lee, J.H.; Cheng, R.; Graff-Radford, N.; Foroud, T.; Mayeux, R. Analyses of the national institute on aging late-onset Alzheimer’s disease family study: Implication of additional loci. Arch. Neurol. 2008, 65, 1518–1526. [Google Scholar] [CrossRef] [Green Version]
- Sonnega, A.; Faul, J.D.; Ofstedal, M.B.; Langa, K.M.; Phillips, J.W.; Weir, D.R. Cohort profile: The health and retirement study (HRS). Int. J. Epidemiol. 2014, 43, 576–585. [Google Scholar] [CrossRef] [Green Version]
- McKhann, G.; Drachman, D.; Folstein, M.; Katzman, R.; Price, D.; Stadlan, E.M. Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984, 34, 939–944. [Google Scholar] [CrossRef] [Green Version]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [Green Version]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Mägi, R.; Morris, A.P. GWAMA: Software for genome-wide association meta-analysis. BMC Bioinform. 2010, 11, 288. [Google Scholar] [CrossRef] [Green Version]
- Allison, P.D. Comparing logit and probit coefficients across groups. Sociol. Methods Res. 1999, 28, 186–208. [Google Scholar] [CrossRef]
- Hannon, E.; Gorrie-Stone, T.J.; Smart, M.C.; Burrage, J.; Hughes, A.; Bao, Y.; Kumari, M.; Schalkwyk, L.C.; Mill, J. Leveraging DNA-methylation quantitative-trait loci to characterize the relationship between methylomic variation, gene expression, and complex traits. Am. J. Hum. Genet. 2018, 103, 654–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, S.; Nguyen, H.C.T.; Yoo, Y.J.; Kim, J.; Baik, B.; Kim, S.; Kim, J.; Kim, S.; Nam, D. Efficient pathway enrichment and network analysis of GWAS summary data using GSA-SNP2. Nucleic Acids Res. 2018, 46, e60. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef] [Green Version]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Fabregat, A.; Jupe, S.; Matthews, L.; Sidiropoulos, K.; Gillespie, M.; Garapati, P.; Haw, R.; Jassal, B.; Korninger, F.; May, B.; et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2018, 46, D649–D655. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, C.F.; Anthony, K.; Krupa, S.; Buchoff, J.; Day, M.; Hannay, T.; Buetow, K.H. PID: The pathway interaction database. Nucleic Acids Res. 2009, 37, D674–D679. [Google Scholar] [CrossRef]
- Naba, A.; Clauser, K.R.; Hoersch, S.; Liu, H.; Carr, S.A.; Hynes, R.O. The matrisome: In silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol. Cell. Proteom. 2012, 11, M111.014647. [Google Scholar] [CrossRef] [Green Version]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Smith, A.K.; Kilaru, V.; Kocak, M.; Almli, L.M.; Mercer, K.B.; Ressler, K.J.; Tylavsky, F.A.; Conneely, K.N. Methylation quantitative trait loci (meQTLs) are consistently detected across ancestry, developmental stage, and tissue type. BMC Genom. 2014, 15, 145. [Google Scholar] [CrossRef] [Green Version]
- Bollati, V.; Galimberti, D.; Pergoli, L.; Dalla Valle, E.; Barretta, F.; Cortini, F.; Scarpini, E.; Bertazzi, P.A.; Baccarelli, A. DNA methylation in repetitive elements and Alzheimer disease. Brain Behav. Immun. 2011, 25, 1078–1083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, L.; Wang, Y.; Ji, H.; Dai, D.; Xu, X.; Jiang, D.; Hong, Q.; Ye, H.; Zhang, X.; Zhou, X.; et al. Elevation of peripheral BDNF promoter methylation links to the risk of Alzheimer’s disease. PLoS ONE 2014, 9, e110773. [Google Scholar] [CrossRef] [PubMed]
- Di Francesco, A.; Arosio, B.; Falconi, A.; Micioni Di Bonaventura, M.V.; Karimi, M.; Mari, D.; Casati, M.; Maccarrone, M.; D’Addario, C. Global changes in DNA methylation in Alzheimer’s disease peripheral blood mononuclear cells. Brain Behav. Immun. 2015, 45, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Nagata, T.; Kobayashi, N.; Ishii, J.; Shinagawa, S.; Nakayama, R.; Shibata, N.; Kuerban, B.; Ohnuma, T.; Kondo, K.; Arai, H.; et al. Association between DNA Methylation of the BDNF Promoter Region and Clinical Presentation in Alzheimer’s Disease. Dement. Geriatr. Cogn. Dis. Extra 2015, 5, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Wang, Y.; Liu, G.; Xu, X.; Dai, D.; Chen, Z.; Zhou, D.; Zhou, X.; Han, L.; Li, Y.; et al. OPRK1 promoter hypermethylation increases the risk of Alzheimer’s disease. Neurosci. Lett. 2015, 606, 24–29. [Google Scholar] [CrossRef]
- Blass, J.P.; Hanin, I.; Barclay, L.; Kopp, U.; Reding, M.J. Red blood cell abnormalities in Alzheimer disease. J. Am. Geriatr. Soc. 1985, 33, 401–405. [Google Scholar] [CrossRef]
- Sevush, S.; Jy, W.; Horstman, L.L.; Mao, W.W.; Kolodny, L.; Ahn, Y.S. Platelet activation in Alzheimer disease. Arch. Neurol. 1998, 55, 530–536. [Google Scholar] [CrossRef]
- Etcheberrigaray, R.; Ibarreta, D. Ionic channels and second messenger alterations in Alzheimer’s disease. Relevance of studies in nonneuronal cells. Rev. Neurol. 2001, 33, 740–749. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.E.; Huang, H.-M. Oxidative processes in the brain and non-neuronal tissues as biomarkers of Alzheimer’s disease. Front. Biosci. 2002, 7, d1007–d1015. [Google Scholar] [CrossRef] [Green Version]
- Catricala, S.; Torti, M.; Ricevuti, G. Alzheimer disease and platelets: How’s that relevant. Immun. Ageing 2012, 9, 20. [Google Scholar] [CrossRef] [Green Version]
- Kaminsky, Y.G.; Reddy, V.P.; Ashraf, G.M.; Ahmad, A.; Benberin, V.V.; Kosenko, E.A.; Aliev, G. Age-related defects in erythrocyte 2,3-diphosphoglycerate metabolism in dementia. Aging Dis. 2013, 4, 244–255. [Google Scholar] [CrossRef] [PubMed]
- Hokama, M.; Oka, S.; Leon, J.; Ninomiya, T.; Honda, H.; Sasaki, K.; Iwaki, T.; Ohara, T.; Sasaki, T.; LaFerla, F.M.; et al. Altered expression of diabetes-related genes in Alzheimer’s disease brains: The Hisayama study. Cereb. Cortex 2014, 24, 2476–2488. [Google Scholar] [CrossRef] [PubMed]
- Hannon, E.; Weedon, M.; Bray, N.; O’Donovan, M.; Mill, J. Pleiotropic effects of trait-associated genetic variation on DNA methylation: Utility for refining GWAS loci. Am. J. Hum. Genet. 2017, 100, 954–959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Wetten, S.; Li, L.; St Jean, P.L.; Upmanyu, R.; Surh, L.; Hosford, D.; Barnes, M.R.; Briley, J.D.; Borrie, M.; et al. Candidate single-nucleotide polymorphisms from a genomewide association study of Alzheimer disease. Arch. Neurol. 2008, 65, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Han, M.-R.; Schellenberg, G.D.; Wang, L.-S. Alzheimer’s Disease Neuroimaging Initiative Genome-wide association reveals genetic effects on human Aβ42 and τ protein levels in cerebrospinal fluids: A case control study. BMC Neurol. 2010, 10, 90. [Google Scholar] [CrossRef] [Green Version]
- Beecham, G.W.; Hamilton, K.; Naj, A.C.; Martin, E.R.; Huentelman, M.; Myers, A.J.; Corneveaux, J.J.; Hardy, J.; Vonsattel, J.-P.; Younkin, S.G.; et al. Genome-wide association meta-analysis of neuropathologic features of Alzheimer’s disease and related dementias. PLoS Genet. 2014, 10, e1004606. [Google Scholar] [CrossRef] [Green Version]
- Sherva, R.; Tripodis, Y.; Bennett, D.A.; Chibnik, L.B.; Crane, P.K.; de Jager, P.L.; Farrer, L.A.; Saykin, A.J.; Shulman, J.M.; Naj, A.; et al. Genome-wide association study of the rate of cognitive decline in Alzheimer’s disease. Alzheimers Dement. 2014, 10, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The GeneCards suite: From gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinform. 2016, 54, 1.30.1–1.30.33. [Google Scholar] [CrossRef]
- Keller, M.F.; Reiner, A.P.; Okada, Y.; van Rooij, F.J.A.; Johnson, A.D.; Chen, M.-H.; Smith, A.V.; Morris, A.P.; Tanaka, T.; Ferrucci, L.; et al. Trans-ethnic meta-analysis of white blood cell phenotypes. Hum. Mol. Genet. 2014, 23, 6944–6960. [Google Scholar] [CrossRef]
- Ahn, H.; Kang, S.G.; Yoon, S.; Ko, H.-J.; Kim, P.-H.; Hong, E.-J.; An, B.-S.; Lee, E.; Lee, G.-S. Methylene blue inhibits NLRP3, NLRC4, AIM2, and non-canonical inflammasome activation. Sci. Rep. 2017, 7, 12409. [Google Scholar] [CrossRef]
- Freeman, L.C.; Ting, J.P.-Y. The pathogenic role of the inflammasome in neurodegenerative diseases. J. Neurochem. 2016, 136 (Suppl. 1), 29–38. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Chan, C. The role of inflammasome in Alzheimer’s disease. Ageing Res. Rev. 2014, 15, 6–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oz, M.; Lorke, D.E.; Petroianu, G.A. Methylene blue and Alzheimer’s disease. Biochem. Pharmacol. 2009, 78, 927–932. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.-J.; Liu, H.-Y.; Huang, T.-N.; Hsueh, Y.-P. AIM2 inflammasomes regulate neuronal morphology and influence anxiety and memory in mice. Sci. Rep. 2016, 6, 32405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tadiboyina, V.T.; Rupar, A.; Atkison, P.; Feigenbaum, A.; Kronick, J.; Wang, J.; Hegele, R.A. Novel mutation in DGUOK in hepatocerebral mitochondrial DNA depletion syndrome associated with cystathioninuria. Am. J. Med. Genet. A 2005, 135, 289–291. [Google Scholar] [CrossRef]
- Lunnon, K.; Keohane, A.; Pidsley, R.; Newhouse, S.; Riddoch-Contreras, J.; Thubron, E.B.; Devall, M.; Soininen, H.; Kłoszewska, I.; Mecocci, P.; et al. Mitochondrial genes are altered in blood early in Alzheimer’s disease. Neurobiol. Aging 2017, 53, 36–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Querfurth, H.W.; LaFerla, F.M. Alzheimer’s Disease. N. Engl. J. Med. 2010, 362, 329–344. [Google Scholar] [CrossRef] [Green Version]
- Braak, H.; Braak, E. Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol. Aging 1995, 16, 271–278; discussion 278–284. [Google Scholar] [CrossRef]
- Ansoleaga, B.; Jové, M.; Schlüter, A.; Garcia-Esparcia, P.; Moreno, J.; Pujol, A.; Pamplona, R.; Portero-Otín, M.; Ferrer, I. Deregulation of purine metabolism in Alzheimer’s disease. Neurobiol. Aging 2015, 36, 68–80. [Google Scholar] [CrossRef]
- Yang, W.; Tang, H.; Zhang, Y.; Tang, X.; Zhang, J.; Sun, L.; Yang, J.; Cui, Y.; Zhang, L.; Hirankarn, N.; et al. Meta-analysis followed by replication identifies loci in or near CDKN1B, TET3, CD80, DRAM1, and ARID5B as associated with systemic lupus erythematosus in Asians. Am. J. Hum. Genet. 2013, 92, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Wotton, C.J.; Goldacre, M.J. Associations between specific autoimmune diseases and subsequent dementia: Retrospective record-linkage cohort study, UK. J. Epidemiol. Community Health 2017, 71, 576–583. [Google Scholar] [CrossRef] [PubMed]
- Wirz, K.T.S.; Bossers, K.; Stargardt, A.; Kamphuis, W.; Swaab, D.F.; Hol, E.M.; Verhaagen, J. Cortical beta amyloid protein triggers an immune response, but no synaptic changes in the APPswe/PS1dE9 Alzheimer’s disease mouse model. Neurobiol. Aging 2013, 34, 1328–1342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, Z.; Raj, D.; Saiepour, N.; Van Dam, D.; Brouwer, N.; Holtman, I.R.; Eggen, B.J.L.; Möller, T.; Tamm, J.A.; Abdourahman, A.; et al. Immune hyperreactivity of Aβ plaque-associated microglia in Alzheimer’s disease. Neurobiol. Aging 2017, 55, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Mendes Maia, T.; Gogendeau, D.; Pennetier, C.; Janke, C.; Basto, R. Bug22 influences cilium morphology and the post-translational modification of ciliary microtubules. Biol. Open 2014, 3, 138–151. [Google Scholar] [CrossRef] [Green Version]
- Baird, F.J.; Bennett, C.L. Microtubule defects & neurodegeneration. J. Genet. Syndr. Gene 2013, 4, 203. [Google Scholar] [CrossRef] [Green Version]
- Brunden, K.R.; Lee, V.M.-Y.; Smith, A.B.; Trojanowski, J.Q.; Ballatore, C. Altered microtubule dynamics in neurodegenerative disease: Therapeutic potential of microtubule-stabilizing drugs. Neurobiol. Dis. 2017, 105, 328–335. [Google Scholar] [CrossRef]
- Atamna, H.; Frey, W.H. Mechanisms of mitochondrial dysfunction and energy deficiency in Alzheimer’s disease. Mitochondrion 2007, 7, 297–310. [Google Scholar] [CrossRef]
- Rodríguez, J.J.; Verkhratsky, A. Neurogenesis in Alzheimer’s disease. J. Anat. 2011, 219, 78–89. [Google Scholar] [CrossRef]
- Hroudová, J.; Singh, N.; Fišar, Z. Mitochondrial dysfunctions in neurodegenerative diseases: Relevance to Alzheimer’s disease. Biomed. Res. Int. 2014, 2014, 175062. [Google Scholar] [CrossRef]
- Li, Y.; Sun, H.; Chen, Z.; Xu, H.; Bu, G.; Zheng, H. Implications of GABAergic Neurotransmission in Alzheimer’s Disease. Front. Aging Neurosci. 2016, 8, 31. [Google Scholar] [CrossRef] [Green Version]
- Tucsek, Z.; Noa Valcarcel-Ares, M.; Tarantini, S.; Yabluchanskiy, A.; Fülöp, G.; Gautam, T.; Orock, A.; Csiszar, A.; Deak, F.; Ungvari, Z. Hypertension-induced synapse loss and impairment in synaptic plasticity in the mouse hippocampus mimics the aging phenotype: Implications for the pathogenesis of vascular cognitive impairment. GeroScience 2017, 39, 385–406. [Google Scholar] [CrossRef] [PubMed]
- Schetters, S.T.T.; Gomez-Nicola, D.; Garcia-Vallejo, J.J.; Van Kooyk, Y. Neuroinflammation: Microglia and T Cells get ready to tango. Front. Immunol. 2018, 8, 1905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, W.; Zheng, H. Peripheral immune system in aging and Alzheimer’s disease. Mol. Neurodegener. 2018, 13, 51. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Mudher, A. Alzheimer’s disease and type 2 diabetes: A critical assessment of the shared pathological traits. Front. Neurosci. 2018, 12, 383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
ProbeID | Chr | ProbePos | Gene | SNP | Pos | A1 | Freq | PGWAS | PmQTL | bSMR | SESMR | PSMR | PHEIDI | NHEIDI | Current? | Previous? | Region? |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Plan 2: Only Males | |||||||||||||||||
cg05206559 | 19q13.32 | 45913997 | NANOS2 | rs66529687 | 45914171 | A | 0.133 | 1.83E-04 | 2.84E-41 | 0.723 | 0.125 | 7.67E-09 | 3.28E-01 | 20 | G | G | G |
cg25673584 | 19q13.32 | 45914293 | NANOS2 | rs66529687 | 45914171 | A | 0.133 | 1.83E-04 | 4.40E-30 | 0.849 | 0.152 | 2.45E-08 | 1.23E-01 | 20 | G | G | G |
cg14192299 | 19q13.32 | 45914381 | NANOS2 | rs66529687 | 45914171 | A | 0.133 | 1.83E-04 | 6.71E-42 | 0.718 | 0.124 | 7.30E-09 | 1.08E-01 | 20 | G | G | G |
cg19702802 | 19q13.32 | 45914471 | NANOS2 | rs66529687 | 45914171 | A | 0.133 | 1.83E-04 | 3.22E-39 | 0.743 | 0.129 | 9.10E-09 | 1.03E-01 | 20 | G | G | G |
Plan 3: Only Females | |||||||||||||||||
cg10218546 | 6p21.32 | 32762046 | HLA-DQB2 | rs7768538 | 32762044 | C | 0.426 | 6.15E-05 | 1.30E-126 | −0.304 | 0.060 | 3.27E-07 | 6.43E-02 | 20 | S | G | G |
Plan 4: Hypertensive Subjects | |||||||||||||||||
cg23395749 | 5q35.3 | 177557245 | FAM193B | rs1001530 | 177558514 | G | 0.046 | 3.36E-04 | 2.55E-26 | −0.484 | 0.088 | 3.08E-08 | 8.77E-02 | 5 | N | S | S |
Plan 5: Non-hypertensive Subjects | |||||||||||||||||
cg08631357 | 5q32 | 150209647 | SLC6A7 | rs10076748 | 150209303 | A | 0.107 | 1.77E-03 | 1.54E-193 | 0.288 | 0.056 | 3.18E-07 | 2.02E-01 | 20 | N | N | G |
cg23891049 | 7q33 | 134679117 | BPGM | rs73441994 | 134679118 | A | 0.021 | 4.26E-02 | 1.18E-229 | −0.156 | 0.030 | 1.70E-07 | 6.07E-01 | 4 | N | S | S |
cg24635736 | 10q26.13 | 122979534 | PSTK | rs2421140 | 123027854 | A | 0.029 | 8.09E-03 | 2.67E-77 | −0.346 | 0.060 | 6.12E-09 | 7.16E-01 | 8 | N | N | N |
cg05360847 | 11q13.4 | 71576873 | KRTAP5-11 | rs11827208 | 71578103 | T | 0.020 | 1.70E-03 | 3.47E-13 | −0.942 | 0.159 | 3.50E-09 | 2.02E-01 | 4 | N | N | S |
cg17632299 | 13q14.3 | 52738831 | LECT1 | rs4885947 | 52735009 | C | 0.037 | 1.23E-03 | 7.51E-54 | 0.592 | 0.085 | 2.67E-12 | 1.34E-01 | 20 | N | G | G |
cg09557313 | 13q14.3 | 52739039 | LECT1 | rs4885947 | 52735009 | C | 0.037 | 1.23E-03 | 1.46E-40 | 0.675 | 0.100 | 1.37E-11 | 1.02E-01 | 20 | N | G | G |
cg09397293 | 16p13.3 | 2005032 | ZNF598 | rs72766639 | 2005819 | A | 0.174 | 1.69E-04 | 5.78E-51 | 0.688 | 0.116 | 3.06E-09 | 2.85E-01 | 20 | N | S | G |
cg26804891 | 16p13.3 | 2005241 | ZNF598 | rs11248905 | 1999727 | T | 0.181 | 4.88E-05 | 3.56E-98 | 0.539 | 0.080 | 1.62E-11 | 7.60E-02 | 20 | N | S | G |
cg08576185 | 16p13.3 | 2005683 | ZNF598 | rs72766639 | 2005819 | A | 0.174 | 1.69E-04 | 4.06E-44 | 0.740 | 0.126 | 4.76E-09 | 3.59E-01 | 20 | N | S | G |
cg10470208 | 16p13.3 | 2008700 | ZNF598 | rs1058474 | 1998795 | T | 0.181 | 6.82E-05 | 6.56E-19 | 1.112 | 0.209 | 1.02E-07 | 7.58E-02 | 14 | N | S | G |
cg06998361 | 16q21 | 58110599 | C16orf80 | rs10445026 | 58109349 | G | 0.069 | 5.00E-04 | 5.61E-97 | −0.442 | 0.069 | 1.35E-10 | 2.53E-01 | 20 | N | S | S |
ProbeID | Chr | ProbePos | Gene | SNP | Pos | A1 | Freq | PGWAS | PmQTL | bSMR | SESMR | PSMR | PHEIDI | NHEIDI | Current? | Previous? | Region? |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Plan 2: Only Males | |||||||||||||||||
cg05206559 | 19q13.32 | 45913997 | NANOS2 | rs66529687 | 45914171 | G | 0.867 | 1.83E-04 | 5.86E-298 | 0.272 | 0.043 | 2.96E-10 | 8.50E-01 | 19 | G | G | G |
Plan 3: Only Females | |||||||||||||||||
cg04322111 | 6p21.32 | 32761987 | HLA-DQB2 | rs7768538 | 32762044 | A | 0.574 | 6.15E-05 | 0 | −0.201 | 0.039 | 2.21E-07 | 8.61E-02 | 20 | S | G | G |
cg10218546 | 6p21.32 | 32762046 | HLA-DQB2 | rs7768538 | 32762044 | A | 0.574 | 6.15E-05 | 0 | −0.198 | 0.038 | 2.18E-07 | 8.32E-02 | 20 | S | G | G |
Plan 4: Hypertensive Subjects | |||||||||||||||||
cg23395749 | 5q35.3 | 177557245 | FAM193B | rs1001530 | 177558514 | A | 0.954 | 3.36E-04 | 2.34E-15 | −0.791 | 0.157 | 5.17E-07 | 1.01E-01 | 5 | N | S | S |
Plan 5: Non-hypertensive Subjects | |||||||||||||||||
cg08631357 | 5q32 | 150209647 | SLC6A7 | rs10076748 | 150209303 | C | 0.893 | 1.77E-03 | 2.82E-295 | 0.230 | 0.045 | 2.76E-07 | 2.24E-01 | 18 | N | N | G |
cg10308629 | 7q33 | 134670051 | BPGM | rs73439998 | 134663724 | C | 0.979 | 3.01E-02 | 9.28E-48 | −0.520 | 0.101 | 2.88E-07 | 2.57E-01 | 3 | N | S | S |
cg24635736 | 10q26.13 | 122979534 | PSTK | rs13328826 | 122992107 | A | 0.970 | 6.26E-03 | 2.48E-20 | −0.374 | 0.072 | 1.68E-07 | 8.24E-01 | 3 | N | N | N |
cg15567360 | 11q13.4 | 71611653 | KRTAP5-11 | rs11827208 | 71578103 | C | 0.980 | 1.70E-03 | 9.66E-10 | −0.679 | 0.130 | 1.67E-07 | 3.71E-01 | 3 | N | N | S |
cg09557313 | 13q14.3 | 52739039 | LECT1 | rs4885961 | 52755200 | C | 0.960 | 4.63E-03 | 6.93E-31 | 0.547 | 0.103 | 1.06E-07 | 5.67E-01 | 7 | N | G | G |
cg07011318 | 16p13.3 | 2004943 | ZNF598 | rs72766639 | 2005819 | G | 0.826 | 1.69E-04 | 0 | 0.291 | 0.046 | 1.96E-10 | 1.12E-01 | 17 | N | S | G |
cg09397293 | 16p13.3 | 2005032 | ZNF598 | rs72766639 | 2005819 | G | 0.826 | 1.69E-04 | 0 | 0.282 | 0.044 | 1.86E-10 | 1.13E-01 | 18 | N | S | G |
cg05211189 | 16p13.3 | 2005402 | ZNF598 | rs11542302 | 1986934 | T | 0.819 | 7.26E-05 | 0 | 0.283 | 0.043 | 7.47E-11 | 1.01E-01 | 18 | N | S | G |
cg08576185 | 16p13.3 | 2005683 | ZNF598 | rs72766639 | 2005819 | G | 0.826 | 1.69E-04 | 0 | 0.295 | 0.046 | 2.00E-10 | 9.02E-02 | 16 | N | S | G |
cg06998361 | 16q21 | 58110599 | C16orf80 | rs74019790 | 58107923 | T | 0.931 | 5.00E-04 | 4.77E-20 | −0.591 | 0.109 | 5.49E-08 | 6.81E-01 | 11 | N | S | S |
ProbeID | Chr | ProbePos | Gene | SNP | Pos | A1 | Freq | PGWAS | PmQTL | bSMR | SESMR | PSMR | PHEIDI | NHEIDI | Current? | Previous? | Region? |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Blood-based Analyses | |||||||||||||||||
cg03063511 | 2p13.1 | 73930386 | DGUOK | rs6737156 | 73932607 | C | 0.036 | 5.62E-03 | 2.71E-227 | −0.247 | 0.041 | 2.74E-09 | 1.09E-01 | 11 | N | N | N |
cg02850715 | 11q24.3 | 130159317 | ST14 | rs34008994 | 130165703 | T | 0.096 | 1.55E-04 | 1.21E-26 | −0.812 | 0.138 | 4.14E-09 | 7.87E-01 | 20 | N | N | G |
cg21029769 | 11q24.3 | 130159620 | ST14 | rs34008994 | 130165703 | T | 0.096 | 1.55E-04 | 4.09E-18 | −1.006 | 0.184 | 4.58E-08 | 9.16E-01 | 20 | N | N | G |
cg06998361 | 16q21 | 58110599 | C16orf80 | rs10445026 | 58109349 | G | 0.069 | 5.00E-04 | 5.61E-97 | −0.442 | 0.069 | 1.35E-10 | 2.53E-01 | 20 | N | S | S |
Brain-specific Analyses | |||||||||||||||||
cg11003133 | 1q23.1 | 159076601 | AIM2 | rs16841642 | 159077008 | G | 0.952 | 5.30E-03 | 6.30E-82 | −0.312 | 0.062 | 4.62E-07 | 3.40E-01 | 18 | N | S | N |
cg06998361 | 16q21 | 58110599 | C16orf80 | rs74019790 | 58107923 | T | 0.931 | 5.00E-04 | 4.77E-20 | −0.591 | 0.109 | 5.49E-08 | 6.81E-01 | 11 | N | S | S |
Pathway | Pathway Source | GSEA ID | Size | Count | Z-Score | p-Value | q-Value |
---|---|---|---|---|---|---|---|
Plan 1: All Subjects | |||||||
Type II diabetes mellitus | KEGG | M19708 | 47 | 14 | 4.017 | 2.95E-05 | 7.35E-03 |
MHC class II antigen presentation | REACTOME | M705 | 91 | 16 | 3.557 | 1.87E-04 | 2.33E-02 |
Host Interactions of HIV factors | REACTOME | M5283 | 132 | 11 | 3.202 | 6.81E-04 | 5.65E-02 |
Lysosome | KEGG | M11266 | 121 | 11 | 3.111 | 9.31E-04 | 5.80E-02 |
GABA-B receptor activation | REACTOME | M954 | 38 | 10 | 3.008 | 1.31E-03 | 6.54E-02 |
L1CAM interactions | REACTOME | M872 | 86 | 17 | 2.987 | 1.41E-03 | 6.54E-02 |
Vascular smooth muscle contraction | KEGG | M9387 | 115 | 22 | 2.852 | 2.17E-03 | 7.73E-02 |
Plan 2: Only Males | |||||||
Neurotransmitter receptors and postsynaptic signal transmission | REACTOME | M752 | 137 | 25 | 3.369 | 3.77E-04 | 1.02E-01 |
Transmission across chemical synapses | REACTOME | M15514 | 186 | 34 | 3.287 | 5.06E-04 | 1.02E-01 |
GABA receptor activation | REACTOME | M976 | 52 | 11 | 3.041 | 1.18E-03 | 1.06E-01 |
Phospholipase C-mediated cascade | REACTOME | M856 | 54 | 12 | 2.754 | 2.94E-03 | 1.98E-01 |
Plan 3: Only Females | |||||||
GABA-B receptor activation | REACTOME | M954 | 38 | 11 | 3.698 | 1.09E-04 | 2.66E-02 |
O-linked glycosylation of mucins | REACTOME | M546 | 59 | 10 | 3.418 | 3.15E-04 | 3.86E-02 |
GABA receptor activation | REACTOME | M976 | 52 | 13 | 3.364 | 3.84E-04 | 3.86E-02 |
extracellular matrix (ECM) regulators | NABA | M3468 | 238 | 41 | 3.361 | 3.88E-04 | 3.86E-02 |
Plan 5: Non-hypertensive Subjects | |||||||
Retinoblastoma 1 pathway | PID | M279 | 65 | 10 | 3.71 | 1.04E-04 | 3.20E-02 |
Circadian clock | REACTOME | M938 | 53 | 12 | 3.508 | 2.26E-04 | 3.48E-02 |
Alzheimer’s disease | KEGG | M16024 | 169 | 24 | 3.011 | 1.30E-03 | 1.34E-01 |
Pathway | Pathway Source | GSEA ID | Size | Count | Z-Score | p-Value | q-Value |
---|---|---|---|---|---|---|---|
Plan 1: All Subjects | |||||||
MHC class II antigen presentation | REACTOME | M705 | 91 | 14 | 3.3 | 4.84E-04 | 1.07E-01 |
Plan 2: Only Males | |||||||
Ubiquitin mediated proteolysis | KEGG | M15247 | 138 | 14 | 3.198 | 6.91E-04 | 1.54E-01 |
Type II diabetes mellitus | KEGG | M19708 | 47 | 17 | 2.89 | 1.93E-03 | 2.15E-01 |
Plan 3: Only Females | |||||||
MHC class II antigen presentation | REACTOME | M705 | 91 | 18 | 3.138 | 8.50E-04 | 1.56E-01 |
Transport of inorganic cations/anions and amino acids/oligopeptides | REACTOME | M823 | 94 | 11 | 2.849 | 2.19E-03 | 2.02E-01 |
Plan 4: Hypertensive Subjects | |||||||
DNA repair | REACTOME | M15434 | 112 | 10 | 3.87 | 5.44E-05 | 1.26E-02 |
Type II diabetes mellitus | KEGG | M19708 | 47 | 10 | 3.622 | 1.46E-04 | 1.69E-02 |
Extracellular matrix (ECM) affiliated proteins | NABA | M5880 | 171 | 22 | 3.019 | 1.27E-03 | 9.77E-02 |
Plan 5: Non-hypertensive Subjects | |||||||
Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins | REACTOME | M1025 | 98 | 10 | 3.851 | 5.89E-05 | 1.66E-02 |
Hematopoietic cell lineage | KEGG | M6856 | 88 | 13 | 3.003 | 1.33E-03 | 1.88E-01 |
The citric acid (TCA) cycle and respiratory electron transport | REACTOME | M516 | 141 | 14 | 2.933 | 1.68E-03 | 1.88E-01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazarian, A.; Yashin, A.I.; Kulminski, A.M. Summary-Based Methylome-Wide Association Analyses Suggest Potential Genetically Driven Epigenetic Heterogeneity of Alzheimer’s Disease. J. Clin. Med. 2020, 9, 1489. https://doi.org/10.3390/jcm9051489
Nazarian A, Yashin AI, Kulminski AM. Summary-Based Methylome-Wide Association Analyses Suggest Potential Genetically Driven Epigenetic Heterogeneity of Alzheimer’s Disease. Journal of Clinical Medicine. 2020; 9(5):1489. https://doi.org/10.3390/jcm9051489
Chicago/Turabian StyleNazarian, Alireza, Anatoliy I. Yashin, and Alexander M. Kulminski. 2020. "Summary-Based Methylome-Wide Association Analyses Suggest Potential Genetically Driven Epigenetic Heterogeneity of Alzheimer’s Disease" Journal of Clinical Medicine 9, no. 5: 1489. https://doi.org/10.3390/jcm9051489
APA StyleNazarian, A., Yashin, A. I., & Kulminski, A. M. (2020). Summary-Based Methylome-Wide Association Analyses Suggest Potential Genetically Driven Epigenetic Heterogeneity of Alzheimer’s Disease. Journal of Clinical Medicine, 9(5), 1489. https://doi.org/10.3390/jcm9051489