Transient and Persistent Gastric Microbiome: Adherence of Bacteria in Gastric Cancer and Dyspeptic Patient Biopsies after Washing
Abstract
:1. Introduction
1.1. Helicobacter Pylori Colonization of the Stomach
1.2. Previous Studies of the Gastric Microbiota
1.3. H. pylori and the Non-Helicobacter Microbial Community
1.4. Microbial Effects on the Development of Gastric Cancer
1.5. Definition of Persistent and Transient Microbiota and Microbiome
2. Experimental Section/Materials and Methods
2.1. Sampling of Gastric Biopsies
2.2. Culture of Gastric Biopsies and Identification of Single Colonies
2.3. Microbiome Analysis (16S rRNA Gene Amplicon Sequencing)
2.3.1. Library Preparation
2.3.2. Bioinformatics
2.3.3. Statistics of Microbiome Analysis Results
3. Results
3.1. Comparison of Bacterial Composition in Unwashed Biopsies and Washed Biopsies
3.1.1. A Decrease in Cultured Bacteria was Observed for the Washed Biopsies
3.1.2. Microbiome Analysis
3.2. Comparison of Biopsies from Gastric Cancer Patients and Dyspepsia Patients
3.2.1. Cultured Bacteria were Dominated by Streptococcus spp.
3.2.2. Microbiome Analysis Revealed Similar Distributions of Bacteria in Dyspepsia Patients and Gastric Cancer Patients
3.3. Presence of H. pylori
4. Discussion
4.1. Washed Biopsies vs. Unwashed Biopsies
4.2. Gastric Cancer Patients vs. Dyspepsia Patients
4.3. Presence of H. pylori in the Biopsies
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dewhirst, F.E.; Fox, J.G.; On, S.L.W. Recommended minimal standards for Helicobacter. Int. J. Syst. Evol. Microbiol. 2000, 50, 2231–2237. [Google Scholar] [CrossRef]
- Bik, E.M.; Eckburg, P.B.; Gill, S.R.; Nelson, K.E.; Purdom, E.A.; Francois, F.; Peres-Perez, G.; Blaser, M.J.; Relman, D.A. Molecular analysis of the bacterial microbiota in the human stomach. Proc. Natl. Acad. Sci. USA 2006, 103, 732–737. [Google Scholar] [CrossRef] [Green Version]
- Nardone, G.; Compare, D. The human gastric microbiota: Is it time to rethink the pathogenesis of stomach diseases? United Eur. Gastroenterol. J. 2015, 3, 255–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llorca, L.; Perez-Perez, G.; Urruzuno, P.; Martinez, M.J.; Iizumi, T.; Gao, Z.; Sohn, J.; Chung, J.; Cox, L.; Simón-Soro, A.; et al. Characterization of the Gastric Microbiota in a Pediatric Population According to Helicobacter Pylori Status. Pediatri. Infect. Dis. J. 2017, 36, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Jonaitis, L.; Pellicano, R.; Kupcinskas, L. Helicobacter pylori and nonmalignant upper gastrointestinal diseases. Helicobacter 2018, 23 (Suppl. 1), e12522. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Pérez, G.I.; Sack, R.B.; Reid, R.; Reid, R.; Santosham, M.; Croll, J.; Blaser, M.J. Transient and Persistent Helicobacter pylori Colonization in Native American Children. J. Clin. Microbiol. 2003, 41, 2401–2407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Perez, G.I.P. Is There a Role for the Non-Helicobacter pylori Bacteria in the Risk of Developing Gastric Cancer ? Int. J. Mol. Sci. 2018, 19, 1353. [Google Scholar] [CrossRef] [Green Version]
- Cover, T.L.; Blaser, M.J. Helicobacter pylori in health and disease. Gastroenterology 2009, 136, 1863–1873. [Google Scholar] [CrossRef] [Green Version]
- Smet, A.; Flahou, B.; Mukhopadhya, I.; Ducatelle, R.; Pasmans, F.; Haseobrouck, F.; Hold, G.L. The Other Helicobacters. Helicobacter 2011, 16, 70–75. [Google Scholar] [CrossRef]
- Solnick, J.V.; Schauer, D.B. Emergence of Diverse Helicobacter Species in the Pathogenesis of Gastric and Enterohepatic Diseases. Clin. Microbiol. Rev. 2001, 14, 59–97. [Google Scholar] [CrossRef] [Green Version]
- O’Hara, A.M.; Shanahan, F. The gut flora as a forgotten organ. EMBO Rep. 2006, 7, 688–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ianiro, G.; Molina-Infante, J.; Gasbarrini, A. Gastric Microbiota. Helicobacter 2015, 20, 68–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engstrand, L.; Lindberg, M. Helicobacter pylori and the gastric microbiota. Best Pract. Res. Clin. Gastroenterol. 2013, 27, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Li, X.X.; Wong, G.L.H.; To, K.F.; Wong, V.W.S.; Lai, L.H.; Chow, D.K.; Lau, J.Y.W.; Sung, J.J.Y.; Ding, C. Bacterial microbiota profiling in gastritis without Helicobacter pylori infection or non-steroidal anti-inflammatory drug use. PLoS ONE 2009, 4, e7985. [Google Scholar] [CrossRef]
- Sanduleanu, S.; Jonkers, D.; Bruine ADe Hameeteman, W.; Stockbrügger, R.W. Non-Helicobacter pylori bacterial flora during acid-suppressive therapy: Differential findings in gastric juice and gastric mucosa. Aliment. Pharmacol. Ther. 2001, 15, 379–388. [Google Scholar] [CrossRef]
- Rajilic-Stojanovic, M.; Figueiredo, C.; Smet, A.; Hansen, R.; Kupcinskas, J.; Rokkas, T.; Andersen, L.; Machado, J.; Ianiro, G.; Gasbarrini, A.; et al. Systematic review: Gastric microbiota in health and disease. Aliment. Pharmacol. Ther. 2020, 51, 582–602. [Google Scholar] [CrossRef]
- Schulz, C.; Schütte, K.; Malfertheiner, P. Helicobacter pylori and Other Gastric Microbiota in Gastroduodenal Pathologies. Dig. Dis. 2016, 34, 210–216. [Google Scholar] [CrossRef]
- Zilberstein, B.; Quintanilha, A.G.; Santos, M.A.A.; Pajecki, D.; Moura, E.G.; Alves, P.R.A.; Filho, F.M.; Souza, J.A.U.; Gama-Rodriguez, J. Digestive tract microbiota in healthy volunteers. Clinics 2007, 62, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Delgado, S.; Cabrera-Rubio, R.; Mira, A.; Suarez, A.; Mayo, B. Microbiological Survey of the Human Gastric Ecosystem Using Culturing and Pyrosequencing Methods. Microb. Ecol. 2013, 65, 763–772. [Google Scholar] [CrossRef]
- Dicksved, J.; Lindberg, M.; Rosenquist, M.; Enroth, H.; Jansson, J.K.; Engstrand, L. Molecular characterization of the stomach microbiota in patients with gastric cancer and in controls. J. Med. Microbiol. 2009, 58, 509–516. [Google Scholar] [CrossRef]
- Maldonado-Contreras, A.; Goldfarb, K.C.; Godoy-Vitorino, F.; Karaoz, U.; Contreras, M.; Blaser, M.J.; Brodie, E.L.; Dominguez-Bello, M.G. Structure of the human gastric bacterial community in relation to Helicobacter pylori status. ISME J. 2011, 5, 574–579. [Google Scholar] [CrossRef]
- Yu, G.; Torres, J.; Hu, N.; Medrano-Guzman, R.; Herrera-Goepfert, R.; Humphrys, M.S.; Wang, L.; Wang, C.; Ding, T.; Ravel, J.; et al. Molecular Characterization of the Human Stomach Microbiota in Gastric Cancer Patients. Front. Cell. Infect. Microbiol. 2017. [CrossRef] [PubMed]
- Andersson, A.F.; Lindberg, M.; Jakobsson, H.; Bäckhed, F.; Nyrén, P.; Engstrand, L. Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS ONE 2008, 3. [Google Scholar] [CrossRef]
- Monstein, È.R.G.; Tiveljung, A.; Kraft, C.H.; Borch, K.Ã.; Jonasson, J. Profiling of bacterial flora in gastric biopsies from patients with Helicobacter pylori-associated gastritis and histologically normal control individuals by temperature gradient gel electrophoresis and 16S rDNA sequence analysis. J. Med. Microbiol. 2000, 49, 817–822. [Google Scholar] [CrossRef] [Green Version]
- Lofgren, J.L.; Whary, M.T.; Ge, Z.; Muthupalani, S.; Taylor, N.S.; Mobley, M.; Potter, A.; Varro, A.; Eiback, D.; Suerbaum, S.; et al. Lack of Commensal Flora in Helicobacter pylori—Infected INS-GAS Mice Reduces Gastritis and Delays Intraepithelial Neoplasia. Gastroenterology 2011, 140, 210–220. [Google Scholar] [CrossRef] [Green Version]
- Abreu, M.T.; Peek, R.M. Gastrointestinal Malignancy and the Microbiome. Gastroenterology 2014, 146, 1534–1546. [Google Scholar] [CrossRef] [Green Version]
- Amieva, M.; Peek, R.M. Pathobiology of Helicobacter pylori-induced Gastric Cancer. Gastroenterology 2016, 150, 64–78. [Google Scholar] [CrossRef] [Green Version]
- Blaser, M.J.; Atherton, J.C. Helicobacter pylori persistence: Biology and disease. J. Clin. Investig. 2004, 113, 321–333. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, R.M.; Pereira-Marques, J.; Pinto-Ribeiro, I.; Costa, J.L.; Carneiro, F.; Machado, J.C.; Figueiredo, C. Gastric microbial community profiling reveals a dysbiotic cancer-associted microbiota. Gut 2018, 67, 226–236. [Google Scholar] [CrossRef] [Green Version]
- Marchesi, J.R.; Ravel, J. The vocabulary of microbiome research: A proposal. Microbiome 2015, 3, 31. [Google Scholar] [CrossRef] [Green Version]
- Mcdonald, J.E.; Larsen, N.; Pennington, A.; Connoly, J.; Wallis, C.; Rooks, D.J.; Hall, N.; McCarthy, A.J.; Allosin, H.E. Characterising the Canine Oral Microbiome by Direct Sequencing of Reverse-Transcribed rRNA Molecules. PLoS ONE 2016, 11, e0157046. [Google Scholar] [CrossRef] [PubMed]
- Ring, H.C.; Thorsen, J.; Saunte, D.M.; Lilje, B.; Bay, L.; Riis, P.T.; Larsen, N.; Andersen, L.O.; Nielsen, H.V.; Miller, I.M.; et al. The Follicular Skin Microbiome in Patients With Hidradenitis Suppurativa and Healthy Controls. JAMA Dermatol. 2017, 153, 897–905. [Google Scholar] [CrossRef] [PubMed]
Diagnosis | Mean Age (years) | Gender | H. pylori Status (Histology) | Lauren Classification | G Stage | Proximal/Distal Part |
---|---|---|---|---|---|---|
Gastric adenocarcinoma (n = 12) | 62.2 | Female (n = 5) | Negative (n = 9) | Diffuse (n = 6) | 2 (n = 5) | Proximal (n = 3) |
Male (n = 7) | Positive (n = 3) | Intestinal (n = 4) | 3 (n = 7) | Distal (n = 9) | ||
Mixed (n = 2) | ||||||
Dyspepsia (n = 22) | 48.1 | Female (n = 18) | Negative (n = 11) | NA | NA | NA |
Male (n = 4) | Positive (n = 11) |
Growth Result | Dyspepsia Patients | Gastric Cancer Patients |
---|---|---|
No bacterial growth in either biopsy | 8 biopsy pairs | 3 biopsy pairs |
Growth in unwashed but not in washed biopsy | 4 biopsy pairs | 5 biopsy pairs |
Reduced growth in the washed biopsy | 9 biopsy pairs | 9 biopsy pairs |
Unchanged growth | 1 biopsy pairs | 4 biopsy pairs |
Increased growth in the washed biopsy | 0 biopsy pairs | 3 biopsy pairs |
Dyspepsia | Gastric Cancer | |||
---|---|---|---|---|
Unwashed | Washed | Unwashed | Washed | |
Streptococcus spp. | 40% | 43% | 47% | 49% |
Rothia spp. | 16% | 14% | 15% | 14% |
Actinomyces spp. | 16% | 9% | 9% | 6% |
Staphylococcus spp. | 8% | 6% | 4% | 6% |
Granulicatella spp. | 7% | 6% | 6% | 4% |
Lactobacillus spp. | 4% | 3% | 7% | 8% |
Gemella spp. | 2% | 9% | 5% | 3% |
Enterococcus spp. | 1% | 3% | 6% | 8% |
Micrococcus spp. | 2% | 3% | 2% | 0% |
Corynebacterium spp. | 2% | 3% | - | - |
Stenotrophomonas spp. | 1% | 0% | - | - |
Neisseria spp. | 1% | 0% | - | - |
Enterobacter spp. | 0% | 3% | - | - |
Bacillus spp. | - | - | 1% | 0% |
Haemophilus spp. | - | - | 0% | 3% |
Dyspepsia Biopsiy Pairs (n = 22) | Gastric Cancer Biopsy Pairs (n = 24) | |||
---|---|---|---|---|
Unwashed (% ± SEM) | Washed (% ± SEM) | Unwashed (% ± SEM) | Washed (% ± SEM) | |
Helicobacter spp. | 28.3 ± 7.9 | 31.2 ± 8.4 | 11.8 ± 4.4 | 12.7 ± 5.0 |
Streptococcus spp. | 12.6 ± 1.8 | 9.6 ± 1.8 | 21.3 ± 4.3 | 20.1 ± 4.3 |
Prevotella spp. | 13.9 ± 2.7 | 11.0 ± 2.5 | 6.4 ± 1.1 | 6.1 ± 1.3 |
Escherichia spp. | 7.0 ± 2.9 | 10.4 ± 3.8 | 9.5 ± 3.6 | 11.9 ± 3.6 |
Veillonella spp. | 5.3 ± 0.9 | 3.4 ± 0.9 | 3.5 ± 1.0 | 3.7 ± 0.7 |
Fusobacterium spp. | 4.8 ± 1.0 | 4.3 ± 1.5 | 4.2 ± 1.4 | 3.7 ± 1.2 |
Haemophilus spp. | 4.6 ± 1.3 | 3.2 ± 0.9 | 2.4 ± 0.5 | 2.0 ± 0.5 |
Rothia spp. | 3.5 ± 0.8 | 1.9 ± 0.6 | 2.2 ± 0.4 | 2.0 ± 0.7 |
Neisseria spp. | 2.2 ± 0.7 | 1.5 ± 0.6 | 6.5 ± 2.7 | 6.8 ± 2.5 |
Alloprevotella spp. | 1.5 ± 0.5 | 1.4 ± 0.4 | 1.7 ± 0.7 | 1.8 ± 0.7 |
Other bacteria | 17.4 ± 2.7 | 17.0 ± 3.1 | 30.57 ± 5.8 | 29.3 ± 5.2 |
Dyspepsia Biopsy Pairs (n = 22) | Gastric Cancer Biopsy Pairs (n = 24) | |||
---|---|---|---|---|
Unwashed (% ± SEM) | Washed (% ± SEM) | Unwashed (% ± SEM) | Washed (% ± SEM) | |
Abiotrophia spp. | 0.013 ± 0.007 | 0.007 ± 0.009 | 0.104 ± 0.055 | 0.128 ± 0.047 |
Aggregatibacter spp. | 0.139 ± 0.043 | 0.134 ± 0.044 | 0.103 ± 0.038 | 0.187 ± 0.086 |
Atopobium spp. | 0.359 ± 0.113 | 0.31 ± 0.128 | 0.328 ± 0.064 | 0.335 ± 0.086 |
Campylobacter spp. | 0.507 ± 0.141 | 0.452 ± 0.104 | 0.423 ± 0.121 | 0.314 ± 0.116 |
Capnocytophaga spp. | 0.455 ± 0.19 | 0.308 ± 0.123 | 0.329 ± 0.087 | 0.274 ± 0.079 |
Catonella spp. | 0.311 ± 0.098 | 0.212 ± 0.056 | 0.093 ± 0.027 | 0.119 ± 0.061 |
Corynebacterium spp. | 0.214 ± 0.112 | 0.257 ± 0.175 | 0.047 ± 0.017 | 0.08 ± 0.033 |
Dialister spp. | 0.304 ± 0.089 | 0.199 ± 0.083 | 0.31 ± 0.132 | 0.242 ± 0.101 |
Eubacterium spp. | 0.123 ± 0.03 | 0.181 ± 0.059 | 0.186 ± 0.07 | 0.277 ± 0.147 |
Filifactor spp. | 0.172 ± 0.076 | 0.262 ± 0.139 | 0.043 ± 0.012 | 0.08 ± 0.044 |
Flavobcaterium spp. | 1.235 ± 0.975 | 1.27 ± 0.927 | 0.164 ± 0.063 | 0.575 ± 0.375 |
Gemella spp. | 0.827 ± 0.228 | 0.82 ± 0.313 | 0.861 ± 0.211 | 1.446 ± 0.433 |
Granulicatella spp. | 1.046 ± 0.219 | 1.093 ± 0.206 | 1.333 ± 0.405 | 1.603 ± 0.431 |
Lachnoanaerobaculum spp. | 0.296 ± 0.066 | 0.271 ± 0.106 | 0.457 ± 0.156 | 0.435 ± 0.137 |
Lactobacillus spp. | 0.013 ± 0.007 | 0.012 ± 0.006 | 1.925 ± 1.245 | 10.5 ± 8.878 |
Leptotrichia spp. | 0.459 ± 0.196 | 0.967 ± 0.516 | 0.728 ± 0.362 | 0.42 ± 0.177 |
Megasphaera spp. | 0.554 ± 0.188 | 0.448 ± 0.143 | 0.219 ± 0.062 | 0.196 ± 0.059 |
Oribacterium spp. | 0.432 ± 0.09 | 0.336 ± 0.11 | 0.329 ± 0.113 | 0.632 ± 0.327 |
Parvimonas spp. | 0.229 ± 0.076 | 0.31 ± 0.188 | 1.478 ± 0.833 | 2.508 ± 1.555 |
Peptostreptococcus spp. | 0.135 ± 0.045 | 0.13 ± 0.066 | 2.517 ± 1.448 | 3.319 ± 1.892 |
Porphyromonas spp. | 1.765 ± 0.52 | 1.607 ± 0.653 | 0.666 ± 0.198 | 1.241 ± 0.566 |
Propionibacterium spp. | 0.058 ± 0.031 | 0.082 ± 0.026 | 0.141 ± 0.056 | 0.256 ± 0.107 |
Selenomonas spp. | 0.167 ± 0.059 | 0.231 ± 0.082 | 0.087 ± 0.022 | 0.088 ± 0.031 |
Solobacterium spp. | 0.281 ± 0.062 | 0.282 ± 0.103 | 0.674 ± 0.29 | 0.603 ± 0.217 |
Staphylococcus spp. | 0.403 ± 0.168 | 0.627 ± 0.153 | 0.292 ± 0.077 | 0.728 ± 0.351 |
Stenotrophomonas spp. | 0.679 ± 0.54 | 1.128 ± 0.769 | 0.156 ± 0.052 | 0.495 ± 0.325 |
Stomatobaculum spp. | 0.328 ± 0.12 | 0.365 ± 0.115 | 0.561 ± 0.332 | 0.775 ± 0.483 |
Treponema spp. | 0.211 ± 0.076 | 0.391 ± 0.218 | 0.067 ± 0.031 | 0.056 ± 0.019 |
Antrum Area (% ± SEM) | Cancer Area (% ± SEM) | |
---|---|---|
Helicobacter spp. | 14.5 ± 7.3 | 9.1 ± 4.9 |
Streptococcus spp. | 17.6 ± 5.1 | 25.1 ± 6.9 |
Prevotella spp. | 7.4 ± 1.6 | 5.3 ± 1.5 |
Escherichia spp. | 6.1 ± 2.7 | 12.9 ± 6.6 |
Veillonella spp. | 4.3 ± 1.8 | 2.7 ± 2.0 |
Fusobacterium spp. | 6.2 ± 2.6 | 2.1 ± 0.8 |
Haemophilus spp. | 2.2 ± 0.7 | 2.6 ± 0.9 |
Rothia spp. | 2.8 ± 0.8 | 1.6 ± 0.5 |
Neisseria spp. | 7.3 ± 4.4 | 5.6 ± 3.2 |
Alloprevotella spp. | 1.9 ± 1.0 | 1.5 ± 0.9 |
Other bacteria | 29.6 ± 7.6 | 34.1 ± 8.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spiegelhauer, M.R.; Kupcinskas, J.; Johannesen, T.B.; Urba, M.; Skieceviciene, J.; Jonaitis, L.; Frandsen, T.H.; Kupcinskas, L.; Fuursted, K.; Andersen, L.P. Transient and Persistent Gastric Microbiome: Adherence of Bacteria in Gastric Cancer and Dyspeptic Patient Biopsies after Washing. J. Clin. Med. 2020, 9, 1882. https://doi.org/10.3390/jcm9061882
Spiegelhauer MR, Kupcinskas J, Johannesen TB, Urba M, Skieceviciene J, Jonaitis L, Frandsen TH, Kupcinskas L, Fuursted K, Andersen LP. Transient and Persistent Gastric Microbiome: Adherence of Bacteria in Gastric Cancer and Dyspeptic Patient Biopsies after Washing. Journal of Clinical Medicine. 2020; 9(6):1882. https://doi.org/10.3390/jcm9061882
Chicago/Turabian StyleSpiegelhauer, Malene R., Juozas Kupcinskas, Thor B. Johannesen, Mindaugas Urba, Jurgita Skieceviciene, Laimas Jonaitis, Tove H. Frandsen, Limas Kupcinskas, Kurt Fuursted, and Leif P. Andersen. 2020. "Transient and Persistent Gastric Microbiome: Adherence of Bacteria in Gastric Cancer and Dyspeptic Patient Biopsies after Washing" Journal of Clinical Medicine 9, no. 6: 1882. https://doi.org/10.3390/jcm9061882
APA StyleSpiegelhauer, M. R., Kupcinskas, J., Johannesen, T. B., Urba, M., Skieceviciene, J., Jonaitis, L., Frandsen, T. H., Kupcinskas, L., Fuursted, K., & Andersen, L. P. (2020). Transient and Persistent Gastric Microbiome: Adherence of Bacteria in Gastric Cancer and Dyspeptic Patient Biopsies after Washing. Journal of Clinical Medicine, 9(6), 1882. https://doi.org/10.3390/jcm9061882