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Abstract

:

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with no curative treatment available. Exploring the genetic and non-genetic contributors to AD pathogenesis is essential to better understand its underlying biological mechanisms, and to develop novel preventive and therapeutic strategies. We investigated potential genetically driven epigenetic heterogeneity of AD through summary data-based Mendelian randomization (SMR), which combined results from our previous genome-wide association analyses with those from two publicly available methylation quantitative trait loci studies of blood and brain tissue samples. We found that 152 probes corresponding to 113 genes were epigenetically associated with AD at a Bonferroni-adjusted significance level of 5.49E-07. Of these, 10 genes had significant probes in both brain-specific and blood-based analyses. Comparing males vs. females and hypertensive vs. non-hypertensive subjects, we found that 22 and 79 probes had group-specific associations with AD, respectively, suggesting a potential role for such epigenetic modifications in the heterogeneous nature of AD. Our analyses provided stronger evidence for possible roles of four genes (i.e., AIM2, C16orf80, DGUOK, and ST14) in AD pathogenesis as they were also transcriptionally associated with AD. The identified associations suggest a list of prioritized genes for follow-up functional studies and advance our understanding of AD pathogenesis.
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1. Introduction


Alzheimer’s disease (AD) is the major cause of dementia and is projected to affect more than 13 million people in the United States by 2050, thus imposing huge health and economic burdens [1,2]. Late onset AD is believed to be a multifactorial disease caused by complex interactions between various genetic and non-genetic factors [3]. Many genetic variants mapped to several chromosomal regions and genes have thus far been associated with AD by genome-wide association studies (GWAS) [4,5]; although, the vast majority of AD cases cannot be etiologically attributed to these variants [2,6]. Also, none of non-genetic AD-associated factors (e.g., age, cardiovascular risk factors, head trauma, depression, and educational attainment) has been proven to have a strong causal relationship with AD [7,8].



Epigenetic modifications of gene expression in interaction with non-genetic factors are hypothesized to contribute to AD development [6,9], particularly in light of the heterogeneous clinical manifestations of AD observed among patients with similar or identical genetic backgrounds [10]. The potential role of epigenetic mechanisms in AD pathogenesis has been widely investigated in cell lines, mouse models, post-mortem brain tissue, and blood cells [6,10,11,12,13]. Several studies have explored the global DNA methylation in AD cases compared with controls, although their findings have been inconclusive, with some reporting global hypomethylation in AD, some suggesting global hypermethylation in AD, and the others reporting no significant differences between cases and controls [12]. Previous studies have also provided many lines of evidence of associations between AD and gene-specific epigenetic modifications. They mainly investigated the DNA methylation and histone modification differences between AD cases and unaffected controls using candidate gene or genome-wide analysis approaches (e.g., pyrosequencing and array hybridization) which revealed AD-associated epigenetic modifications in some well-known AD genes, such as amyloid-β precursor protein (APP), Microtubule Associated Protein Tau (MAPT) [14], and Apolipoprotein E (APOE) [15], as well as in other genes [12]. For instance, Iwata et al. discovered CpG hypermethylation in APP and MAPT in post-mortem brain samples from AD patients, which were suggested to contribute to neural dysfunction and AD development [14]. Foraker et al. found that AD patients had a lower mean methylation level in 76 CpG sites across APOE gene compared with age-matched controls when hippocampus and frontal lobe samples were analyzed. However, APOE methylation was not statistically different between cases and controls in samples obtained from their cerebellum [15].



In most cases, epigenetically dysregulated genes were uniquely found in a single study [6,10,12,13], although AD-associated epigenetic modifications of some genes have been replicated in independent studies. For instance, several studies have reported CpG hypermethylation in the ANK1 gene in different brain regions, such as entorhinal and prefrontal cortices, superior temporal gyrus, and/or hippocampus in AD patients [16,17,18]. Hypermethylated regions overlapping DUSP22 gene were previously detected in entorhinal and dorsolateral prefrontal cortices and/or hippocampus of AD affected individuals [18,19], and CpG hypermethylation of SORBS3 was detected in the cerebral cortex of AD patients and transgenic AD mouse models [11,20]. Moreover, differentially methylated regions overlapping CDH23, RHBDF2, and RPL13 genes were reported in previous studies [16,17,21]. The mRNA expressions of these genes were also found to be altered in AD patients [16]. In addition, several genes whose associations with AD were replicated by independent GWAS [2], such as ABCA7, BIN1, CLU, HLA-DRB5, SLC24A4, and SORL1, are epigenetically implicated in AD as well [16,22,23]. The case-control studies and cell/animal models may not, however, reflect genetic contributions to AD-associated epigenetic modifications as they are more likely to identify the environmentally induced epigenetic alterations [6,9]. In addition to the studies using individual-level data, several epigenetically AD-associated genes, such as BIN1, APOC1, HLA-DRB1, HLA-DRB5, and TOMM40, have been reported by summary data-based analyses [24,25] which reflect genetically driven (i.e., through cis acting variants) epigenetic alterations [26].



In this study, we performed methylome-wide association (MWA) analyses of AD using the summary data-based Mendelian randomization (SMR) method [26] to investigate genetically driven epigenetic contributors to AD pathogenesis. Instead of analyzing individual-level data, the SMR method integrates the summary results from previous GWAS [27,28] and methylation quantitative trait loci (mQTLs) studies using blood samples [29] and brain tissue [30] in order to identify associations between AD and methylation alterations that may mediate the genetic associations examined by GWAS. Central to our study was to investigate potential genetically driven epigenetic heterogeneity of AD. Therefore, summary results from our previous GWAS which aimed to analyze genetic heterogeneity of AD in contrasting groups of subjects stratified based on their sex and history of hypertension (HTN) were used for our MWA analyses. Sex has been identified as a risk factor for AD and there are many reports highlighting sex disparities in epidemiological and clinical features of AD [31,32,33,34,35,36,37]. HTN is also a major cardiovascular risk factor for AD that may be involved in initiation and progression of the disease by causing structural and functional damages to cerebral microvasculature and promoting amyloid plaques formation [8,38,39]. By detecting several group-specific AD-associated single-nucleotide polymorphisms (SNPs) at P < 5E-06, our GWAS suggested that differences in the genetic architecture of AD between these contrasting groups may differentially contribute to AD pathogenesis [27,28]. Thus, the current study using summary results from these two GWAS may provide novel insights into potential genetically driven epigenetic heterogeneity of AD. To further validate significant findings, we compared our MWA results with those from our previous transcriptome-wide association (TWA) analyses of AD [27,28] that implemented the SMR method using the same GWAS summary results along with data from blood-based [40] and brain-specific [30,41] expression quantitative trait loci (eQTLs) studies.




2. Methods


2.1. GWAS Data


This study makes use of the results of our previous genome-wide association meta-analyses [27,28]. Briefly, these meta-analyses were performed using genotype and phenotype data from four independent datasets: (1) Cardiovascular Health Study (CHS) [42]; (2) Framingham Heart Study (FHS) [43,44]; (3) Late-Onset Alzheimer’s Disease Family Study (LOADFS) from the National Institute on Aging [45], available to the research community through the dbGaP repository (https://www.ncbi.nlm.nih.gov/gap); and (4) Health and Retirement Study (HRS) [46], which can be accessed through dbGaP and the University of Michigan restricted access webpage (http://hrsonline.isr.umich.edu/index.php?p=data). These meta-analyses were performed under five analysis plans in which the genetic basis of AD was investigated among: (1) all subjects in each dataset, (2) only males, (3) only females [27], (4) only subjects with a history of HTN, or (5) only subjects with no history of HTN [28]. AD patients were mainly diagnosed clinically based on neurologic findings (e.g., using National Institute of Neurological and Communicative Disorders and Stroke-Alzheimer’s Disease and Related Disorders Association (NINCDS-ADRDA) criteria [47]) and were either identified directly (LOADFS and FHS datasets) or reported indirectly (CHS and HRS datasets) through the International Classification of Disease codes, Ninth revision (i.e., ICD-9:331.0 code). The numbers of AD cases were 2741, 952, 1789, 1262, and 796 under plans 1–5, respectively; and the numbers of unaffected controls were 14739, 6337, 8402, 9608, and 4010, respectively. The studied subjects were all of Caucasian ancestry to make samples more homogeneous.



For each analysis plan, the additive genetic associations of ~2 million SNPs with AD were investigated by fitting logistic regression (CHS and HRS cohorts with population-based design) [48] or generalized mixed logistic regression (LOADFS and FHS cohorts with family-based design) [49] models. The top five principal components of genotype data, birth year, and sex (except plans 2 and 3) of subjects were considered as fixed-effects covariates. In the case of LOADFS and FHS cohorts, family identifier was also included as a random-effects covariate in the fitted models to adjust for potential confounding from family structure. Individual GWAS results from the four datasets were then combined by inverse-variance meta-analysis [50]. Under plans 2–5 that aimed to investigate the genetic heterogeneity of AD through stratified analyses of datasets under consideration, group-specific SNPs effects were identified by a Wald chi-square test (df = 1) [51] which was performed for any SNPs with significant association signals in only one of the contrasting groups in order to determine whether the SNPs odds ratios were significantly different between males and females (plans 2 and 3) [27] and between hypertensive and non-hypertensive subjects (plans 4 and 5) [28].


   χ 2  =      (   b 1  −  b 2   )   2    s  e 1 2  + s  e 2 2     



(1)




where b1 (se1) and b2 (se2) are the beta coefficients (and their standard errors) of a SNP in each of the two contrasting groups.




2.2. mQTLs Data


The summary results from two previous mQTLs studies using blood samples (n = 1980) [29] and human brain tissue (n = 1160 from a meta-analysis of three independent brain-specific mQTLs data of mostly dorsolateral prefrontal cortex and fetal brain samples) [30] were also used for our analyses. The mQTLs studies provided genome-wide CpG methylation data using the Illumina Human Methylation 450 K array. The mQTLs data in the format compatible for MWA analyses can be downloaded at: https://cnsgenomics.com/software/smr/#DataResource. The annotation of probes was in accordance with the Illumina support files for Human Methylation 450K array. Probes which were located in the inter-genic regions (IGRs) (i.e., not located within any gene or within 1.5 kb of the transcription start site of any gene [52]) were annotated to their closest genes.




2.3. MWA Analysis


Under each of the five analysis plans, two sets of MWA analyses (i.e., blood-based and brain-specific) were performed by combining the results from our GWAS with publicly available summary results from the two mQTLs studies. MWA analyses were performed by the SMR package (v 0.710) [26] to identify SNPs that might be pleiotropically associated with AD and DNA methylation changes. The SMR package was run using default input arguments. Probes that had at least one significant mQTL (i.e., a SNP with PmQTL < 5E-08) that was also among the SNPs in our GWAS were included. This resulted in the inclusion of sets of up to 90,357 and 90,848 probes with significant cis-mQTLs from blood-based and brain-specific mQTLs studies under the five analysis plans.



Associations of any probes with AD were first sought through a SMR test, and significant associations were determined at a Bonferroni-adjusted significance level of 5.49E-07 (i.e., 0.05/91000) to account for multiple comparisons. Probes with significant PSMR were then selected for heterogeneity in dependent instruments (HEIDI) testing to identify associations that were likely to arise from the pleiotropic effects of a single locus on both methylation changes and AD status (i.e., probes with PHEIDI ≥ 0.05) and not from the linkage between adjacent variants that affected AD susceptibility and methylation patterns separately (i.e., probes with PHEIDI < 0.05) [26]. Here, HRS was used as the reference panel for estimating pair-wise linkage disequilibrium and SNP clumping.



To examine the consistency of probe effects in blood-based and brain-specific analyses, the bSMR of any probes were compared between these analyses using the chi-square test mentioned above in the GWAS data section. In addition, probes that were detected in either males or females and in either hypertensive or non-hypertensive groups were subject to the chi-square test to find out whether their bSMR were significantly different between the two contrasting groups (i.e., they had group-specific effects).



Finally, lists of AD-associated genes from MWA analyses were compared to those from our previous blood-based and brain-specific TWA analyses [27,28] to identify any overlaps between epigenetically and transcriptionally AD-associated genes.




2.4. Pathway Enrichment Analysis


Pathway enrichment analysis was performed to correlate nominally AD-associated genes in our MWA results with biological processes that might contribute to AD pathogenesis. Pathway-based analyses were performed by the GSA-SNP2 (i.e., gene set analysis-single nucleotide polymorphism2) package [53] using 1329 canonical pathways provided by the Broad Institute gene set enrichment analysis (GSEA) website [54] based on information from several pathway databases such as Kyoto Encyclopedia of Genes and Genomes (KEGG) [55], REACTOME pathway knowledgebase [56], Pathway Interaction Database (PID) [57], and Matrisome Project [58]. Significant AD-associated pathways were determined using plan-specific false discovery rates (FDR) [59] at which the numbers of possible false-positively detected pathways were smaller than 1 (i.e., FDR levels between 0.05 and 0.25).




2.5. Ethics Approval


This study focuses on secondary analysis of data obtained from dbGaP and the University of Michigan [42,43,44,45,46] (please see the Supporting Acknowledgment in Additional File 1) and does not involve gathering data from human subjects directly. The study was performed according to the Duke University Institutional Review Board (IRB) guidelines.





3. Results


3.1. Blood-Based MWA Analyses


We found that 8, 31, 9, 6 and 84 probes passed both SMR at a Bonferroni-adjusted level of 5.49E-07 (PSMR between 8.73E-20 and 5.26E-07) and HEIDI (PHEIDI ≥ 0.05) tests under analysis plans 1–5, respectively (Additional File 1: Table S1). These probes were mapped to 5, 21, 9, 5, and 66 genes (71 chromosomal regions, i.e., cytogenetic bands, in total), respectively. Seventeen genes had more than one significant probe (2–9 probes per gene that were 51–61,765 base pairs apart and, in most cases, had the same top mQTLs). Top mQTLs corresponding to these probes were nominally significant (6.45E-06 ≤ PGWAS) in our genome-wide meta-analyses [27,28], except for the cg06750524 probe corresponding to the APOE gene whose top mQTLs had 2.15E-83 ≤ PGWAS ≤ 8.19E-30 under the five analysis plans of interest.




3.2. Brain-Specific MWA Analyses


There were 2, 6, 4, 4, and 27 probes that passed both SMR at a Bonferroni-adjusted threshold of 5.49E-07 (PSMR between 1.52E-12 and 5.17E-07) and HEIDI (PHEIDI ≥ 0.05) tests under plans 1–5, respectively (Additional File 1: Table S2). These probes were mapped to 2, 5, 3, 4, and 24 genes (located in 26 chromosomal regions), respectively. Six genes had more than one significant probe (2–4 probes per gene that were 5–740 base pairs apart and were mostly influenced by the same genetic signal). Again, the top mQTLs corresponding to these probes were nominally significant (4.88E-05 ≤ PGWAS) in our GWAS except for the one corresponding to cg02613937 probe, which had 3.73E-63 ≤ PGWAS ≤ 9.84E-24. This probe was mapped to the TOMM40 gene, which is near the APOE gene.




3.3. Comparison of Blood-Based and Brain-Specific MWA Results


The consistency of blood-based and brain-specific results was examined by comparing the probes effect sizes and directions (i.e., the magnitudes and signs of bSMR) between the two analyses. The directions of effects were the same for ~77% of probes in both analyses and across five plans of interest. When the blood-based and brain-specific bSMR were compared using a Wald chi-square test, less than 1% of probes (i.e., 0.006–0.073% across the five study plans) had significantly different effects at the Bonferroni-adjusted significance level. Probes corresponding to the following 10 genes were significantly associated with AD in both blood-based and brain-specific analyses (Table 1 and Table 2): NANOS2 (plan 2), HLA-DQB2 (plan 3), FAM193B (plan 4), SLC6A7, BPGM, PSTK, KRTAP5-11, LECT1, ZNF598, and C16orf80 (plan 5). All but BPGM and KRTAP5-11 had common probes in the two analyses, with directions of effects being the same and not significantly different at Bonferroni-adjusted level. The top mQTLs in blood-based and brain-specific analyses were the same for probes corresponding to NANOS2, HLA-DQB2, FAM193B, SLC6A7, KRTAP5-11, and ZNF598.




3.4. Group-Specific Findings


No probes/genes outside the APOE cluster genes region (i.e., chromosome 19q13.32) were significant in both males and females (i.e., plans 2 and 3). LOC154449 (chromosome 6q27 region) was the only gene outside the APOE cluster genes region that had AD-associated probes in blood-based MWA analyses of both hypertensive and non-hypertensive subjects (i.e., plans 4 and 5).



When the bSMR of probes were compared using a Wald chi-square test, we found that 16 of 38 blood-based probes and six of eight brain-specific probes that were detected either in males or females had sex-specific effects at Bonferroni-adjusted significance levels of 0.00132 and 0.00625, respectively (Additional File 1: Tables S3 and S4). Among 88 and 29 blood-based and brain-specific probes that were detected in either hypertensive or non-hypertensive subjects, 58 and 21 probes had significantly different effects in the two groups at Bonferroni-adjusted significance levels of 0.00057 and 0.00172, respectively (Additional File 1: Tables S5 and S6).




3.5. Comparison of MWA and GWAS Results


To investigate the novelty of our findings with respect to their potential implication in AD pathogenesis, we determined whether there were AD-associated SNPs with significant PGWAS at genome-wide (PGWAS < 5E-08) or suggestive (5E-08 ≤ PGWAS < 5E-06) significance levels within ±1 Mb regions and/or chromosomal regions of the detected probes in our genome-wide meta-analyses or in other studies reported by GRASP [4] and NHGRI-EBI GWAS [5] catalogs.



We identified AD-associated SNPs with PGWAS < 5E-08 within ±1 Mb of probes corresponding to APOE, TOMM40, and NANOS2 genes (all within the chromosome 19q13.32 region) in our genome-wide meta-analyses and previous GWAS [4,5]. No SNPs with PGWAS < 5E-08 were found within ±1 Mb flanking regions of any other probes in our meta-analyses. However, AD-associated SNPs with PGWAS < 5E-08 were previously reported by other studies within ±1 Mb of several other probes [4,5]. These probes were mapped to 22 genes (all outside the chromosome 19q13.32 region): CLIC1, BRD2, HLA-DPB1, ITIH2, PHLDA1 (plan 2), HLA-DQA2, HLA-DQB2, LECT1 (plan 3), and SLC25A2, PPT2-EGFL8, EGFL8, COL11A2, TREM1, NDUFA4, ZNF394, CHRNA2, ITIH2, LECT1, CMIP, NGFR, LOC100288866, MUM1, SIGLEC12, and EBF4 (plan 5).



In addition, the ±1 Mb flanking regions of several other probes attained 5E-08 ≤ PGWAS < 5E-06 in our or previous GWAS. Detailed information about these probes/genes can be found in Additional File 1: Tables S1 and S2. For instance, there were AD-associated SNPs at suggestive significance levels within ±1 Mb of probes corresponding to AP2A2, ADCY8, HLA-DQA2, HLA-DQB2, and SLC35C1 (all outside the chromosome 19q13.32 region) in our GWA meta-analyses.




3.6. Comparison of MWA and TWA Results


Analysis of overlaps between MWA and our previous TWA results [27,28] revealed that, among the potential epigenetically AD-associated genes, four genes also had significant AD-associated probes in TWA analyses (Table 3). These four genes, AIM2, DGUOK, ST14, and C16orf80, had significant probes in subjects with no history of HTN (i.e., plan 5). Of these genes, C16orf80 had significant probes in both blood-based and brain-specific MWA analyses; DGUOK and ST14 had AD-associated probes in blood-based analyses; and AIM2 had significant probes in brain-specific analyses. With respect to the TWA analyses, C16orf80 had significant probes in brain-specific analyses; AIM2, and DGUOK had significant probes in blood-based analyses; and ST14 had AD-associated probes in TWA analyses of both blood samples and brain tissue.




3.7. Pathway Enrichment Analyses


Pathway-based analyses (Table 4 and Table 5) revealed that AD-associated probes/genes from blood-based MWA analyses were enriched in 16 pathways (i.e., 7, 4, 4, and 3 pathways under plans 1, 2, 3, and 5, respectively). Of these, two pathways (i.e., GABA-B receptor activation (plans 1 and 3) and GABA receptor activation (plans 2 and 3)) were significant in more than one plan. We also found that nine pathways (i.e., 1, 2, 2, 3, and 3 significant pathways in plans 1–5, respectively) were associated with AD when brain-specific MWA results were enriched. Of these, two pathways (MHC class II antigen presentation (plans 1 and 3) and type II diabetes mellitus (plans 2 and 4)) were significant in more than one plan and were also enriched in both brain-specific and blood-based analyses.





4. Discussion


Despite the detection of many genetic variants and identification of several non-genetic factors that may play roles in AD susceptibility, the definitive underlying mechanisms in most AD cases is unclear. Thus, epigenetic mechanisms may be key contributors to the heterogeneous nature of AD [9,10,13,23]. The epigenetic architecture of AD has been widely investigated in case-control studies and cell/animal models [12]. The AD-associated epigenetic modifications found in these studies can be environmentally induced or genetically driven (i.e., through cis acting variants).



We combined the results from our previous GWAS [27,28] with data from two publicly available mQTLs studies of brain tissue [30] and blood samples [29] to identify genes that might be epigenetically associated with AD. In contrast to studies using individual-level data, epigenetic associations detected by summary data-based analyses are all genetically driven [26]. A major focus of our study was to explore potential genetically driven epigenetic heterogeneity of AD based on its two main risk factors (i.e., sex [31,32,33,34,35,36,37] and HTN [8,38,39]). Therefore, in order to investigate sex-specific and HTN-specific epigenetic changes, our MWA analyses were performed under five alternative plans in which summary results from GWAS on either all subjects, only males, only females [27], only subjects with a history of HTN, or only subjects with no history of HTN [28] were included in analyses.



Our analyses demonstrated that 152 probes corresponding to 113 genes were epigenetically associated with AD. The top mQTLs corresponding to these probes were mostly nominally significant in our genome-wide meta-analyses. This might be in part due to suboptimal statistical power of our analyses which can be improved by analyzing larger datasets or more importantly due to the genetic heterogeneity of AD within and between the analyzed cohorts (i.e., LOADFS, CHS, FHS, and HRS). The ±1 Mb flanking regions of ~18% and ~34% of detected probes had attained PGWAS < 5E-08 and 5E-08 ≤ PGWAS < 5E-06, respectively, in our genome-wide meta-analyses or other studies reported by GWAS databases [4,5]. Comparing our findings with those detected in other SMR-based analyses of AD [24,25] revealed that TOMM40, which had significant probes in brain-specific analyses under all five plans of our study, was epigenetically associated with AD in a previous study [24].



Investigating group-specific epigenetic alterations, we found that probes corresponding to APOE and TOMM40 genes (i.e., inside the chromosome 19q13.32 region) were significant in blood-based and brain-specific analyses, respectively, of both males and females (i.e., plans 2 and 3) and both hypertensive and non-hypertensive groups (i.e., plans 4 and 5). However, several probes (all outside the chromosome 19q13.32 region, except cg05206559 corresponding to NANOS2 gene in males) were group-specifically associated with AD, indicating potential genetically driven epigenetic heterogeneity of AD based on the two studied risk factors. For instance, we found that among 38 and eight probes that were detected in blood-based and brain-specific analyses, respectively, in either males or females, 22 probes had sex-specific effects when their bSMR were compared between the two sexes using a Wald chi-square test (Additional File 1: Tables S3 and S4). Comparing results from hypertensive and non-hypertensive groups, we found that there were 88 (blood-based analyses) and 29 (brain-specific analyses) significant probes outside the APOE region which were not in common between these two groups. Of these, 79 probes had group-specific effects when their bSMR were compared between hypertensive and non-hypertensive groups (Additional File 1: Tables S5 and S6). Addressing genetic and epigenetic heterogeneities of AD is essential for understanding its pathogenesis and developing more efficient and personalized medical interventions tailored to the genetic and epigenetic profiles of individuals.



Our MWA analyses were performed using both brain-specific and blood-based mQTLs data which provided the opportunity to assess the consistency of potential AD-associated epigenetic changes detected in these analyses. Although the pattern of DNA methylation can be tissue- or cell-specific [6,60], previous studies have demonstrated the utility of blood samples for investigating AD-associated epigenetic modifications by reporting global or gene-specific methylation changes in AD subjects compared with matched healthy controls [61,62,63,64,65]. This might be due to the systemic sequelae of AD, as AD may extensively impact cellular and molecular processes in peripheral tissues and nonneural cells including red blood cells, leukocytes, and platelets [66,67,68,69,70,71]. In addition, blood-based analyses may provide more statistical power than brain-specific studies, which generally have smaller sample sizes due to difficulties in obtaining brain samples from living subjects. Consistent with previous reports, our findings supported the feasibility of using data from blood samples to investigate epigenetic changes involved in AD. The direction of blood-based and brain-specific effects were the same for ~77% of probes and the effects of less than 1% of probes were significantly different between the two analyses across the five analysis plans of interest. We also found that probes corresponding to 10 genes were associated with AD in both blood-based and brain-speficic MWA analyses (Table 1 and Table 2). Most of these genes were previously implicated in AD at genome-wide or suggestive significance levels by GWAS [4,5], except SLC6A7, PSTK, and KRTAP5-11. AD-associated SNPs at PGWAS < 5E-08 were found within ±1 Mb of probes mapped to NANOS2, HLA-DQB2, and LECT1 in our meta-analyses and/or previous GWAS. SNPs with 5E-08 ≤ PGWAS < 5E-06 were found within ±1 Mb flanking regions of probes corresponding to FAM193B, BPGM, ZNF598, and C16orf80. Moreover, empirical evidence links some of these genes to AD in humans and animal models (e.g., SLC6A7 [72] and BPGM [71]).



It should be stressed that the identified AD-associated genes in summary-based analyses do not prove any definitive causal relationships. Instead, they suggest a list of prioritized genes whose potential roles in AD pathogenesis need to be validated by further functional studies [26]. In a recent study, Hannon et al. detected overlapping mQTL and eQTL signals with functional implications for several complex diseases/traits, such as Crohn’s disease, ulcerative colitis, blood lipids, height, and schizophrenia by comparing their SMR-based analyses [73]. Therefore, to further pinpoint potential targets, we compared the list of epigenetically AD-associated genes identified from MWA analyses with transcriptionally AD-associated genes identified from our previous TWA analyses [27,28].



Our comparisons identified a short list of four potentially AD-associated genes that had significant probes in both MWA and TWA analyses (i.e., AIM2, DGUOK, ST14, and C16orf80 in non-hypertensive subjects with PSMR between 4.62E-07 and 1.35E-10 in MWA analyses and between 2.18E-05 and 7.78E-07 in TWA analyses [28]). Probes corresponding to all genes but AIM2 had group-specific effects when their bSMR were compared between hypertensive and non-hypertensive groups using a Wald chi-square test (Additional File 1: Tables S5 and S6). AD-associated SNPs with PGWAS < 5E-08 were not found within ±1 Mb flanking regions of these probes in our meta-analyses or other studies in GWAS databases [4,5], although several SNPs with 5E-08 ≤ PGWAS < 5E-06 were previously reported within ±1 Mb of probes corresponding to AIM2 [74] and C16orf80 [75,76]. In addition, chromosomal regions corresponding to ST14 [77] (i.e., 11q24.3 region) contained previously reported AD-associated SNPs at P < 5E-08.



A review of the literature provided additional insights, strengthening the potential roles of these four genes in AD. For instance, AIM2 encodes a protein involved in regulating cell proliferation and innate immunity [78]. SNPs mapped to this gene were previously associated with white blood cells count at PGWAS < 5E-08 [79]. AIM2, along with several other proteins, were suggested to initiate inflammasome formation in response to stimuli such as viruses, bacteria, and damaged cells. Inflammasomes mediate the release of pro-inflammatory cytokines, such as IL-1β and IL-18, that are believed to be involved in AD development [80,81,82]. IL-1β may increase in the blood, cerebrospinal fluid, and brain of AD patients and blood level of IL-18 may increase in early stages of AD. IL-1β can activate astrocytes and microglia cells and stimulate the release of APP and amyloid-β (Aβ) from neurons. Also, IL-18, which is overexpressed in astrocytes, microglia, and neurons around Aβ plaques, may promote Aβ formation and mediate tau protein hyper-phosphorylation [82]. It was reported that methylene blue (MB), an inhibitor of inflammasome proteins such as AIM2, NLRP3, and NLRC4 [80], can decelerate the production of Aβ plaques and neurofibrillary tangles. Thus, MB-based medications were suggested as potential treatments for AD [83]. Moreover, Wu et al. reported that AIM2 knock-out mice exhibited behavioral changes and impaired auditory fear memory [84].



DGUOK encodes a mitochondrial enzyme involved in the purine metabolism pathway [78]. Mutations in this gene were linked to some mitochondrial disorders with Mendelian inheritance, such as mitochondrial depletion syndrome [85]. Mitochondrial dysfunction has also been reported as an important finding in neurons of AD patients [86,87]. Ansoleaga et al. showed that DGUOK was downregulated in the precuneus and entorhinal cortex of patients in AD stages III-IV and V-VI (Braak and Braak staging system [88]), respectively, compared with matched healthy controls [89]. In addition, SNPs mapped to DGUOK were associated with systemic lupus erythematosus at PGWAS < 5E-08 [90]. The risks of developing AD and vascular dementia slightly increases among patients with autoimmune disorders, such as lupus erythematosus [91].



ST14 encodes a membrane serine protease with tumor suppressor activity [78] that was not associated with AD or its risk factors at PGWAS < 5E-06 by previous GWAS [4,5]. However, Wirz et al. found that the ortholog of ST14 is overexpressed (i.e., 5.39-fold change with p < 0.008) in the frontal cortex of APPswe/PS1dE9 transgenic mice harboring mutant forms of APP and PSEN1 in response to Aβ plaque development [92]. Yin et al. reported that the mouse ortholog of ST14 was upregulated in Aβ plaque-associated microglia cells in 5XFAD transgenic mice harboring mutant forms of APP and PSEN1 genes compared with aged-matched control mice [93].



C16orf80 (also known as BUG22 and CFAP20) encodes a highly conserved protein involved in the post-translational modification of Tubulin subunits of microtubules. Such modifications might be essential for microtubule function and stability in ciliated cells, such as sperm, and in neurons [94]. Microtubules are major component of neuronal transport machinery, in which defects can lead to neurodegenerative diseases (e.g., the role of microtubule-associated proteins, such as tau protein, in AD) [95,96]. In a previous study, Mendes Maia et al. reported that Drosophila melanogaster carrying mutant copies of the ortholog of C16orf80 had a short lifespan and defects in body morphology, climbing activity, and locomotion, which were mostly reversed when gene expression was restored in the nervous system [94]. However, C16orf80 was not previously associated with AD or its risk factors at PGWAS < 5E-06 [4,5].



Our pathway enrichment analyses of the brain-specific and blood-based MWA results revealed that nine and 16 pathways were associated with AD, respectively. These pathways were mostly involved in biological processes such as immune system responses (e.g., MHC class II antigen presentation), mitochondrial function (e.g., TCA cycle and respiratory electron transport), neurogenesis, synaptic function, and neurotransmitter signaling (e.g., L1CAM interactions, GABA receptor activation, neurotransmitter receptors and postsynaptic signal transmission, and transmission across chemical synapses pathways) that have been implicated in AD pathogenesis [87,97,98,99,100,101,102,103]. Two enriched pathways (i.e., MHC class II antigen presentation and type II diabetes mellitus) were common between the brain-speficic and blood-based MWA analyses, highlighting potential links between AD and immune system responses [102,103] and type II diabetes mellitus as an important vascular risk factor for AD [104].



Despite its rigor, we acknowledge that this study has limitations that could be addressed by future research using different methodologies and data. Using summary results from GWAS with larger sample sizes is likely to increase the statistical power of analyses. However, it should be noted that increasing sample sizes may not necessarily result in considerably increased power of GWAS due to the genetic heterogeneity underlying complex diseases. As mentioned above, the summary-based methylome-/transcriptome-wide approaches cannot draw definitive causal relationships between the disease of interest and detected genes [26]. Such analyses can only help generate hypotheses regarding the possible involvement of a short list of genes in the pathogenesis of the studied disorder, which need to be validated empirically. Analyzing individual-level data which provide gene expressions and epigenetic profiles for the same case and control subjects would help obtaining a more definitive view of the underlying biological processes of AD and, in addition, may allow investigating the roles of non-genetic factors (e.g., smoking, medications that interfere with DNA methylation, exposure to metals, nutritional ingredients) in the observed transcriptome and epigenome changes. This is particularly important because epigenetic alterations can be environmentally induced [6,9]. It would also be interesting to investigate whether detected epigenome changes are associated with AD progression. This requires data from different AD stages [88] with sufficient sample sizes. The CHS, FHS, HRS, and LOADFS datasets analyzed in our study do not provide disease staging information for AD subjects. Finally, investigating cell-specific (i.e., neurons and different glial cells) epigenetic alterations may provide valuable additional insights into the epigenetic architecture of AD, although small sample sizes and insufficient statistical power can be a major problem for such studies.




5. Conclusions


Our MWA analyses revealed associations between AD and probes corresponding to 113 genes. Most of these genes were not associated with AD in previous GWAS and the ±1 Mb flanking regions of ~45% of detected probes did not attain PGWAS < 5E-06 previously. The top mQTLs corresponding to these probes were mostly nominally significant in our GWAS which might be due to suboptimal sample sizes and statistical power of our analyses and/or the genetic heterogeneity of AD within and between the analyzed cohorts. Performing MWA analyses under five plans provided the opportunity to explore potential genetically driven epigenetic heterogeneity of AD in contrasting groups of subjects based on their sex and history of HTN. Comparing the MWA results from plans 2 and 3 (i.e., males vs. females) and from plans 4 and 5 (i.e., hypertensive vs. non-hypertensive subjects), we found that 22 and 79 probes were group-specifically associated with AD, respectively. Thus, this study suggests a role for genetically driven epigenetic modifications as contributing factors to the heterogeneous nature of AD, addressing of which may have translational impacts for implementing more efficient and personalized medical interventions (e.g., developing sex-specific therapeutic targets). The potential AD-genes associations detected here do not imply casualty and should only be used as a short list to prioritize candidate genes for future studies. The comparison of MWA and TWA results together with additional information from empirical studies strengthened the possible roles of four genes (i.e., AIM2, C16orf80, DGUOK, and ST14) in AD pathogenesis and helped further prioritize the list of potentially AD-associated genes for follow-up studies. Consistent with previous reports, our findings demonstrated the applicability of blood-based mQTLs data for the study of epigenetics mechanisms of AD as several genes and pathways were associated with AD in both brain-specific and blood-based MWA analyses and the probe effects detected in these analyses did not show significant differences.
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	ABCA7
	ATP Binding Cassette Subfamily A Member 7



	AD
	Alzheimer’s Disease



	ADCY8
	Adenylate Cyclase 8



	AIM2
	Absent in Melanoma 2



	ANK1
	Ankyrin 1



	AP2A2
	Adaptor Related Protein Complex 2 Subunit Alpha 2



	APOC1
	Apolipoprotein C1



	APOE
	Apolipoprotein E



	APP
	Amyloid Beta Precursor Protein



	Aβ
	Amyloid-β



	BIN1
	Bridging Integrator 1



	BPGM
	Bisphosphoglycerate Mutase



	BRD2
	Bromodomain Containing 2



	BUG22
	Basal Body Upregulated Gene 22



	C10orf54
	Chromosome 10 Open Reading Frame 54



	C16orf80
	Chromosome 16 Open Reading Frame 80



	CDH23
	Cadherin Related 23



	CFAP20
	Cilia and Flagella Associated Protein 20



	CHRNA2
	Cholinergic Receptor Nicotinic Alpha 2 Subunit



	CHS
	Cardiovascular Health Study



	CLIC1
	Chloride Intracellular Channel 1



	CLU
	Clusterin



	CMIP
	C-Maf Inducing Protein



	COL11A2
	Collagen Type XI Alpha 2 Chain



	dbGaP
	The Database of Genotypes and Phenotypes



	DGUOK
	Deoxyguanosine Kinase



	DUSP22
	Dual Specificity Phosphatase 22



	EBF4
	Early B Cell Factor Family Member 4



	EGFL8
	Epidermal Growth Factor-Like Like Domain Multiple 8



	eQTL
	Expression Quantitative trait Locus



	FAM193B
	Family with Sequence Similarity 193 Member B



	FDR
	False Discovery Rate



	FHS
	Framingham Heart Study



	GABA
	Gamma-Aminobutyric Acid



	GRASP
	Genome-Wide Repository of Associations Between SNPs and Phenotypes



	GSA
	Gene Set Analysis



	GSA-SNP2
	Gene Set Analysis-Single-Nucleotide-Polymorphism-2



	GSEA
	Gene Set Enrichment Analysis



	GWAS
	Genome-Wide Association Study



	HEIDI
	Heterogeneity in Dependent Instruments



	HLA-DPB1
	Human Leukocyte Antigen Class II, DP Beta 1



	HLA-DQA2
	Human Leukocyte Antigen Class II, DQ Alpha 2



	HLA-DQB2
	Human Leukocyte Antigen Class II, DQ Beta 2



	HLA-DRB1
	Human Leukocyte Antigen Class II, DR Beta 1



	HLA-DRB5
	Human Leukocyte Antigen Class II, DR Beta 5



	HRS
	Health and Retirement Study



	HTN
	Hypertension



	ICD-9
	International Classification of Disease codes, Ninth revision



	IGR
	Inter-Genic Region



	IL-18
	Interleukin 18



	IL-1β
	Interleukin 1 Beta



	IRB
	Institutional Review Board



	ITIH2
	Inter-Alpha-Trypsin Inhibitor Heavy Chain 2



	KEGG
	Kyoto Encyclopedia of Genes and Genomes



	KRTAP5-11
	Keratin Associated Protein 5-11



	L1CAM
	L1 Cell Adhesion Molecule



	LECT1
	Leukocyte Cell Derived Chemotaxin 1



	LOADFS
	Late-Onset Alzheimer's Disease Family Study



	LOC100288866
	Uncharacterized LOC100288866



	LOC154449
	Uncharacterized LOC154449



	MAPT
	Microtubule Associated Protein Tau



	MB
	Methylene Blue



	MHC
	Major Histocompatibility Complex



	mQTL
	Methylation Quantitative trait Locus



	MUM1
	Melanoma Ubiquitous Mutated Protein 1



	MWA
	Methylome-Wide Association



	NABA
	Matrisome Project



	NANOS2
	Nanos C2HC-Type Zinc Finger 2



	NDUFA4
	NDUFA4 Mitochondrial Complex Associated



	NGFR
	Nerve Growth Factor Receptor



	NHGRI-EBI GWAS
	National Human Genome Research Institute-European Bioinformatics Institute Genome-Wide Association Studies Catalog



	NINCDS-ADRDA
	National Institute of Neurological and Communicative Disorders and Stroke of the United States-the Alzheimer’s Disease and Related Disorders Association



	NLRC4
	Nucleotide-Binding Oligomerization Domain, Leucine Rich Repeat and Caspase Recruitment Domain Containing 4



	NLRP3
	Nucleotide-Binding Oligomerization Domain, Leucine Rich Repeat and Pyrin Domain Containing 3



	PHLDA1
	Pleckstrin Homology Like Domain Family A Member 1



	PID
	Pathway Interaction Database



	PPT2-EGFL8
	Palmitoyl-Protein Thioesterase 2-Epidermal Growth Factor-Like Like Domain Multiple 8 Readthrough



	PSEN1
	Presenilin 1



	PSTK
	Phosphoseryl-TRNA Kinase



	RHBDF2
	Rhomboid 5 Homolog 2



	RPL13
	Ribosomal Protein L13



	SIGLEC12
	Sialic Acid Binding Immunoglobulin Like Lectin 12



	SLC24A4
	Solute Carrier Family 24 Member 4



	SLC25A2
	Solute Carrier Family 25 Member 2



	SLC35C1
	Solute Carrier Family 35 Member C1



	SLC6A7
	Solute Carrier Family 6 Member 7



	SMR
	Summary Data-Based Mendelian Randomization



	SNP
	Single-Nucleotide Polymorphism



	SORBS3
	Sorbin And SH3 Domain Containing 3



	SORL1
	Sortilin Related Receptor 1



	ST14
	Suppression of Tumorigenicity 14



	TCA
	Tricarboxylic Acid



	TOMM40
	Translocase of Outer Mitochondrial Membrane 40



	TREM1
	Triggering Receptor Expressed on Myeloid Cells 1



	TWA
	Transcriptome-Wide Association



	ZNF394
	Zinc Finger Protein 394



	ZNF598
	Zinc Finger Protein 598
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Table 1. Blood-based methylome-wide association results for genes that had significant probes in both brain-specific and blood-based analyses.






Table 1. Blood-based methylome-wide association results for genes that had significant probes in both brain-specific and blood-based analyses.





	
ProbeID

	
Chr

	
ProbePos

	
Gene

	
SNP

	
Pos

	
A1

	
Freq

	
PGWAS

	
PmQTL

	
bSMR

	
SESMR

	
PSMR

	
PHEIDI

	
NHEIDI

	
Current?

	
Previous?

	
Region?






	
Plan 2: Only Males




	
cg05206559

	
19q13.32

	
45913997

	
NANOS2

	
rs66529687

	
45914171

	
A

	
0.133

	
1.83E-04

	
2.84E-41

	
0.723

	
0.125

	
7.67E-09

	
3.28E-01

	
20

	
G

	
G

	
G




	
cg25673584

	
19q13.32

	
45914293

	
NANOS2

	
rs66529687

	
45914171

	
A

	
0.133

	
1.83E-04

	
4.40E-30

	
0.849

	
0.152

	
2.45E-08

	
1.23E-01

	
20

	
G

	
G

	
G




	
cg14192299

	
19q13.32

	
45914381

	
NANOS2

	
rs66529687

	
45914171

	
A

	
0.133

	
1.83E-04

	
6.71E-42

	
0.718

	
0.124

	
7.30E-09

	
1.08E-01

	
20

	
G

	
G

	
G




	
cg19702802

	
19q13.32

	
45914471

	
NANOS2

	
rs66529687

	
45914171

	
A

	
0.133

	
1.83E-04

	
3.22E-39

	
0.743

	
0.129

	
9.10E-09

	
1.03E-01

	
20

	
G

	
G

	
G




	
Plan 3: Only Females




	
cg10218546

	
6p21.32

	
32762046

	
HLA-DQB2

	
rs7768538

	
32762044

	
C

	
0.426

	
6.15E-05

	
1.30E-126

	
−0.304

	
0.060

	
3.27E-07

	
6.43E-02

	
20

	
S

	
G

	
G




	
Plan 4: Hypertensive Subjects




	
cg23395749

	
5q35.3

	
177557245

	
FAM193B

	
rs1001530

	
177558514

	
G

	
0.046

	
3.36E-04

	
2.55E-26

	
−0.484

	
0.088

	
3.08E-08

	
8.77E-02

	
5

	
N

	
S

	
S




	
Plan 5: Non-hypertensive Subjects




	
cg08631357

	
5q32

	
150209647

	
SLC6A7

	
rs10076748

	
150209303

	
A

	
0.107

	
1.77E-03

	
1.54E-193

	
0.288

	
0.056

	
3.18E-07

	
2.02E-01

	
20

	
N

	
N

	
G




	
cg23891049

	
7q33

	
134679117

	
BPGM

	
rs73441994

	
134679118

	
A

	
0.021

	
4.26E-02

	
1.18E-229

	
−0.156

	
0.030

	
1.70E-07

	
6.07E-01

	
4

	
N

	
S

	
S




	
cg24635736

	
10q26.13

	
122979534

	
PSTK

	
rs2421140

	
123027854

	
A

	
0.029

	
8.09E-03

	
2.67E-77

	
−0.346

	
0.060

	
6.12E-09

	
7.16E-01

	
8

	
N

	
N

	
N




	
cg05360847

	
11q13.4

	
71576873

	
KRTAP5-11

	
rs11827208

	
71578103

	
T

	
0.020

	
1.70E-03

	
3.47E-13

	
−0.942

	
0.159

	
3.50E-09

	
2.02E-01

	
4

	
N

	
N

	
S




	
cg17632299

	
13q14.3

	
52738831

	
LECT1

	
rs4885947

	
52735009

	
C

	
0.037

	
1.23E-03

	
7.51E-54

	
0.592

	
0.085

	
2.67E-12

	
1.34E-01

	
20

	
N

	
G

	
G




	
cg09557313

	
13q14.3

	
52739039

	
LECT1

	
rs4885947

	
52735009

	
C

	
0.037

	
1.23E-03

	
1.46E-40

	
0.675

	
0.100

	
1.37E-11

	
1.02E-01

	
20

	
N

	
G

	
G




	
cg09397293

	
16p13.3

	
2005032

	
ZNF598

	
rs72766639

	
2005819

	
A

	
0.174

	
1.69E-04

	
5.78E-51

	
0.688

	
0.116

	
3.06E-09

	
2.85E-01

	
20

	
N

	
S

	
G




	
cg26804891

	
16p13.3

	
2005241

	
ZNF598

	
rs11248905

	
1999727

	
T

	
0.181

	
4.88E-05

	
3.56E-98

	
0.539

	
0.080

	
1.62E-11

	
7.60E-02

	
20

	
N

	
S

	
G




	
cg08576185

	
16p13.3

	
2005683

	
ZNF598

	
rs72766639

	
2005819

	
A

	
0.174

	
1.69E-04

	
4.06E-44

	
0.740

	
0.126

	
4.76E-09

	
3.59E-01

	
20

	
N

	
S

	
G




	
cg10470208

	
16p13.3

	
2008700

	
ZNF598

	
rs1058474

	
1998795

	
T

	
0.181

	
6.82E-05

	
6.56E-19

	
1.112

	
0.209

	
1.02E-07

	
7.58E-02

	
14

	
N

	
S

	
G




	
cg06998361

	
16q21

	
58110599

	
C16orf80

	
rs10445026

	
58109349

	
G

	
0.069

	
5.00E-04

	
5.61E-97

	
−0.442

	
0.069

	
1.35E-10

	
2.53E-01

	
20

	
N

	
S

	
S








Genomic coordinates are based on Human Genome version 38 (hg38). Chr: chromosomal region (i.e., cytogenetic band); ProbePos: probe position; Gene: the gene or closest gene corresponding to the probe; SNP: top methylation quantitative trait locus (mQTL); Pos: SNP position; A1/Freq: SNP’s effect allele and its frequency; PGWAS: p-value of the SNP in genome-wide association meta-analysis; PmQTL: p-value of the SNP in mQTLs analysis; bSMR, SESMR, and PSMR: beta coefficient, its standard error, and p-value of the probe in summary data-based Mendelian randomization (SMR) test; PHEIDI: p-value of the heterogeneity in dependent instruments (HEIDI) test; NHEIDI: number of single-nucleotide polymorphisms used for HEIDI test; Current?: whether there is any AD-associated SNP within ±1 Mb of the probe in the current genome-wide meta-analysis (N: None, G: SNP with PGWAS < 5E-08, and S: SNP with 5E-08 ≤ PGWAS < 5E-06); Previous?: whether there is any AD-associated SNP within ±1 Mb of the probe in previous GWAS (N: None, G: SNP with PGWAS < 5E-08, and S: SNP with 5E-08 ≤ PGWAS < 5E-06); Region?: whether there is any AD-associated SNP within the chromosomal region (i.e., cytogenetic band) corresponding to the probe (N: None, G: SNP with PGWAS < 5E-08, and S: SNP with 5E-08 ≤ PGWAS < 5E-06).
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Table 2. Brain-specific methylome-wide association results for genes that had significant probes in both brain-specific and blood-based analyses.
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ProbeID

	
Chr

	
ProbePos

	
Gene

	
SNP

	
Pos

	
A1

	
Freq

	
PGWAS

	
PmQTL

	
bSMR

	
SESMR

	
PSMR

	
PHEIDI

	
NHEIDI

	
Current?

	
Previous?

	
Region?






	
Plan 2: Only Males




	
cg05206559

	
19q13.32

	
45913997

	
NANOS2

	
rs66529687

	
45914171

	
G

	
0.867

	
1.83E-04

	
5.86E-298

	
0.272

	
0.043

	
2.96E-10

	
8.50E-01

	
19

	
G

	
G

	
G




	
Plan 3: Only Females




	
cg04322111

	
6p21.32

	
32761987

	
HLA-DQB2

	
rs7768538

	
32762044

	
A

	
0.574

	
6.15E-05

	
0

	
−0.201

	
0.039

	
2.21E-07

	
8.61E-02

	
20

	
S

	
G

	
G




	
cg10218546

	
6p21.32

	
32762046

	
HLA-DQB2

	
rs7768538

	
32762044

	
A

	
0.574

	
6.15E-05

	
0

	
−0.198

	
0.038

	
2.18E-07

	
8.32E-02

	
20

	
S

	
G

	
G




	
Plan 4: Hypertensive Subjects




	
cg23395749

	
5q35.3

	
177557245

	
FAM193B

	
rs1001530

	
177558514

	
A

	
0.954

	
3.36E-04

	
2.34E-15

	
−0.791

	
0.157

	
5.17E-07

	
1.01E-01

	
5

	
N

	
S

	
S




	
Plan 5: Non-hypertensive Subjects




	
cg08631357

	
5q32

	
150209647

	
SLC6A7

	
rs10076748

	
150209303

	
C

	
0.893

	
1.77E-03

	
2.82E-295

	
0.230

	
0.045

	
2.76E-07

	
2.24E-01

	
18

	
N

	
N

	
G




	
cg10308629

	
7q33

	
134670051

	
BPGM

	
rs73439998

	
134663724

	
C

	
0.979

	
3.01E-02

	
9.28E-48

	
−0.520

	
0.101

	
2.88E-07

	
2.57E-01

	
3

	
N

	
S

	
S




	
cg24635736

	
10q26.13

	
122979534

	
PSTK

	
rs13328826

	
122992107

	
A

	
0.970

	
6.26E-03

	
2.48E-20

	
−0.374

	
0.072

	
1.68E-07

	
8.24E-01

	
3

	
N

	
N

	
N




	
cg15567360

	
11q13.4

	
71611653

	
KRTAP5-11

	
rs11827208

	
71578103

	
C

	
0.980

	
1.70E-03

	
9.66E-10

	
−0.679

	
0.130

	
1.67E-07

	
3.71E-01

	
3

	
N

	
N

	
S




	
cg09557313

	
13q14.3

	
52739039

	
LECT1

	
rs4885961

	
52755200

	
C

	
0.960

	
4.63E-03

	
6.93E-31

	
0.547

	
0.103

	
1.06E-07

	
5.67E-01

	
7

	
N

	
G

	
G




	
cg07011318

	
16p13.3

	
2004943

	
ZNF598

	
rs72766639

	
2005819

	
G

	
0.826

	
1.69E-04

	
0

	
0.291

	
0.046

	
1.96E-10

	
1.12E-01

	
17

	
N

	
S

	
G




	
cg09397293

	
16p13.3

	
2005032

	
ZNF598

	
rs72766639

	
2005819

	
G

	
0.826

	
1.69E-04

	
0

	
0.282

	
0.044

	
1.86E-10

	
1.13E-01

	
18

	
N

	
S

	
G




	
cg05211189

	
16p13.3

	
2005402

	
ZNF598

	
rs11542302

	
1986934

	
T

	
0.819

	
7.26E-05

	
0

	
0.283

	
0.043

	
7.47E-11

	
1.01E-01

	
18

	
N

	
S

	
G




	
cg08576185

	
16p13.3

	
2005683

	
ZNF598

	
rs72766639

	
2005819

	
G

	
0.826

	
1.69E-04

	
0

	
0.295

	
0.046

	
2.00E-10

	
9.02E-02

	
16

	
N

	
S

	
G




	
cg06998361

	
16q21

	
58110599

	
C16orf80

	
rs74019790

	
58107923

	
T

	
0.931

	
5.00E-04

	
4.77E-20

	
−0.591

	
0.109

	
5.49E-08

	
6.81E-01

	
11

	
N

	
S

	
S








Genomic coordinates are based on Human Genome version 38 (hg38). Chr: chromosomal region (i.e., cytogenetic band); ProbePos: probe position; Gene: the gene or closest gene corresponding to the probe; SNP: top methylation quantitative trait locus (mQTL); Pos: SNP position; A1/Freq: SNP’s effect allele and its frequency; PGWAS: p-value of the SNP in genome-wide association meta-analysis; PmQTL: p-value of the SNP in mQTLs analysis; bSMR, SESMR, and PSMR: beta coefficient, its standard error, and p-value of the probe in summary data-based Mendelian randomization (SMR) test; PHEIDI: p-value of the heterogeneity in dependent instruments (HEIDI) test; NHEIDI: number of single-nucleotide polymorphisms used for HEIDI test; Current?: whether there is any AD-associated SNP within ±1 Mb of the probe in the current genome-wide meta-analysis (N: None, G: SNP with PGWAS < 5E-08, and S: SNP with 5E-08 ≤ PGWAS < 5E-06); Previous?: whether there is any AD-associated SNP within ±1 Mb of the probe in previous GWAS (N: None, G: SNP with PGWAS < 5E-08, and S: SNP with 5E-08 ≤ PGWAS < 5E-06); Region?: whether there is any AD-associated SNP within the chromosomal region (i.e., cytogenetic band) corresponding to the probe (N: None, G: SNP with PGWAS < 5E-08, and S: SNP with 5E-08 ≤ PGWAS < 5E-06).
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Table 3. Methylome-wide association results for the four genes that had epigenetically and transcriptionally AD-associated probes.
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ProbeID

	
Chr

	
ProbePos

	
Gene

	
SNP

	
Pos

	
A1

	
Freq

	
PGWAS

	
PmQTL

	
bSMR

	
SESMR

	
PSMR

	
PHEIDI

	
NHEIDI

	
Current?

	
Previous?

	
Region?






	
Blood-based Analyses




	
cg03063511

	
2p13.1

	
73930386

	
DGUOK

	
rs6737156

	
73932607

	
C

	
0.036

	
5.62E-03

	
2.71E-227

	
−0.247

	
0.041

	
2.74E-09

	
1.09E-01

	
11

	
N

	
N

	
N




	
cg02850715

	
11q24.3

	
130159317

	
ST14

	
rs34008994

	
130165703

	
T

	
0.096

	
1.55E-04

	
1.21E-26

	
−0.812

	
0.138

	
4.14E-09

	
7.87E-01

	
20

	
N

	
N

	
G




	
cg21029769

	
11q24.3

	
130159620

	
ST14

	
rs34008994

	
130165703

	
T

	
0.096

	
1.55E-04

	
4.09E-18

	
−1.006

	
0.184

	
4.58E-08

	
9.16E-01

	
20

	
N

	
N

	
G




	
cg06998361

	
16q21

	
58110599

	
C16orf80

	
rs10445026

	
58109349

	
G

	
0.069

	
5.00E-04

	
5.61E-97

	
−0.442

	
0.069

	
1.35E-10

	
2.53E-01

	
20

	
N

	
S

	
S




	
Brain-specific Analyses




	
cg11003133

	
1q23.1

	
159076601

	
AIM2

	
rs16841642

	
159077008

	
G

	
0.952

	
5.30E-03

	
6.30E-82

	
−0.312

	
0.062

	
4.62E-07

	
3.40E-01

	
18

	
N

	
S

	
N




	
cg06998361

	
16q21

	
58110599

	
C16orf80

	
rs74019790

	
58107923

	
T

	
0.931

	
5.00E-04

	
4.77E-20

	
−0.591

	
0.109

	
5.49E-08

	
6.81E-01

	
11

	
N

	
S

	
S








Genomic coordinates are based on Human Genome version 38 (hg38). Chr: chromosomal region (i.e., cytogenetic band); ProbePos: probe position; Gene: the gene or closest gene corresponding to the probe; SNP: top methylation quantitative trait locus (mQTL); Pos: SNP position; A1/Freq: SNP’s effect allele and its frequency; PGWAS: p-value of the SNP in genome-wide association meta-analysis; PmQTL: p-value of the SNP in mQTLs analysis; bSMR, SESMR, and PSMR: beta coefficient, its standard error, and p-value of the probe in summary data-based Mendelian randomization (SMR) test; PHEIDI: p-value of the heterogeneity in dependent instruments (HEIDI) test; NHEIDI: number of single-nucleotide polymorphisms used for HEIDI test; Current?: whether there is any AD-associated SNP within ±1 Mb of the probe in the current genome-wide meta-analysis (N: None, G: SNP with PGWAS < 5E-08, and S: SNP with 5E-08 ≤ PGWAS < 5E-06); Previous?: whether there is any AD-associated SNP within ±1 Mb of the probe in previous GWAS (N: None, G: SNP with PGWAS < 5E-08, and S: SNP with 5E-08 ≤ PGWAS < 5E-06); Region?: whether there is any AD-associated SNP within the chromosomal region (i.e., cytogenetic band) corresponding to the probe (N: None, G: SNP with PGWAS < 5E-08, and S: SNP with 5E-08 ≤ PGWAS < 5E-06).
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Table 4. Pathway-enrichment of blood-based methylome-wide association results.
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Pathway

	
Pathway Source

	
GSEA ID

	
Size

	
Count

	
Z-Score

	
p-Value

	
q-Value






	
Plan 1: All Subjects




	
Type II diabetes mellitus

	
KEGG

	
M19708

	
47

	
14

	
4.017

	
2.95E-05

	
7.35E-03




	
MHC class II antigen presentation

	
REACTOME

	
M705

	
91

	
16

	
3.557

	
1.87E-04

	
2.33E-02




	
Host Interactions of HIV factors

	
REACTOME

	
M5283

	
132

	
11

	
3.202

	
6.81E-04

	
5.65E-02




	
Lysosome

	
KEGG

	
M11266

	
121

	
11

	
3.111

	
9.31E-04

	
5.80E-02




	
GABA-B receptor activation

	
REACTOME

	
M954

	
38

	
10

	
3.008

	
1.31E-03

	
6.54E-02




	
L1CAM interactions

	
REACTOME

	
M872

	
86

	
17

	
2.987

	
1.41E-03

	
6.54E-02




	
Vascular smooth muscle contraction

	
KEGG

	
M9387

	
115

	
22

	
2.852

	
2.17E-03

	
7.73E-02




	
Plan 2: Only Males




	
Neurotransmitter receptors and postsynaptic signal transmission

	
REACTOME

	
M752

	
137

	
25

	
3.369

	
3.77E-04

	
1.02E-01




	
Transmission across chemical synapses

	
REACTOME

	
M15514

	
186

	
34

	
3.287

	
5.06E-04

	
1.02E-01




	
GABA receptor activation

	
REACTOME

	
M976

	
52

	
11

	
3.041

	
1.18E-03

	
1.06E-01




	
Phospholipase C-mediated cascade

	
REACTOME

	
M856

	
54

	
12

	
2.754

	
2.94E-03

	
1.98E-01




	
Plan 3: Only Females




	
GABA-B receptor activation

	
REACTOME

	
M954

	
38

	
11

	
3.698

	
1.09E-04

	
2.66E-02




	
O-linked glycosylation of mucins

	
REACTOME

	
M546

	
59

	
10

	
3.418

	
3.15E-04

	
3.86E-02




	
GABA receptor activation

	
REACTOME

	
M976

	
52

	
13

	
3.364

	
3.84E-04

	
3.86E-02




	
extracellular matrix (ECM) regulators

	
NABA

	
M3468

	
238

	
41

	
3.361

	
3.88E-04

	
3.86E-02




	
Plan 5: Non-hypertensive Subjects




	
Retinoblastoma 1 pathway

	
PID

	
M279

	
65

	
10

	
3.71

	
1.04E-04

	
3.20E-02




	
Circadian clock

	
REACTOME

	
M938

	
53

	
12

	
3.508

	
2.26E-04

	
3.48E-02




	
Alzheimer’s disease

	
KEGG

	
M16024

	
169

	
24

	
3.011

	
1.30E-03

	
1.34E-01








GSEA: Gene Set Enrichment Analysis; Size: number of genes in the pathway; Count: number of enriched genes in the pathway; KEGG: Kyoto Encyclopedia of Genes and Genomes; REACTOME: REACTOME pathway knowledgebase; PID: Pathway Interaction Database; NABA: Matrisome Project. The false discovery rate thresholds were 0.1, 0.2, 0.05, and 0.15 for plans 1, 2, 3, and 5, respectively.
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Table 5. Pathway-enrichment of brain-specific methylome-wide association results.
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Pathway

	
Pathway Source

	
GSEA ID

	
Size

	
Count

	
Z-Score

	
p-Value

	
q-Value






	
Plan 1: All Subjects




	
MHC class II antigen presentation

	
REACTOME

	
M705

	
91

	
14

	
3.3

	
4.84E-04

	
1.07E-01




	
Plan 2: Only Males




	
Ubiquitin mediated proteolysis

	
KEGG

	
M15247

	
138

	
14

	
3.198

	
6.91E-04

	
1.54E-01




	
Type II diabetes mellitus

	
KEGG

	
M19708

	
47

	
17

	
2.89

	
1.93E-03

	
2.15E-01




	
Plan 3: Only Females




	
MHC class II antigen presentation

	
REACTOME

	
M705

	
91

	
18

	
3.138

	
8.50E-04

	
1.56E-01




	
Transport of inorganic cations/anions and amino acids/oligopeptides

	
REACTOME

	
M823

	
94

	
11

	
2.849

	
2.19E-03

	
2.02E-01




	
Plan 4: Hypertensive Subjects




	
DNA repair

	
REACTOME

	
M15434

	
112

	
10

	
3.87

	
5.44E-05

	
1.26E-02




	
Type II diabetes mellitus

	
KEGG

	
M19708

	
47

	
10

	
3.622

	
1.46E-04

	
1.69E-02




	
Extracellular matrix (ECM) affiliated proteins

	
NABA

	
M5880

	
171

	
22

	
3.019

	
1.27E-03

	
9.77E-02




	
Plan 5: Non-hypertensive Subjects




	
Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins

	
REACTOME

	
M1025

	
98

	
10

	
3.851

	
5.89E-05

	
1.66E-02




	
Hematopoietic cell lineage

	
KEGG

	
M6856

	
88

	
13

	
3.003

	
1.33E-03

	
1.88E-01




	
The citric acid (TCA) cycle and respiratory electron transport

	
REACTOME

	
M516

	
141

	
14

	
2.933

	
1.68E-03

	
1.88E-01








GSEA: Gene Set Enrichment Analysis; Size: number of genes in the pathway; Count: number of enriched genes in the pathway; KEGG: Kyoto Encyclopedia of Genes and Genomes; REACTOME: REACTOME pathway knowledgebase; PID: Pathway Interaction Database; NABA: Matrisome Project. The false discovery rate thresholds were 0.2, 0.25, 0.25, 0.1, and 0.2 for plans 1–5, respectively.
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