Assessment of Measurement Reliability for the IPN Test in Cardiac Patients
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Group
- diagnosed chronic cardiovascular diseases (2nd degree according to NYHA—New York Heart Association);
- no health contraindications to perform physical exercise;
- written consent of the subject to participate in the study;
- consent of the doctor supervising the project to participate in the research.
- heart insufficiency, instable angina pectoris, severe vessel diseases, pulmonary embolism, thrombosis of large vessels, cerebral ischemia, liver and kidney disorders, acute inflammation and/or diabetes mellitus.
2.2. Testing Methods
2.3. Testing Procedure
- Heart rate (BMP)—value of heart rate measurement before test;
- Systolic pressure (pre) (mmHg)—value of systolic pressure measurement before test;
- Diastolic pressure (pre) (mmHg)—value of the diastolic pressure measurement before test;
- Heart rate (post) (BMP)—value of heart rate measurement after test;
- Systolic pressure (post) (mmHg)—value of systolic pressure measurement after test;
- Diastolic pressure (post) (mmHg)—value of the diastolic pressure measurement after test;
- Absolute power at submaximal load (Watts);
- Relative performance at submaximal load (Watts/kg);
- Target HR (BMP).
- RECOM. FROM/ RECOM. TO—from 79 to 96, aerobic exercise (regeneration/compensation zone);
- BE1 FROM/ BE1 TO—from 96 to 107, aerobic exercise (basic strength 1);
- BE2 FROM/ BE2 TO—from 107 to 119, aerobic exercise (basic endurance 2);
- DA FROM/ DA TO—from 119 to 130, aerobic exercise (area of rehabilitation);
- CS—heart rate > 137—anaerobic exercise (area of competition).
2.4. Statistical Analysis
3. Results
3.1. IPN Test between-Trial-Reliability
3.2. IPN Test between-Day Reliability
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fernhall, B. Long-term aerobic exercise maintains peak VO2, improves quality of life, and reduces hospitalisations and mortality in patients with heart failure. J. Physiother. 2013, 59, 56. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, C.M.; Whellan, D.J.; Lee, K.L.; Keteyian, S.J.; Cooper, L.S.; Ellis, S.J.; Leifer, E.S.; Kraus, W.E.; Kitzman, D.W.; Blumenthal, J.A.; et al. Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA 2009, 301, 1439–1450. [Google Scholar] [CrossRef]
- Piepoli, M.F.; Corrà, U.; Benzer, W.; Bjarnason-Wehrens, B.; Dendale, P.; Gaita, D.; McGee, H.; Mendes, M.; Niebauer, J.; Zwisler, A.D.; et al. Secondary prevention through cardiac rehabilitation: From knowledge to implementation. A position paper from the Cardiac Rehabilitation Section of the European Association of Cardiovascular Prevention and Rehabilitation. Eur. J. Cardiovasc. Prev. Rehabil. 2010, 17, 1–17. [Google Scholar] [CrossRef]
- Anderson, L.; Thompson, D.R.; Oldridge, N.; Zwisler, A.D.; Rees, K.; Martin, N.; Taylor, R.S. Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Database Syst. Rev. 2016, 5. [Google Scholar] [CrossRef] [Green Version]
- Marchionni, N.; Fattirolli, F.; Fumagalli, S.; Oldridge, N.; Del Lungo, F.; Morosi, L.; Burgisser, C.; Masotti, G. Improved exercise tolerance and quality of life with cardiac rehabilitation of older patients after myocardial infarction: Results of a randomized, controlled trial. Circulation 2003, 107, 2201–2206. [Google Scholar] [CrossRef] [Green Version]
- Oerkild, B.; Frederiksen, M.; Hansen, J.F.; Prescott, E. Homebased cardiac rehabilitation is an attractive alternative to no cardiac rehabilitation for elderly patients with coronary heart disease: Results from a randomised clinical trial. BMJ Open 2012, 2, e001820. [Google Scholar] [CrossRef] [Green Version]
- Anderson, L.; Sharp, G.A.; Norton, R.J.; Dalal, H.; Dean, S.G.; Jolly, K.; Cowie, A.; Zawada, A.; Taylor, R.S. Home-based versus centre-based cardiac rehabilitation. Cochrane Database Syst. Rev. 2017, 6. [Google Scholar] [CrossRef]
- Fletcher, G.F.; Balady, G.J.; Amsterdam, E.A.; Chaitman, B.; Eckel, R.; Fleg, J.; Froelicher, V.F.; Leon, A.S.; Piña, I.L.; Rodney, R.; et al. Exercise standards for testing and training: A statement for healthcare professionals from the American Heart Association. Circulation 2001, 104, 1694–1740. [Google Scholar] [CrossRef] [Green Version]
- Mezzani, A.; Corrà, U.; Giordano, A.; Cafagna, M.; Adriano, E.P.; Giannuzzi, P. Unreliability of the %VO2 reserve versus % heart rate reserve relationship for aerobic effort relative intensity assessment in chronic heart failure patients on or off beta-blocking therapy. Eur. J. Cardiovasc. Prev. Rehabil. 2007, 14, 92–98. [Google Scholar] [CrossRef]
- Alpert, J.S. A Water-Based Exercise Program for patients with coronary artery disease. Cardiology 2008, 111, 254–256. [Google Scholar] [CrossRef]
- Trunz, E. Der IPN-ausdauertest nach lagerstrøm-eine zusammenfassende darstellung als anleitung für den praxiseinsatz. Trainer 1997, 5, 22–27. [Google Scholar]
- Bruce, R.A.; Kusumi, F.; Hosmer, D. Maximal oxygen intake and nomographic assessment of functional aerobic impairment in cardiovascular disease. Am. Heart J. 1973, 85, 546–562. [Google Scholar] [CrossRef]
- Bruce, R.A. Exercise testing of patients with coronary heart disease. Principles and normal standards for evaluation. Ann. Clin. Res. 1971, 3, 323–332. [Google Scholar]
- Lagerstrøm, D.; Trunz, E. IPN-Ausdauertest. Gesundh. Sport Ther. 1997, 3, 68–71. [Google Scholar]
- Trunz, E.; Lagerstrøm, D.; Giesen, H.; Ochs, S. Der IPN-test teil 2. Bodylife 2000, 3, 54–59. [Google Scholar]
- Herbort, H. Überprüfung und Anwendung der Lagerstrøm-Formel zur Bestimmung der Trainingsherzfrequenz in Unterschiedlichen Test.-Situationen auf dem Fahrrad-Ergometer; Deutsche Sporthochschule: Cologne, Germany, 1996. [Google Scholar]
- Trunz, E.; Giesen, H.; Ochs, S. Der IPN-test teil 1. Bodylife 1999, 12, 60–64. [Google Scholar]
- Zeni, A.I.; Hoffman, M.D.; Clifford, P.S. Energy expenditure with indoor exercise Machines. JAMA 1996, 275, 1424–1427. [Google Scholar] [CrossRef]
- Seuser, A.; Boehm, P.; Ochs, S.; Trunz-Carlisi, E.; Halimeh, S.; Klamroth, R. How fit are children and adolescents with haemophilia in Germany? Results of a prospective study assessing the sport-specific motor performance by means of modern test procedures of sports science. Haemophilia 2015, 21, 523–529. [Google Scholar] [CrossRef]
- Balady, G.J.; Arena, R.; Sietsema, K.; Myers, J.; Coke, L.; Fletcher, G.F.; Forman, D.; Franklin, B.; Guazzi, M.; Gulati, M.; et al. Clinician’s Guide to cardiopulmonary exercise testing in adults: A scientific statement from the American Heart Association. Circulation 2010, 122, 191–225. [Google Scholar] [CrossRef] [Green Version]
- Keteyian, S.J.; Isaac, D.; Thadani, U.; Roy, B.A.; Bensimhon, D.R.; McKelvie, R.; Russell, S.D.; Hellkamp, A.S.; Kraus, W.E. HF-ACTION Investigators. Safety of symptom-limited cardiopulmonary exercise testing in patients with chronic heart failure due to severe left ventricular systolic dysfunction. Am. Heart J. 2009, 158, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Shrout, P.E.; Fleiss, J.L. Intraclass correlations: Uses in assessing rater reliability. Psychol. Bull. 1979, 86, 420–428. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Roger, V.L.; Jacobsen, S.J.; Pellikka, P.A.; Miller, T.D.; Bailey, K.R.; Gersh, B.J. Prognostic value of treadmill exercise testing. A population-based study in Olmsted County, Minnesota. Circulation 1998, 98, 2836–2841. [Google Scholar] [CrossRef] [Green Version]
- Snader, C.E.; Marwick, T.H.; Pashkow, F.J.; Harvey, S.A.; Thomas, J.D.; Lauer, M.S. Importance of estimated functional capacity as a predictor of all-cause mortality among patients referred for exercise thallium single-photon emission computed tomography: Report of 3400 patients from a single center. J. Am. Coll. Cardiol. 1997, 30, 641–648. [Google Scholar] [CrossRef]
- Noonan, V.; Dean, E. Submaximal exercise testing: Clinical application and interpretation. Phys. Ther. 2000, 80, 782–807. [Google Scholar] [CrossRef]
- Hagberg, J.M. Exercise assessment of arthritic and elderly individuals. Baillieres Clin. Rheumatol. 1994, 8, 29–52. [Google Scholar] [CrossRef]
- Marciniuk, D.D.; Gallagher, C.G. Clinical exercise testing in interstitial lung disease. Clin. Chest. Med. 1994, 15, 287–303. [Google Scholar]
- Questead, K.A.; Alquist, A. Exercise assessment in clinical practice. Phys. Med. Rehabil. Clin. N. Am. 1994, 5, 243–253. [Google Scholar] [CrossRef]
- Kervio, G.; Carre, F.; Ville, N.S. Reliability and intensity of the six-minute walk test in healthy elderly subjects. Med. Sci. Sports Exerc. 2003, 35, 169–174. [Google Scholar] [CrossRef]
- Astrand, P.O.; Ryhming, I. A nomogram for calculation of aerobic capacity (physical fitness) from pulse rate during submaximal work. J. Appl. Physiol. 1954, 7, 218–221. [Google Scholar] [CrossRef]
- Astrand, I. Aerobic capacity in men and women with special reference to age. ACTA Physiol. Scand. Suppl. 1960, 49, 1–92. [Google Scholar] [PubMed]
- Hartung, G.H.; Blancq, R.J.; Lally, D.A.; Krock, L.P. Estimation of aerobic capacity from submaximal cycle ergometry in women. Med. Sci. Sports Exerc. 1995, 27, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Teraslinna, P.; Ismail, A.H.; MacLeod, D.F. Nomogram by Astrand and Ryhming as a predictor of maximum oxygen intake. J. Appl. Physiol. 1966, 21, 513–515. [Google Scholar] [CrossRef] [PubMed]
- Ebbeling, C.B.; Ward, A.; Puleo, E.M.; Widrick, J.; Rippe, J.M. Development of a single-stage submaximal walking test. Med. Sci. Sports Exerc. 1991, 23, 966–973. [Google Scholar] [CrossRef]
- Satonaka, A.; Suzuki, N.; Kawamura, M. Validity of submaximal exercise testing in adults with athetospastic cerebral palsy. Arch. Phys. Med. Rehabil. 2012, 93, 485–489. [Google Scholar] [CrossRef] [PubMed]
Parameter | Women (n = 13) Mean ± SD | Men (n = 11) Mean ± SD |
---|---|---|
Age (years) | 63.15 ± 8.62 | 66.73 ± 5.66 |
Body mass (kg) | 76.00 ± 11.84 | 86.00 ± 16.43 |
Parameter | ICC | r (First (1) and Second (2) Measurement) | Mean 1 | SD 1 | CV(%) 1 | Mean 2 | SD 2 | CV(%) 2 |
---|---|---|---|---|---|---|---|---|
Heart rate (BMP) | 0.883 | 0.791 | 72.17 | 11.94 | 16.55 | 72.83 | 12.00 | 16.48 |
Systolic pressure (pre) (mmHg) | 0.894 | 0.814 | 133.96 | 17.52 | 13.08 | 132.96 | 15.45 | 11.62 |
Diastolic pressure (pre) (mmHg) | 0.864 | 0.763 | 81.96 | 11.52 | 14.05 | 81.42 | 10.57 | 12.99 |
RECOM from (BMP) | 0.966 | 0.854 | 84.94 | 3.70 | 7.29 | 84.24 | 4.40 | 8.12 |
RECOM to (BMP) | 0.963 | 0.843 | 103.24 | 4.40 | 7.19 | 102.24 | 5.13 | 7.98 |
BE1 from (BMP) | 0.963 | 0.843 | 103.24 | 4.40 | 7.19 | 102.24 | 5.13 | 7.98 |
BE1 to (BMP) | 0.968 | 0.856 | 115.35 | 5.26 | 7.39 | 114.24 | 6.08 | 8.20 |
BE2 from (BMP) | 0.832 | 0.545 | 115.35 | 5.26 | 7.39 | 117.18 | 10.25 | 9.72 |
BE2 to (BMP) | 0.963 | 0.848 | 127.35 | 5.26 | 7.13 | 126.35 | 6.29 | 7.93 |
DA from (BMP) | 0.963 | 0.848 | 127.35 | 5.26 | 7.13 | 126.35 | 6.29 | 7.93 |
DA to (BMP) | 0.967 | 0.858 | 139.47 | 6.14 | 7.30 | 138.35 | 7.25 | 8.12 |
CS (BMP) | 0.967 | 0.858 | 139.47 | 6.14 | 7.30 | 138.35 | 7.25 | 8.12 |
Heart rate (post) (BMP) | 0.969 | 0.942 | 74.42 | 12.96 | 17.42 | 76.79 | 13.82 | 18.00 |
Systolic pressure (post) (mmHg) | 0.839 | 0.722 | 133.17 | 15.96 | 11.99 | 138.50 | 16.13 | 11.64 |
Diastolic pressure (post) (mmHg) | 0.904 | 0.827 | 81.83 | 10.35 | 12.65 | 83.38 | 11.17 | 13.40 |
Absolute power at submaximal load (Watt) | 0.970 | 0.955 | 108.20 | 24.33 | 22.48 | 104.87 | 25.57 | 24.38 |
Relative performance at submaximal load (Watt/kg) | 0.950 | 0.920 | 1.35 | 0.21 | 15.25 | 1.31 | 0.24 | 18.76 |
Target HR (BMP) | 0.990 | 0.994 | 124.58 | 9.99 | 8.01 | 124.79 | 9.83 | 7.87 |
Parameter | ICC | r (First (1) and Third (3) Measurement) | Mean 1 | SD 1 | CV(%) 1 | Mean 3 | SD 3 | CV(%) 3 |
---|---|---|---|---|---|---|---|---|
Heart rate (BPM) | 0.777 | 0.638 | 72.17 | 11.94 | 16.55 | 74.13 | 11.02 | 14.86 |
Systolic pressure (pre) (mmHg) | 0.860 | 0.731 | 133.96 | 17.52 | 13.08 | 132.38 | 13.65 | 10.31 |
Diastolic pressure (pre) (mmHg) | 0.869 | 0.787 | 81.96 | 11.52 | 14.05 | 80.71 | 9.90 | 12.26 |
RECOM from (BPM) | 0.885 | 0.804 | 84.94 | 3.70 | 7.29 | 84.53 | 4.36 | 5.09 |
RECOM to (BPM) | 0.895 | 0.821 | 103.24 | 4.40 | 7.19 | 102.71 | 5.18 | 4.94 |
BE1 from (BPM) | 0.895 | 0.821 | 103.24 | 4.40 | 7.19 | 102.71 | 5.18 | 4.94 |
BE1 to (BPM) | 0.894 | 0.817 | 115.35 | 5.26 | 7.39 | 114.71 | 6.08 | 5.21 |
BE2 from (BPM) | 0.894 | 0.817 | 115.35 | 5.26 | 7.39 | 114.71 | 6.08 | 5.21 |
BE2 to (BPM) | 0.888 | 0.812 | 127.35 | 5.26 | 7.13 | 126.82 | 6.29 | 4.86 |
DA from (BPM) | 0.888 | 0.812 | 127.35 | 5.26 | 7.13 | 126.82 | 6.29 | 4.86 |
DA to (BPM) | 0.887 | 0.807 | 139.47 | 6.14 | 7.30 | 138.82 | 7.19 | 5.09 |
CS (BPM) | 0.887 | 0.807 | 139.47 | 6.14 | 7.30 | 138.82 | 7.19 | 5.09 |
Heart rate (post) (BPM) | 0.922 | 0.856 | 74.42 | 12.96 | 17.42 | 77.75 | 12.83 | 16.50 |
Systolic pressure (post) (mmHg) | 0.925 | 0.861 | 133.17 | 15.96 | 11.99 | 135.67 | 16.87 | 12.44 |
Diastolic pressure (post) (mmHg) | 0.950 | 0.679 | 81.83 | 10.35 | 12.65 | 81.58 | 9.89 | 12.12 |
Absolute power at submaximal load (Watt) | 0.960 | 0.930 | 108.20 | 24.33 | 22.48 | 105.12 | 25.99 | 24.72 |
Relative performance at submaximal load (Watt/kg) | 0.900 | 0.824 | 1.35 | 0.21 | 16.25 | 1.30 | 0.22 | 17,08 |
Target HR (BMP) | 0.990 | 0.994 | 124.58 | 9.99 | 8.01 | 124.79 | 9.83 | 7.87 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oleksy, Ł.; Skiba, A.; Sulowska, I.; Trębowicz, M.; Rukasz, B.; Stolarczyk, A.; Zyznawska, J.; Mika, A. Assessment of Measurement Reliability for the IPN Test in Cardiac Patients. J. Clin. Med. 2020, 9, 1552. https://doi.org/10.3390/jcm9051552
Oleksy Ł, Skiba A, Sulowska I, Trębowicz M, Rukasz B, Stolarczyk A, Zyznawska J, Mika A. Assessment of Measurement Reliability for the IPN Test in Cardiac Patients. Journal of Clinical Medicine. 2020; 9(5):1552. https://doi.org/10.3390/jcm9051552
Chicago/Turabian StyleOleksy, Łukasz, Agnieszka Skiba, Iwona Sulowska, Marcin Trębowicz, Bartosz Rukasz, Artur Stolarczyk, Joanna Zyznawska, and Anna Mika. 2020. "Assessment of Measurement Reliability for the IPN Test in Cardiac Patients" Journal of Clinical Medicine 9, no. 5: 1552. https://doi.org/10.3390/jcm9051552
APA StyleOleksy, Ł., Skiba, A., Sulowska, I., Trębowicz, M., Rukasz, B., Stolarczyk, A., Zyznawska, J., & Mika, A. (2020). Assessment of Measurement Reliability for the IPN Test in Cardiac Patients. Journal of Clinical Medicine, 9(5), 1552. https://doi.org/10.3390/jcm9051552