Agreement between Type 2 Diabetes Risk Scales in a Caucasian Population: A Systematic Review and Report
Abstract
:1. Introduction
2. Material and Methods
2.1. Search Strategy
2.2. Study Design
2.3. Participants and Recruitment
2.4. Samples and Measurements
2.5. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Standl, E.; Khunti, K.; Hansen, T.B.; Schnell, O. The global epidemics of diabetes in the 21st century: Current situation and perspectives. Eur. J. Prev. Cardiol. 2019, 26, 7–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dall, T.M.; Narayan, K.M.; Gillespie, K.B.; Gallo, P.D.; Blanchard, T.D.; Solcan, M.; O’Grady, M.; Quick, W.W. Detecting type 2 diabetes and prediabetes among asymptomatic adults in the United States: Modeling American Diabetes Association versus US Preventive Services Task Force diabetes screening guidelines. Popul. Health Metr. 2014, 12, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevens, J.W.; Khunti, K.; Harvey, R.; Johnson, M.; Preston, L.; Woods, H.B.; Davies, M.; Goyder, E. Preventing the progression to type 2 diabetes mellitus in adults at high risk: A systematic review and network meta-analysis of lifestyle, pharmacological and surgical interventions. Diabetes Res. Clin. Pract. 2015, 107, 320–331. [Google Scholar] [CrossRef] [PubMed]
- Vistisen, D.; Witte, D.R.; Brunner, E.J.; Kivimaki, M.; Tabak, A.; Jorgensen, M.E.; Faerch, K. Risk of Cardiovascular Disease and Death in Individuals With Prediabetes Defined by Different Criteria: The Whitehall II Study. Diabetes Care 2018, 41, 899–906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: A pooled analysis of 751 population-based studies with 4·4 million participants. Lancet 2016, 387, 1513–1530. [Google Scholar] [CrossRef] [Green Version]
- Barry, E.; Roberts, S.; Oke, J.; Vijayaraghavan, S.; Normansell, R.; Greenhalgh, T. Efficacy and effectiveness of screen and treat policies in prevention of type 2 diabetes: Systematic review and meta-analysis of screening tests and interventions. BMJ 2017, 356, i6538. [Google Scholar] [CrossRef] [Green Version]
- Selph, S.; Dana, T.; Blazina, I.; Bougatsos, C.; Patel, H.; Chou, R. Screening for type 2 diabetes mellitus: A systematic review for the U.S. Preventive Services Task Force. Ann. Intern. Med. 2015, 162, 765–776. [Google Scholar] [CrossRef] [Green Version]
- Balk, E.M.; Earley, A.; Raman, G.; Avendano, E.A.; Pittas, A.G.; Remington, P.L. Combined Diet and Physical Activity Promotion Programs to Prevent Type 2 Diabetes Among Persons at Increased Risk: A Systematic Review for the Community Preventive Services Task Force. Ann. Intern. Med. 2015, 163, 437–451. [Google Scholar] [CrossRef] [Green Version]
- Uusitupa, M.; Khan, T.A.; Viguiliouk, E.; Kahleova, H.; Rivellese, A.A.; Hermansen, K.; Pfeiffer, A.; Thanopoulou, A.; Salas-Salvado, J.; Schwab, U.; et al. Prevention of Type 2 Diabetes by Lifestyle Changes: A Systematic Review and Meta-Analysis. Nutrients 2019, 11, 2611. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, A.; Silvestre, C.; Campo, N.; Grandes, G.; Pred, D.E.G. Effective translation of a type-2 diabetes primary prevention programme into routine primary care: The PreDE cluster randomised clinical trial. Diabetes Res. Clin. Pract. 2018, 139, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Lean, M.E.; Leslie, W.S.; Barnes, A.C.; Brosnahan, N.; Thom, G.; McCombie, L.; Peters, C.; Zhyzhneuskaya, S.; Al-Mrabeh, A.; Hollingsworth, K.G.; et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): An open-label, cluster-randomised trial. Lancet 2018, 391, 541–551. [Google Scholar] [CrossRef] [Green Version]
- Galaviz, K.I.; Weber, M.B.; Straus, A.; Haw, J.S.; Narayan, K.M.V.; Ali, M.K. Global Diabetes Prevention Interventions: A Systematic Review and Network Meta-analysis of the Real-World Impact on Incidence, Weight, and Glucose. Diabetes Care 2018, 41, 1526–1534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, A.D.; Crippa, A.; Woodcock, J.; Brage, S. Physical activity and incident type 2 diabetes mellitus: A systematic review and dose-response meta-analysis of prospective cohort studies. Diabetologia 2016, 59, 2527–2545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narayan, K.M.; Chan, J.; Mohan, V. Early identification of type 2 diabetes: Policy should be aligned with health systems strengthening. Diabetes Care 2011, 34, 244–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muhlenbruch, K.; Zhuo, X.; Bardenheier, B.; Shao, H.; Laxy, M.; Icks, A.; Zhang, P.; Gregg, E.W.; Schulze, M.B. Selecting the optimal risk threshold of diabetes risk scores to identify high-risk individuals for diabetes prevention: A cost-effectiveness analysis. Acta Diabetol. 2020, 57, 447–454. [Google Scholar] [CrossRef] [Green Version]
- Noble, D.; Mathur, R.; Dent, T.; Meads, C.; Greenhalgh, T. Risk models and scores for type 2 diabetes: Systematic review. BMJ 2011, 343, d7163. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Millana, A.; Argente-Pla, M.; Valdivieso Martinez, B.; Traver Salcedo, V.; Merino-Torres, J.F. Driving Type 2 Diabetes Risk Scores into Clinical Practice: Performance Analysis in Hospital Settings. J. Clin. Med. 2019, 8, 107. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, A.; Peelen, L.M.; Corpeleijn, E.; van der Schouw, Y.T.; Stolk, R.P.; Spijkerman, A.M.; van der, A.D.; Moons, K.G.; Navis, G.; Bakker, S.J.; et al. Prediction models for risk of developing type 2 diabetes: Systematic literature search and independent external validation study. BMJ 2012, 345, e5900. [Google Scholar] [CrossRef] [Green Version]
- Glumer, C.; Vistisen, D.; Borch-Johnsen, K.; Colagiuri, S. Risk scores for type 2 diabetes can be applied in some populations but not all. Diabetes Care 2006, 29, 410–414. [Google Scholar] [CrossRef] [Green Version]
- Kengne, A.P.; Masconi, K.; Mbanya, V.N.; Lekoubou, A.; Echouffo-Tcheugui, J.B.; Matsha, T.E. Risk predictive modelling for diabetes and cardiovascular disease. Crit. Rev. Clin. Lab. Sci. 2014, 51, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Moons, K.G.; Kengne, A.P.; Grobbee, D.E.; Royston, P.; Vergouwe, Y.; Altman, D.G.; Woodward, M. Risk prediction models: II. External validation, model updating, and impact assessment. Heart 2012, 98, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Rosella, L.C.; Corey, P.; Stukel, T.A.; Mustard, C.; Hux, J.; Manuel, D.G. The influence of measurement error on calibration, discrimination, and overall estimation of a risk prediction model. Popul. Health Metr. 2012, 10, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosella, L.C.; Mustard, C.A.; Stukel, T.A.; Corey, P.; Hux, J.; Roos, L.; Manuel, D.G. The role of ethnicity in predicting diabetes risk at the population level. Ethn. Health 2012, 17, 419–437. [Google Scholar] [CrossRef] [Green Version]
- Ferreira Gonzalez, I.; Urrutia, G.; Alonso-Coello, P. Systematic reviews and meta-analysis: Scientific rationale and interpretation. Rev. Esp. Cardiol. 2011, 64, 688–696. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gotzsche, P.C.; Vandenbroucke, J.P.; Initiative, S. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for reporting observational studies. Int. J. Surg. 2014, 12, 1495–1499. [Google Scholar] [CrossRef] [Green Version]
- Alssema, M.; Vistisen, D.; Heymans, M.W.; Nijpels, G.; Glumer, C.; Zimmet, P.Z.; Shaw, J.E.; Eliasson, M.; Stehouwer, C.D.; Tabak, A.G.; et al. The Evaluation of Screening and Early Detection Strategies for Type 2 Diabetes and Impaired Glucose Tolerance (DETECT-2) update of the Finnish diabetes risk score for prediction of incident type 2 diabetes. Diabetologia 2011, 54, 1004–1012. [Google Scholar] [CrossRef] [Green Version]
- Glumer, C.; Carstensen, B.; Sandbaek, A.; Lauritzen, T.; Jorgensen, T.; Borch-Johnsen, K. A Danish diabetes risk score for targeted screening: The Inter99 study. Diabetes Care 2004, 27, 727–733. [Google Scholar] [CrossRef] [Green Version]
- Balkau, B.; Lange, C.; Fezeu, L.; Tichet, J.; de Lauzon-Guillain, B.; Czernichow, S.; Fumeron, F.; Froguel, P.; Vaxillaire, M.; Cauchi, S.; et al. Predicting diabetes: Clinical, biological, and genetic approaches: Data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR). Diabetes Care 2008, 31, 2056–2061. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.; Simmons, R.K.; Harding, A.H.; Wareham, N.J.; Griffin, S.J. A simple risk score identifies individuals at high risk of developing Type 2 diabetes: A prospective cohort study. Fam. Pract. 2008, 25, 191–196. [Google Scholar] [CrossRef] [Green Version]
- Hippisley-Cox, J.; Coupland, C.; Robson, J.; Sheikh, A.; Brindle, P. Predicting risk of type 2 diabetes in England and Wales: Prospective derivation and validation of QDScore. BMJ 2009, 338, b880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindstrom, J.; Peltonen, M.; Eriksson, J.G.; Ilanne-Parikka, P.; Aunola, S.; Keinanen-Kiukaanniemi, S.; Uusitupa, M.; Tuomilehto, J.; Finnish Diabetes Prevention Study (DPS). Improved lifestyle and decreased diabetes risk over 13 years: Long-term follow-up of the randomised Finnish Diabetes Prevention Study (DPS). Diabetologia 2013, 56, 284–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aekplakorn, W.; Bunnag, P.; Woodward, M.; Sritara, P.; Cheepudomwit, S.; Yamwong, S.; Yipintsoi, T.; Rajatanavin, R. A risk score for predicting incident diabetes in the Thai population. Diabetes Care 2006, 29, 1872–1877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Magliano, D.J.; Balkau, B.; Colagiuri, S.; Zimmet, P.Z.; Tonkin, A.M.; Mitchell, P.; Phillips, P.J.; Shaw, J.E. AUSDRISK: An Australian Type 2 Diabetes Risk Assessment Tool based on demographic, lifestyle and simple anthropometric measures. Med. J. Aust. 2010, 192, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Romero, F.; Rodriguez-Moran, M. Validation of an instrument for screening cases of type 2 diabetes and monitoring at-risk individuals in Mexico. Rev. Panam Salud Publica 2010, 27, 181–186. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M.I.; Duncan, B.B.; Bang, H.; Pankow, J.S.; Ballantyne, C.M.; Golden, S.H.; Folsom, A.R.; Chambless, L.E.; Atherosclerosis Risk in Communities Investigators. Identifying individuals at high risk for diabetes: The Atherosclerosis Risk in Communities study. Diabetes Care 2005, 28, 2013–2018. [Google Scholar] [CrossRef] [Green Version]
- Stern, M.P.; Williams, K.; Haffner, S.M. Identification of persons at high risk for type 2 diabetes mellitus: Do we need the oral glucose tolerance test? Ann. Intern. Med. 2002, 136, 575–581. [Google Scholar] [CrossRef]
- Wilson, P.W.; Meigs, J.B.; Sullivan, L.; Fox, C.S.; Nathan, D.M.; D’Agostino, R.B., Sr. Prediction of incident diabetes mellitus in middle-aged adults: The Framingham Offspring Study. Arch. Intern. Med. 2007, 167, 1068–1074. [Google Scholar] [CrossRef] [Green Version]
- Rosella, L.C.; Manuel, D.G.; Burchill, C.; Stukel, T.A.; PHIAT-DM Team. A population-based risk algorithm for the development of diabetes: Development and validation of the Diabetes Population Risk Tool (DPoRT). J. Epidemiol. Community Health 2011, 65, 613–620. [Google Scholar] [CrossRef] [Green Version]
- Al-Lawati, J.A.; Tuomilehto, J. Diabetes risk score in Oman: A tool to identify prevalent type 2 diabetes among Arabs of the Middle East. Diabetes Res. Clin. Pract. 2007, 77, 438–444. [Google Scholar] [CrossRef]
- Mohan, V.; Deepa, R.; Deepa, M.; Somannavar, S.; Datta, M. A simplified Indian Diabetes Risk Score for screening for undiagnosed diabetic subjects. J. Assoc. Physicians India 2005, 53, 759–763. [Google Scholar]
- Chuang, S.Y.; Yeh, W.T.; Wu, Y.L.; Chang, H.Y.; Pan, W.H.; Tsao, C.K. Prediction equations and point system derived from large-scale health check-up data for estimating diabetic risk in the Chinese population of Taiwan. Diabetes Res. Clin. Pract. 2011, 92, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Doi, Y.; Ninomiya, T.; Hata, J.; Hirakawa, Y.; Mukai, N.; Iwase, M.; Kiyohara, Y. Two risk score models for predicting incident Type 2 diabetes in Japan. Diabet. Med. 2012, 29, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Pan, C.; Jin, M. A Chinese diabetes risk score for screening of undiagnosed diabetes and abnormal glucose tolerance. Diabetes Technol. Ther. 2011, 13, 501–507. [Google Scholar] [CrossRef]
- Gao, W.G.; Qiao, Q.; Pitkaniemi, J.; Wild, S.; Magliano, D.; Shaw, J.; Soderberg, S.; Zimmet, P.; Chitson, P.; Knowlessur, S.; et al. Risk prediction models for the development of diabetes in Mauritian Indians. Diabet. Med. 2009, 26, 996–1002. [Google Scholar] [CrossRef]
- Schulze, M.B.; Hoffmann, K.; Boeing, H.; Linseisen, J.; Rohrmann, S.; Mohlig, M.; Pfeiffer, A.F.; Spranger, J.; Thamer, C.; Haring, H.U.; et al. An accurate risk score based on anthropometric, dietary, and lifestyle factors to predict the development of type 2 diabetes. Diabetes Care 2007, 30, 510–515. [Google Scholar] [CrossRef] [Green Version]
- Muhlenbruch, K.; Ludwig, T.; Jeppesen, C.; Joost, H.G.; Rathmann, W.; Meisinger, C.; Peters, A.; Boeing, H.; Thorand, B.; Schulze, M.B. Update of the German Diabetes Risk Score and external validation in the German MONICA/KORA study. Diabetes Res. Clin. Pract 2014, 104, 459–466. [Google Scholar] [CrossRef]
- Joseph, J.; Svartberg, J.; Njolstad, I.; Schirmer, H. Incidence of and risk factors for type-2 diabetes in a general population: The Tromso Study. Scand. J. Public Health 2010, 38, 768–775. [Google Scholar] [CrossRef]
- Jahangiri Noudeh, Y.; Hadaegh, F.; Vatankhah, N.; Momenan, A.A.; Saadat, N.; Khalili, D.; Azizi, F. Wrist circumference as a novel predictor of diabetes and prediabetes: Results of cross-sectional and 8.8-year follow-up studies. J. Clin. Endocrinol. Metab. 2013, 98, 777–784. [Google Scholar] [CrossRef] [Green Version]
- Cameron, A.J.; Magliano, D.J.; Zimmet, P.Z.; Welborn, T.A.; Colagiuri, S.; Tonkin, A.M.; Shaw, J.E. The metabolic syndrome as a tool for predicting future diabetes: The AusDiab study. J. Intern. Med. 2008, 264, 177–186. [Google Scholar] [CrossRef]
- Tauler, P.; Bennasar-Veny, M.; Morales-Asencio, J.M.; Lopez-Gonzalez, A.A.; Vicente-Herrero, T.; De Pedro-Gomez, J.; Royo, V.; Pericas-Beltran, J.; Aguilo, A. Prevalence of premorbid metabolic syndrome in Spanish adult workers using IDF and ATPIII diagnostic criteria: Relationship with cardiovascular risk factors. PLoS ONE 2014, 9, e89281. [Google Scholar] [CrossRef]
- Stewart, A.; Marfell-Jones, M.; Olds, T.; De Ridder, J. International Standards for Anthropometric Assessment; International Standards for Anthropometric Assessment (ISAK): Wellington, New Zeland, 2011. [Google Scholar]
- Simmons, R.K.; Harding, A.H.; Wareham, N.J.; Griffin, S.J.; Team, E.P.-N.P. Do simple questions about diet and physical activity help to identify those at risk of Type 2 diabetes? Diabet. Med. 2007, 24, 830–835. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, A.; Snehalatha, C.; Vijay, V.; Wareham, N.J.; Colagiuri, S. Derivation and validation of diabetes risk score for urban Asian Indians. Diabetes Res. Clin. Pract. 2005, 70, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Kahn, H.S.; Cheng, Y.J.; Thompson, T.J.; Imperatore, G.; Gregg, E.W. Two risk-scoring systems for predicting incident diabetes mellitus in U.S. adults age 45 to 64 years. Ann. Intern. Med. 2009, 150, 741–751. [Google Scholar] [CrossRef] [Green Version]
- Alssema, M.; Feskens, E.J.; Bakker, S.J.; Gansevoort, R.T.; Boer, J.M.; Heine, R.J.; Nijpels, G.; Stehouwer, C.D.; van der Kraan, M.; Dekker, J.M. Finnish questionnaire reasonably good predictor of the incidence of diabetes in The Netherlands. Ned. Tijdschr. Geneeskd 2008, 152, 2418–2424. [Google Scholar] [PubMed]
- Bozorgmanesh, M.; Hadaegh, F.; Azizi, F. Transportability of the updated diabetes prediction model from Atherosclerosis Risk in Communities Study to a Middle Eastern adult population: Community-based cohort study. Acta Diabetol. 2013, 50, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Chien, K.; Cai, T.; Hsu, H.; Su, T.; Chang, W.; Chen, M.; Lee, Y.; Hu, F.B. A prediction model for type 2 diabetes risk among Chinese people. Diabetologia 2009, 52, 443–450. [Google Scholar] [CrossRef] [Green Version]
- Chin, C.W.; Chia, E.H.; Ma, S.; Heng, D.; Tan, M.; Lee, J.; Tai, E.S.; Salim, A. The ARIC predictive model reliably predicted risk of type II diabetes in Asian populations. BMC Med. Res. Methodol. 2012, 12, 48. [Google Scholar] [CrossRef] [Green Version]
- Ku, G.M.; Kegels, G. The performance of the Finnish Diabetes Risk Score, a modified Finnish Diabetes Risk Score and a simplified Finnish Diabetes Risk Score in community-based cross-sectional screening of undiagnosed type 2 diabetes in the Philippines. Prim. Care Diabetes 2013, 7, 249–259. [Google Scholar] [CrossRef]
- Sun, F.; Tao, Q.; Zhan, S. An accurate risk score for estimation 5-year risk of type 2 diabetes based on a health screening population in Taiwan. Diabetes Res. Clin. Pract. 2009, 85, 228–234. [Google Scholar] [CrossRef]
- Guasch-Ferre, M.; Bullo, M.; Costa, B.; Martinez-Gonzalez, M.A.; Ibarrola-Jurado, N.; Estruch, R.; Barrio, F.; Salas-Salvado, J.; PREDI-PLAN Investigators. A risk score to predict type 2 diabetes mellitus in an elderly Spanish Mediterranean population at high cardiovascular risk. PLoS ONE 2012, 7, e33437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanaya, A.M.; Wassel Fyr, C.L.; de Rekeneire, N.; Shorr, R.I.; Schwartz, A.V.; Goodpaster, B.H.; Newman, A.B.; Harris, T.; Barrett-Connor, E. Predicting the development of diabetes in older adults: The derivation and validation of a prediction rule. Diabetes Care 2005, 28, 404–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, A.K.; Dahlof, B.; Dobson, J.; Sever, P.S.; Wedel, H.; Poulter, N.R.; Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT) Investigators. Determinants of new-onset diabetes among 19,257 hypertensive patients randomized in the Anglo-Scandinavian Cardiac Outcomes Trial--Blood Pressure Lowering Arm and the relative influence of antihypertensive medication. Diabetes Care 2008, 31, 982–988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Eckardstein, A.; Schulte, H.; Assmann, G. Risk for diabetes mellitus in middle-aged Caucasian male participants of the PROCAM study: Implications for the definition of impaired fasting glucose by the American Diabetes Association. Prospective Cardiovascular Munster. J. Clin. Endocrinol. Metab. 2000, 85, 3101–3108. [Google Scholar] [CrossRef]
- McNeely, M.J.; Boyko, E.J.; Leonetti, D.L.; Kahn, S.E.; Fujimoto, W.Y. Comparison of a clinical model, the oral glucose tolerance test, and fasting glucose for prediction of type 2 diabetes risk in Japanese Americans. Diabetes Care 2003, 26, 758–763. [Google Scholar] [CrossRef] [Green Version]
- Nichols, G.A.; Brown, J.B. Validating the Framingham Offspring Study equations for predicting incident diabetes mellitus. Am. J. Manag. Care 2008, 14, 574–580. [Google Scholar]
- Kolberg, J.A.; Jorgensen, T.; Gerwien, R.W.; Hamren, S.; McKenna, M.P.; Moler, E.; Rowe, M.W.; Urdea, M.S.; Xu, X.M.; Hansen, T.; et al. Development of a type 2 diabetes risk model from a panel of serum biomarkers from the Inter99 cohort. Diabetes Care 2009, 32, 1207–1212. [Google Scholar] [CrossRef] [Green Version]
- Meigs, J.B.; Shrader, P.; Sullivan, L.M.; McAteer, J.B.; Fox, C.S.; Dupuis, J.; Manning, A.K.; Florez, J.C.; Wilson, P.W.; D′Agostino, R.B.; et al. Genotype score in addition to common risk factors for prediction of type 2 diabetes. N. Engl. J. Med. 2008, 359, 2208–2219. [Google Scholar] [CrossRef]
- Raynor, L.A.; Pankow, J.S.; Duncan, B.B.; Schmidt, M.I.; Hoogeveen, R.C.; Pereira, M.A.; Young, J.H.; Ballantyne, C.M. Novel risk factors and the prediction of type 2 diabetes in the Atherosclerosis Risk in Communities (ARIC) study. Diabetes Care 2013, 36, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Urdea, M.; Kolberg, J.; Wilber, J.; Gerwien, R.; Moler, E.; Rowe, M.; Jorgensen, P.; Hansen, T.; Pedersen, O.; Jorgensen, T.; et al. Validation of a multimarker model for assessing risk of type 2 diabetes from a five-year prospective study of 6784 Danish people (Inter99). J. Diabetes Sci. Technol. 2009, 3, 748–755. [Google Scholar] [CrossRef] [Green Version]
- Vassy, J.L.; Dasmahapatra, P.; Meigs, J.B.; Schork, N.J.; Magnussen, C.G.; Chen, W.; Raitakari, O.T.; Pencina, M.J.; Jamal, S.M.; Berenson, G.S.; et al. Genotype prediction of adult type 2 diabetes from adolescence in a multiracial population. Pediatrics 2012, 130, e1235–e1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, G.; Barlow, C.K.; Weir, J.M.; Jowett, J.B.; Magliano, D.J.; Zimmet, P.; Shaw, J.; Meikle, P.J. Inclusion of plasma lipid species improves classification of individuals at risk of type 2 diabetes. PLoS ONE 2013, 8, e76577. [Google Scholar] [CrossRef] [PubMed]
- Tanamas, S.K.; Magliano, D.J.; Balkau, B.; Tuomilehto, J.; Kowlessur, S.; Soderberg, S.; Zimmet, P.Z.; Shaw, J.E. The performance of diabetes risk prediction models in new populations: The role of ethnicity of the development cohort. Acta Diabetol. 2015, 52, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Golden, S.H.; Yajnik, C.; Phatak, S.; Hanson, R.L.; Knowler, W.C. Racial/ethnic differences in the burden of type 2 diabetes over the life course: A focus on the USA and India. Diabetologia 2019, 62, 1751–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thakarakkattil Narayanan Nair, A.; Donnelly, L.A.; Dawed, A.Y.; Gan, S.; Anjana, R.M.; Viswanathan, M.; Palmer, C.N.A.; Pearson, E.R. The impact of phenotype, ethnicity and genotype on progression of type 2 diabetes mellitus. Endocrinol. Diabetes Metab. 2020, 3, e00108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Author/Year | Population | Risk Predictors | Name Risk Diabetes Score | Risk Predictors in the Model | Country | % Incidence Diabetes |
---|---|---|---|---|---|---|
Alssema 2011 [27] | Adults | Clinical | DETECT-2 | Age, BMI, waist circumference, use of antihypertensive drugs and history of gestational diabetes | Europe, Australia and Africa | 4.6 |
Europe | ||||||
Glumer 2004 [28] | Adults 30–64 years | Clinical | DDRS | Age, gender, body mass index, known hypertension, regular exercise, and family history of diabetes. | Three European countries (England, Netherlands, Denmark) | 4.2 |
Balkau 2008 [29] | Adults volunteers 30–65 years | Clinical | DESIR | Men: Waist circumference, hypertension, smoking status Women: Waist circumference, family history of diabetes, hypertension | western French | 7.5 |
Schulze 2007 [46] | Adults 35–65 years | Clinical and diet | GDRS | Age, waist circumference, height, history of hypertension, physical inactivity, smoking, consumption of red meat, whole grain bread, coffee, and alcohol | German (Epic-Potsdam) | 3.4 |
Muhlenbrunch 2014 [47] | Adults 35–65 years | Clinical and diet | GDRS-modified | Age, waist circumference, height, history of hypertension, physical, inactivity, smoking, consumption of red meat, whole grain bread, coffee, alcohol and history of diabetes | German (Epic-Potsdam) | 2.2 |
Simmons 2007 [53] | Adults 40–79 years | Clinical and diet | EPIC-Norfolk | Age, gender, physical activity, family history of diabetes, BMI, smoking whole grain bread, fruits | UK (Epic-Norfolk) | 1.7 |
Rahman 2008 [30] | Adults 40–79 years | Clinical | Cambridge | Age, gender, current use of corticosteroids, use of antihypertensive drugs, family history of diabetes, BMI, smoking | UK-Norfolk Cohort | 1.3 |
Hippisley-Cox 2009 [31] | Adults 25–79 years | Clinical and an index of material deprivation | QDScore | Age, gender, ethnicity, BMI, smoking, family history of diabetes, Townsend score, treated hypertension, cardiovascular disease, current use of corticosteroids | England (3–4% of another ethnicity) | 3.1 |
Lindstrom 2013 [32] | Adults 35–64 years | Clinical | FINDRISC | Age, BMI, waist circumference, use of antihypertensive drugs, history of hypertension | Finland National Population Register | 4.1 |
Joseph 2010 [48] | Adults 25–98 years | Clinical and biological | The Tromsø Study | Age, BMI, total cholesterol, triglyceride level, high density lipoprotein cholesterol level, hypertension, family history of diabetes, education, physical inactivity, smoking | North Norway | 2.0 |
Asia | ||||||
Aekplakorn 2006 [33] | Adult workers 35–55 years | Clinical | EGATS | Age, BMI, waist circumference, hypertension, family history of diabetes in first degree relative | Thailand | 11.1 |
Al-Lawati 2007 [40] | Adults >20 years | Clinical | Omani | Age, BMI, waist circumference, hypertension, family history of diabetes, current hypertension status | Oman | prevalent cases |
Jahangiri 2013 [49] | Adults >20 years | Clinical and biological | Teheran study | FPG, 2hPLG, TG, PAS, HDL-C and family history of diabetes | Iran | 10.1 |
Mohan 2005 [41] | Adults >18 years | Clinical | IDRS | Age, waist circumference, hypertension, family history of diabetes, current hypertension status | South Indian | 15.5 |
Ramachandran 2005 [54] | Adults >20 year | Clinical | NUDS | Age, family history of diabetes, BMI, waist circumference, physical activity, | Six cities national survey India | 4.6 |
Gao 2009 [45] | Adults 20–65 years | Clinical | NS | BMI, waist circumference, family history of diabetes | Mauritians Indian | 16.5 |
Liu 2011 [44] | Adults 40–90 years | Clinical and biological | MJLPD | Age, hypertension, history of high blood glucose level, BMI, fasting plasma glucose level, triglyceride level, high density lipoprotein cholesterol level | Military officer in Beijing, China | 26.6 |
Chuang 2011 [42] | Adults >35 years | Clinical | Chinese-DRS | Age, gender, education, alcohol, BMI, waist circumference | Taiwan | 6.5 |
DoI 2012 [43] | Adults 40–79 years | Clinical | Hisayama study | Age, gender, family history of diabetes, abdominal circumference, body mass index, hypertension, regular exercise and current smoking | Japanese Kyushu island | 14.7 |
Oceania | ||||||
Cameron 2008 [50] | Adults >25 years | Clinical and biological | AusDiab | Age, gender, ethnicity, fasting plasma glucose level, systolic blood pressure, high density lipoprotein cholesterol level, BMI, parental history of diabetes | Australian main Caucasian | 3.8 |
Chen 2010 [34] | Adults >25 years | Clinical | AUSDRISK | Age, gender, BMI, ethnicity, physical inactivity, smoking, history of high blood pressure, use of antihypertensive medication, waist circumference, parental history of diabetes | Australian main Caucasian | 5.9 |
South-America | ||||||
Guerrero-Romero 2010 [35] | Adults | Clinical and biological | ITD | Age, gender, family history of diabetes, family history of hypertension, family history of obesity, history of gestational diabetes or macrosomia, fasting plasma glucose level, physical inactivity, triglyceride level, systolic or diastolic blood pressure, BMI | México | 14.1 |
North-America | ||||||
Schmidt 2005 [36] | Adults 45–64 years | Clinical and biological | ARIC | Age, waist circumference, height, systolic blood pressure, family history of diabetes, ethnicity, fasting plasma glucose level, HDL, Triglycerides | US | 16.3 |
Stern 2002 [37] | Adults 25–64 years | Clinical and biologicals | San Antonio | Age, gender, ethnicity, fasting plasma glucose level, systolic blood pressure, high density lipoprotein cholesterol level, BMI, family history of diabetes in first degree relative | US (61% Mexican Americans) | 9.2 |
Wilson 2007 [38] | Middle aged | Clinical and biological | Framingham Offspring | Fasting plasma glucose level, BMI, high density lipoprotein cholesterol level, parental history of diabetes, triglyceride level, blood pressure | US (Framingham) | 5.1 |
Kahn 2009 [55] | Adults | Clinical and biological | ARIC enhanced | Family history of diabetes (mother or father), hypertension, ethnicity, age, alcohol, waist circumference, height, resting pulse, glucose level, triglycerides, HDL cholesterol, uric acid | US | 19.0 |
Rosella 2011 [39] | Adults >20 years | Clinical | DPoRT | Age, ethnicity, BMI, hypertension, immigrant status, smoking, education, cardiovascular disease | Ontario Canada | 7.1 |
Author/Year | Name Risk Diabetes | Risk Predictors in the Model | Reason for Exclusion |
---|---|---|---|
Alssema 2008 [56] | PREVEND (Modified FINDRISC for Dutch population) | Age, BMI, waist circumference, use of antihypertensive drugs, history of gestational diabetes | Calibration of FINDRISC |
Von Eckardstein 2000 [65] | PROCAM score | Age, BMI, hypertension, glucose, family history of diabetes, high density lipoprotein cholesterol level | Only men |
Bozorgmanesh 2013 [57] | Modified ARIC-Teheran | Family history of diabetes, systolic blood pressure, waist–height ratio, triglyceride-high density lipoprotein ratio, fasting plasma glucose level, two-hour postprandial plasma glucose level | Calibration of ARIC |
Chien 2009 [58] | Cambridge Risk score -Taiwan | Age, BMI, white blood cell count, triglyceride level, high density, lipoprotein cholesterol level, fasting plasma glucose level | Calibration of Cambridge score in Taiwanese population |
McNeely 2003 [66] | Age, sex, ethnicity, BMI, systolic blood pressure, fasting plasma glucose level, high density lipoprotein cholesterol level, family history of diabetes in first degree relative | Validation study | |
Wong 2013 [73] | Sex, age, systolic blood pressure, waist, total cholesterol, HDL-C, triglycerides and HbA1c | Include complex biomarkers | |
Gupta 2008 [64] | Fasting Plasma Glucose (FPG), history of diabetes and drug or dietary therapy for diabetes. Presence of both impaired FPG (>6 and <7 mmol/L) and glycosuria | Only hypertensive population | |
Ku 2013 [60] | Findrisk in a Philippine population | Age, BMI, waist circumference, use of antihypertensive drugs, history of hypertension | Calibration Find Risk |
Kanaya 2005 [63] | Age, sex, triglyceride level, fasting plasma glucose level | Old adults | |
Kolberg 2009 [68] | Inter99 | Six biomarkers: adiponectin, C reactive protein, ferritin, glucose, interleukin 2 receptor A, insulin | Include complex biomarkers |
Chin 2012 [59] | The ARIC predictive model reliably predicted risk of type 2 diabetes in Asian populations | Waist circumference, parental history of diabetes, hypertension, short stature, black race, age, weight, pulse, smoking | Calibration ARIC |
Guasch-Ferré 2012 [62] | A risk score to predict type 2 diabetes mellitus in an elderly Spanish Mediterranean population | BMI, smoking status, family history of type 2 diabetes, alcohol consumption and hypertension | Old adults |
Vassy 2012 [72] | Genotype prediction of adult type 2 diabetes from adolescence in a multiracial population | Demographics, family history, physical examination, routine biomarkers, and 38 single-nucleotide polymorphism diabetes genotype score | Include a genotype score to predict diabetes |
Raynor 2013 [70] | Novel risk factors and the prediction of type 2 diabetes in the Atherosclerosis Risk in Communities (ARIC) study | Adiponectin, leptin, γ-glutamyl transferase, ferritin, intercellular adhesion molecule 1, complement C3, white blood cell count, albumin, activated partial thromboplastin time, factor VIII, magnesium, hip circumference, heart rate, and a genetic risk score | Include genotype |
Sun 2009 [61] | The ARIC predictive model reliably predicted risk of type 2 diabetes in Taiwanese population | Waist circumference, parental history of diabetes, hypertension, short stature, black race, age, weight, pulse, smoking | Calibration of ARIC |
Meigs 2008 [69] | Age, sex, family history of diabetes, BMI, triglyceride level, fasting plasma glucose level, systolic blood pressure, high density lipoprotein cholesterol level and genotype score | Include genotype | |
Nichols 2008 [67] | Age, sex, parental history of diabetes, BMI, hypertension or antihypertensive drugs, high density lipoprotein cholesterol level, triglyceride level, fasting plasma glucose level | Validation of the Framingham Offspring Study equations | |
Urdea 2009 [71] | PreDx diabetes risk score | Levels of adiponectin, C reactive protein, ferritin, glucose, hemoglobinA1c, interleukin 2, insulin | Include complex biomarkers |
Mean (SD)/n (%) | |
---|---|
Age (years) | 39.7 ± 10.2 |
Men | 33,532 (56.8) |
Smoking | 20,612 (34.9) |
Body Mass Index (kg/m2) | 26.0 ± 4.6 |
Waist circumference (cm) | 82.7 ± 11.6 |
Systolic blood pressure (mmHg) | 120.3 ± 16.0 |
Diastolic blood pressure (mmHg) | 73.4 ± 10.9 |
Cholesterol (mg/dL) | 194.7 ± 37.7 |
High-density lipoproteins (mg/dL) | 52.6 ± 8.5 |
Low-density lipoproteins (mg/dL) | 121.2 ± 37.1 |
Triglycerides (mg/dL) | 107.6 ± 73.0 |
Fasting plasma glucose (mg/dL) | 86.4 ± 12.0 |
DETECT-2 | DDRS | DESIR | Cambridge | QDScore | FINDRISC | EGATS | Omani Score | IDRS | NUDS | MJLPD | Chinese DRS | Hisayama Study | AUSDRISK | ITD | ARIC | San Antonio | Framingham Offspring | DPoRT | ARIC Enhanced | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DETECT-2 | 1 | 0.754 ** | 0.779 ** | 0.842 ** | 0.762 ** | 0.793 ** | 0.761 ** | 0.680 ** | 0.668 ** | 0.710 ** | 0.780 ** | 0.574 ** | 0.807 ** | 0.862 ** | 0.591 ** | 0.500 ** | 0.579 ** | 0.585 ** | 0.829 ** | 0.616 ** |
DDRS | 0.754 ** | 1 | 0.515 ** | 0.881 ** | 0.926 ** | 0.872 ** | 0.832 ** | 0.881 ** | 0.866 ** | 0.911** | 0.851** | 0.659 ** | 0.831 ** | 0.777 ** | 0.826 ** | 0.595 ** | 0.691 ** | 0.691 ** | 0.894 ** | 0.609 ** |
DESIR | 0.779 ** | 0.515 ** | 1 | 0.634 ** | 0.541 ** | 0.611 ** | 0.629 ** | 0.519 ** | 0.562 ** | 0.522 ** | 0.712 ** | 0.535 ** | 0.711 ** | 0.775 ** | 0.464 ** | 0.412 ** | 0.443 ** | 0.481 ** | 0.598 ** | 0.519 ** |
Cambridge | 0.842 ** | 0.881 ** | 0.634 ** | 1 | 0.898 ** | 0.777 ** | 0.814 ** | 0.754 ** | 0.794 ** | 0.823 ** | 0.848 ** | 0.639 ** | 0.865 ** | 0.838 ** | 0.683 ** | 0.560 ** | 0.705 ** | 0.644 ** | 0.864 ** | 0.560 ** |
QDScore | 0.762 ** | 0.926 ** | 0.541 ** | 0.898 ** | 1 | 0.807 ** | 0.854 ** | 0.854 ** | 0.820 ** | 0.893 ** | 0.846 ** | 0.642 ** | 0.793 ** | 0.736 ** | 0.767 ** | 0.592 ** | 0.694 ** | 0.638 ** | 0.853 ** | 0.582 ** |
FINDRISC | 0.793 ** | 0.872 ** | 0.611 ** | 0.777 ** | 0.807 ** | 1 | 0.846 ** | 0.755 ** | 0.838 ** | 0.837 ** | 0.807 ** | 0.687 ** | 0.800 ** | 0.813 ** | 0.814 ** | 0.604 ** | 0.620 ** | 0.748 ** | 0.859 ** | 0.749 ** |
EGAT study | 0.761 ** | 0.832 ** | 0.629 ** | 0.814 ** | 0.854 ** | 0.846 ** | 1 | 0.733 ** | 0.752 ** | 0.809 ** | 0.866 ** | 0.669 ** | 0.786 ** | 0.801 ** | 0.663 ** | 0.534 ** | 0.600 ** | 0.634 ** | 0.817 ** | 0.609 ** |
Omani score | 0.680 ** | 0.881 ** | 0.519 ** | 0.754 ** | 0.854 ** | 0.755 ** | 0.733 ** | 1 | 0.730 ** | 0.836 ** | 0.743 ** | 0.581 ** | 0.715 ** | 0.613 ** | 0.804 ** | 0.565 ** | 0.604 ** | 0.577 ** | 0.747 ** | 0.554 ** |
IDRS | 0.668 ** | 0.866 ** | 0.562 ** | 0.794 ** | 0.820 ** | 0.838 ** | 0.752 ** | 0.730 ** | 1 | 0.851 ** | 0.806 ** | 0.631 ** | 0.830 ** | 0.761 ** | 0.784 ** | 0.580 ** | 0.651 ** | 0.650 ** | 0.787 ** | 0.645 ** |
NUDS study | 0.710 ** | 0.911 ** | 0.522 ** | 0.823 ** | 0.893 ** | 0.837 ** | 0.809 ** | 0.836 ** | 0.851 ** | 1 | 0.797 ** | 0.627 ** | 0.787 ** | 0.720 ** | 0.755 ** | 0.586 ** | 0.641 ** | 0.640 ** | 0.813 ** | 0.595 ** |
MJLPD study | 0.780 ** | 0.851 ** | 0.712 ** | 0.848 ** | 0.846 ** | 0.807 ** | 0.866 ** | 0.743 ** | 0.806 ** | 0.797 ** | 1 | 0.695 ** | 0.857 ** | 0.887 ** | 0.667 ** | 0.551 ** | 0.667 ** | 0.644 ** | 0.855 ** | 0.594 ** |
Chinese DRS | 0.574 ** | 0.659 ** | 0.535 ** | 0.639 ** | 0.642 ** | 0.687 ** | 0.669 ** | 0.581 ** | 0.631 ** | 0.627 ** | 0.695 ** | 1 | 0.704 ** | 0.680 ** | 0.698 ** | 0.610 ** | 0.679 ** | 0.788 ** | 0.681 ** | 0.650 ** |
Hisayama study | 0.807 ** | 0.831 ** | 0.711 ** | 0.865 ** | 0.793 ** | 0.800 ** | 0.786 ** | 0.715 ** | 0.830 ** | 0.787 ** | 0.857 ** | 0.704 ** | 1 | 0.916 ** | 0.686 ** | 0.537 ** | 0.663 ** | 0.675 ** | 0.811 ** | 0.602 ** |
AUSDRISK | 0.862 ** | 0.777 ** | 0.775 ** | 0.838 ** | 0.736 ** | 0.813 ** | 0.801 ** | 0.613 ** | 0.761 ** | 0.720 ** | 0.887 ** | 0.680 ** | 0.916 ** | 1 | 0.590 ** | 0.505 ** | 0.631 ** | 0.666 ** | 0.846 ** | 0.611 ** |
ITD | 0.591 ** | 0.826 ** | 0.464 ** | 0.683 ** | 0.767 ** | 0.814 ** | 0.663 ** | 0.804 ** | 0.784 ** | 0.755 ** | 0.667 ** | 0.698 ** | 0.686 ** | 0.590 ** | 1 | 0.619 ** | 0.603 ** | 0.760 ** | 0.695 ** | 0.695 ** |
ARIC | 0.500 ** | 0.595 ** | 0.412 ** | 0.560 ** | 0.592 ** | 0.604 ** | 0.534 ** | 0.565 ** | 0.580 ** | 0.586 ** | 0.551 ** | 0.610 ** | 0.537 ** | 0.505 ** | 0.619 ** | 1 | 0.904 ** | 0.623 ** | 0.599 ** | 0.632 ** |
San Antonio | 0.579 ** | 0.691 ** | 0.443 ** | 0.705 ** | 0.694 ** | 0.620 ** | 0.600 ** | 0.604 ** | 0.651 ** | 0.641 ** | 0.667 ** | 0.679 ** | 0.663 ** | 0.631 ** | 0.603 ** | 0.904 ** | 1 | 0.673 ** | 0.725 ** | 0.706 ** |
Framingham offspring | 0.585 ** | 0.691 ** | 0.481 ** | 0.644 ** | 0.638 ** | 0.748 ** | 0.634 ** | 0.577 ** | 0.650 ** | 0.640 ** | 0.644 ** | 0.788 ** | 0.675 ** | 0.666 ** | 0.760 ** | 0.623 ** | 0.673 ** | 1 | 0.676 ** | 0.757 ** |
DPoRT | 0.829 ** | 0.894 ** | 0.598 ** | 0.864 ** | 0.853 ** | 0.859 ** | 0.817 ** | 0.747 ** | 0.787 ** | 0.813 ** | 0.855 ** | 0.681 ** | 0.811 ** | 0.846 ** | 0.695 ** | 0.599 ** | 0.725 ** | 0.676 ** | 1 | 0.644 ** |
ARIC enhanced | 0.616 ** | 0.609 ** | 0.519 ** | 0.560 ** | 0.582 ** | 0.749 ** | 0.609 ** | 0.554 ** | 0.645 ** | 0.595 ** | 0.594 ** | 0.650 ** | 0.602 ** | 0.611 ** | 0.695 ** | 0.632 ** | 0.706 ** | 0.757 ** | 0.644 ** | 1 |
DETECT-2 | DDRS | Cambridge | FINDRISC | EGATS | NUDS | Hisayama | AUSDRISK | ITD | ARIC | |
---|---|---|---|---|---|---|---|---|---|---|
DETECT-2 | NA | 0.501 | 0.564 | 0.654 | 0.497 | 0.277 | 0.432 | 0.531 | 0.222 | 0.518 |
DDRS | 0.501 | NA | 0.638 | 0.518 | 0.473 | 0.293 | 0.327 | 0.395 | 0.271 | 0.298 |
Cambridge | 0.564 | 0.638 | NA | 0.555 | 0.633 | 0.414 | 0.541 | 0.524 | 0.187 | 0.293 |
FINDRISC | 0.654 | 0.518 | 0.555 | NA | 0.664 | 0.399 | 0.480 | 0.645 | 0.193 | 0.358 |
EGATS | 0.497 | 0.473 | 0.633 | 0.664 | NA | 0.562 | 0.624 | 0.713 | 0.121 | 0.249 |
NUDS | 0.277 | 0.293 | 0.414 | 0.399 | 0.562 | NA | 0.540 | 0.444 | 0.067 | 0.123 |
Hisayama | 0.432 | 0.327 | 0.541 | 0.480 | 0.624 | 0.540 | NA | 0.722 | 0.110 | 0.240 |
AUSDRISK | 0.531 | 0.395 | 0.524 | 0.645 | 0.713 | 0.444 | 0.722 | NA | 0.133 | 0.316 |
ITD | 0.222 | 0.271 | 0.187 | 0.193 | 0.121 | 0.067 | 0.110 | 0.133 | NA | 0.281 |
ARIC | 0.518 | 0.298 | 0.293 | 0.358 | 0.249 | 0.123 | 0.240 | 0.316 | 0.281 | NA |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayensa-Vazquez, J.A.; Leiva, A.; Tauler, P.; López-González, A.A.; Aguiló, A.; Tomás-Salvá, M.; Bennasar-Veny, M. Agreement between Type 2 Diabetes Risk Scales in a Caucasian Population: A Systematic Review and Report. J. Clin. Med. 2020, 9, 1546. https://doi.org/10.3390/jcm9051546
Ayensa-Vazquez JA, Leiva A, Tauler P, López-González AA, Aguiló A, Tomás-Salvá M, Bennasar-Veny M. Agreement between Type 2 Diabetes Risk Scales in a Caucasian Population: A Systematic Review and Report. Journal of Clinical Medicine. 2020; 9(5):1546. https://doi.org/10.3390/jcm9051546
Chicago/Turabian StyleAyensa-Vazquez, Jose Angel, Alfonso Leiva, Pedro Tauler, Angel Arturo López-González, Antoni Aguiló, Matías Tomás-Salvá, and Miquel Bennasar-Veny. 2020. "Agreement between Type 2 Diabetes Risk Scales in a Caucasian Population: A Systematic Review and Report" Journal of Clinical Medicine 9, no. 5: 1546. https://doi.org/10.3390/jcm9051546
APA StyleAyensa-Vazquez, J. A., Leiva, A., Tauler, P., López-González, A. A., Aguiló, A., Tomás-Salvá, M., & Bennasar-Veny, M. (2020). Agreement between Type 2 Diabetes Risk Scales in a Caucasian Population: A Systematic Review and Report. Journal of Clinical Medicine, 9(5), 1546. https://doi.org/10.3390/jcm9051546