The Cerebral Localization of Pain: Anatomical and Functional Considerations for Targeted Electrical Therapies
Abstract
:1. Introduction
2. Anatomical Background
2.1. Somatosensory System and Relevant Inputs
2.2. Thalamus
2.3. Insula
2.4. Anterior Cingulate Cortex
2.5. Beyond the Thalamus, Insula, and ACC
3. Temporal Dynamics of Pain
4. Pain Illusion Suggests Distinct Roles for the ACC and Insula in Chronic Pain
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sandkühler, J. Models and Mechanisms of Hyperalgesia and Allodynia. Physiol. Rev. 2009, 89, 707–758. [Google Scholar] [CrossRef]
- Jensen, T.S.; Finnerup, N. Allodynia and hyperalgesia in neuropathic pain: Clinical manifestations and mechanisms. Lancet Neurol. 2014, 13, 924–935. [Google Scholar] [CrossRef]
- Gaskin, D.J.; Richard, P. The Economic Costs of Pain in the United States. J. Pain 2012, 13, 715–724. [Google Scholar] [CrossRef]
- Institute of Medicine. Relieving Pain in America: A Blueprint for Transforming Prevention, Care, Education, and Research; The National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Unick, G.J.; Ciccarone, D. US regional and demographic differences in prescription opioid and heroin-related overdose hospitalizations. Int. J. Drug Policy 2017, 46, 112–119. [Google Scholar] [CrossRef]
- Jones, M.R.; Viswanath, O.; Peck, J.; Kaye, A.D.; Gill, J.S.; Simopoulos, T.T. A Brief History of the Opioid Epidemic and Strategies for Pain Medicine. Pain Ther. 2018, 7, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Hariz, M.I.; Blomstedt, P.; Zrinzo, L. Deep brain stimulation between 1947 and 1987: The untold story. Neurosurg. Focus 2010, 29, E1. [Google Scholar] [CrossRef]
- O’Neal, C.M.; Baker, C.M.; Glenn, C.A.; Conner, A.K.; Sughrue, M.E.; Robert, G. Heath: A controversial figure in the history of deep brain stimulation. Neurosurg. Focus 2017, 43, E12. [Google Scholar] [CrossRef]
- Heath, R.G. ELECTRICAL SELF-STIMULATION OF THE BRAIN IN MAN. Am. J. Psychiatry 1963, 120, 571–577. [Google Scholar] [CrossRef]
- Bishop, M.P.; Elder, S.T.; Heath, R.G.; Gottlieb, G. Intracranial Self-Stimulation in Man. Science 1963, 140, 394–396. [Google Scholar] [CrossRef]
- Heath, R.G. Developments Toward New Physiologica Treatments in Psychiatry. J. Neuropsychiatry 1964. [Google Scholar]
- Heath, R.G. BRAIN FUNCTION AND BEHAVIOR. J. Nerv. Ment. Dis. 1975, 160, 159–175. [Google Scholar] [CrossRef]
- Heath, R.G.; John, S.B.; Fontana, C.J. Stereotaxic Implantation of Electrodes in the Human Brain: A Method for Long-Term Study and Treatment. IEEE Trans. Biomed. Eng. 1976, 296–304. [Google Scholar] [CrossRef]
- Keifer, O.P.; Riley, J.P.; Boulis, N. Deep Brain Stimulation for Chronic Pain. Neurosurg. Clin. N. Am. 2014, 25, 671–692. [Google Scholar] [CrossRef] [Green Version]
- Olds, J.; Milner, P.; James, O.; Peter, M. Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J. Comp. Physiol. Psychol. 1954, 47, 419–427. [Google Scholar] [CrossRef]
- Gol, A. Relief of pain by electrical stimulation of the septal area. J. Neurol. Sci. 1967, 5, 115–120. [Google Scholar] [CrossRef]
- Farrell, S.M.; Green, A.L.; Aziz, T.Z. The Current State of Deep Brain Stimulation for Chronic Pain and Its Context in Other Forms of Neuromodulation. Brain Sci. 2018, 8, 158. [Google Scholar] [CrossRef] [Green Version]
- The gate control theory of pain. BMJ 1978, 2, 586–587. [CrossRef] [Green Version]
- Melzack, R.; Wall, P.D. Pain Mechanisms: A New Theory. Science 1965, 150, 971–978. [Google Scholar] [CrossRef]
- Song, J.J.; Popescu, A.; Bell, R.L. Present and potential use of spinal cord stimulation to control chronic pain. Pain Physician 2014, 17, 235–246. [Google Scholar]
- Mo, J.-J.; Hu, W.-H.; Zhang, C.; Wang, X.; Liu, C.; Zhao, B.-T.; Zhou, J.-J.; Zhang, K. Motor cortex stimulation: A systematic literature-based analysis of effectiveness and case series experience. BMC Neurol. 2019, 19, 48. [Google Scholar] [CrossRef] [Green Version]
- Mazars, G.; Mérienne, L.; Ciolocca, C. [Intermittent analgesic thalamic stimulation. Preliminary note]. Rev. Neurol. 1973, 128, 273–279. [Google Scholar] [PubMed]
- Mark, V.H.; Ervin, F.R.; Hackett, T.P. Clinical Aspects of Stereotactic Thalamotomy in the Human. Arch. Neurol. 1960, 3, 351. [Google Scholar] [CrossRef]
- Richardson, D.E.; Akil, H. Pain reduction by electrical brain stimulation in man. II. J. Neurosurg. 1977, 47, 184–194. [Google Scholar] [CrossRef]
- Richardson, D.E.; Akil, H. Pain reduction by electrical brain stimulation in man. I. J. Neurosurg. 1977, 47, 178–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- E Richardson, D.; Akil, H. Long term results of periventricular gray self-stimulation. Neurosurgery 1977, 1, 199. [Google Scholar] [CrossRef] [PubMed]
- Mayer, D.J.; Wolfle, T.L.; Akil, H.; Carder, B.; Liebeskind, J.C. Analgesia from Electrical Stimulation in the Brainstem of the Rat. Science 1971, 174, 1351–1354. [Google Scholar] [CrossRef] [PubMed]
- Hosobuchi, Y.; Adams, J.; Linchitz, R. Pain relief by electrical stimulation of the central gray matter in humans and its reversal by naloxone. Science 1977, 197, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Coffey, R.J. Deep Brain Stimulation for Chronic Pain: Results of Two Multicenter Trials and a Structured Review. Pain Med. 2001, 2, 183–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kandel, E.; Schwartz, J.; Jessell, T.; Siegelbaum, S.; Hudspeth, A. Principles of Neural Science, 5th ed.; McGraw-Hill Ed: New York, NY, USA, 2013. [Google Scholar]
- Evrard, H.C.; Logothetis, N.K.; Craig, A. (Bud) Modular architectonic organization of the insula in the macaque monkey. J. Comp. Neurol. 2013, 522, 64–97. [Google Scholar] [CrossRef]
- Evrard, H.C.; Forro, T.; Logothetis, N.K. Von Economo Neurons in the Anterior Insula of the Macaque Monkey. Neuron 2012, 74, 482–489. [Google Scholar] [CrossRef] [Green Version]
- Penfield, W.; Faulk, M.E. THE INSULA. Brain 1955, 78, 445–470. [Google Scholar] [CrossRef] [PubMed]
- Foltz, E.L.; White, L.E. Pain “Relief” by Frontal Cingulumotomy. J. Neurosurg. 1962, 19, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Yarkoni, T. Neurosynth. Available online: http://neurosynth.org/ (accessed on 11 March 2020).
- Freeman, R.B.F.N. The Integrative Action of the Nervous System. J. Philos. Psychol. Sci. Methods 1907, 4, 301. [Google Scholar] [CrossRef]
- Spiller, W.G. The treatment of persistent pain of organic origin in the lower part of the body by division of the anterolateral column of the spinal cord. J. Am. Med Assoc. 1912, 1489–1490. [Google Scholar] [CrossRef]
- Vallejo, R.; Bradley, K.; Kapural, L. Spinal Cord Stimulation in Chronic Pain. Spine 2017, 42, S53–S60. [Google Scholar] [CrossRef] [PubMed]
- Lueptow, L.; Fakira, A.; Bobeck, E. The Contribution of the Descending Pain Modulatory Pathway in Opioid Tolerance. Front. Mol. Neurosci. 2018, 12, 886. [Google Scholar] [CrossRef] [Green Version]
- Hodge, C.J.; Apkarian, A.V.; Stevens, R.T. Inhibition of dorsal-horn cell responses by stimulation of the Kölliker-Fuse nucleus. J. Neurosurg. 1986, 65, 825–833. [Google Scholar] [CrossRef]
- Palmiter, R. The Parabrachial Nucleus: CGRP Neurons Function as a General Alarm. Trends Neurosci. 2018, 41, 280–293. [Google Scholar] [CrossRef] [PubMed]
- Roeder, Z.; Chen, Q.; Davis, S.; Carlson, J.D.; Tupone, D.; Heinricher, M.M. Parabrachial complex links pain transmission to descending pain modulation. Pain 2016, 157, 2697–2708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craig, A.D.; Bushnell, M.C.; Zhang, E.-T.; Blomqvist, A. A thalamic nucleus specific for pain and temperature sensation. Nature 1994, 372, 770–773. [Google Scholar] [CrossRef] [PubMed]
- Young, R.F.; Rinaldi, P.C. Chronic Stimulation of the Koelliker-Fuse Nucleus Region for Relief of Intractable Pain in Humans. J. Neurosurg. 1992, 76, 979–985. [Google Scholar] [CrossRef] [Green Version]
- Yen, C.-T.; Lu, P.-L. Thalamus and pain. Acta Anaesthesiol. Taiwanica 2013, 51, 73–80. [Google Scholar] [CrossRef]
- Gustin, S.; Peck, C.C.; Wilcox, S.L.; Nash, P.G.; Murray, G.M.; Henderson, L.A. Different Pain, Different Brain: Thalamic Anatomy in Neuropathic and Non-Neuropathic Chronic Pain Syndromes. J. Neurosci. 2011, 31, 5956–5964. [Google Scholar] [CrossRef] [PubMed]
- Apkarian, A.V.; Sosa, Y.; Sonty, S.; Levy, R.M.; Harden, R.N.; Parrish, T.B.; Gitelman, D. Chronic Back Pain Is Associated with Decreased Prefrontal and Thalamic Gray Matter Density. J. Neurosci. 2004, 24, 10410–10415. [Google Scholar] [CrossRef] [PubMed]
- DaSilva, A.F.; Becerra, L.; Pendse, G.; Chizh, B.; Tully, S.; Borsook, D. Colocalized Structural and Functional Changes in the Cortex of Patients with Trigeminal Neuropathic Pain. PLoS ONE 2008, 3, e3396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenz, F.A.; Tasker, R.R.; Dostrovsky, J.O.; Kwan, H.C.; Gorecki, J.; Hirayama, T.; Murphy, J.T. Abnormal single-unit activity recorded in the somatosensory thalamus of a quadriplegic patient with central pain. Pain 1987, 31, 225–236. [Google Scholar] [CrossRef]
- Lenz, F.A.; Gracely, R.H.; Rowland, L.H.; Dougherty, P.M. A population of cells in the human thalamic principal sensory nucleus respond to painful mechanical stimuli. Neurosci. Lett. 1994, 180, 46–50. [Google Scholar] [CrossRef]
- Lenz, F.A.; Seike, M.; Lin, Y.; Baker, F.; Rowland, L.; Gracely, R.; Richardson, R. Neurons in the area of human thalamic nucleus ventralis caudalis respond to painful heat stimuli. Brain Res. 1993, 623, 235–240. [Google Scholar] [CrossRef]
- Lenz, F.; Garonzik, I.; Zirh, T.; Dougherty, P.M. Neuronal activity in the region of the thalamic principal sensory nucleus (ventralis caudalis) in patients with pain following amputations. Neuroscience 1998, 86, 1065–1081. [Google Scholar] [CrossRef]
- Lenz, F.A.; Kwan, H.C.; Dostrovsky, J.O.; Tasker, R.R. Characteristics of the bursting pattern of action potentials that occurs in the thalamus of patients with central pain. Brain Res. 1989, 496, 357–360. [Google Scholar] [CrossRef]
- Lenz, F.; Gracely, R.; Romanoski, A.; Hope, E.; Rowland, L.; Dougherty, P.M. Stimulation in the human somatosensory thalamus can reproduce both the affective and sensory dimensions of previously experienced pain. Nat. Med. 1995, 1, 910–913. [Google Scholar] [CrossRef] [PubMed]
- Davis, K.D.; Taub, E.; Duffner, F.; Lozano, A.M.; Tasker, R.R.; Houle, S.; Dostrovsky, J.O. Activation of the anterior cingulate cortex by thalamic stimulation in patients with chronic pain: A positron emission tomography study. J. Neurosurg. 2000, 92, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Ohara, S.; Crone, N.E.; Weiss, N.; Lenz, F.A. Analysis of synchrony demonstrates ‘pain networks’ defined by rapidly switching, task-specific, functional connectivity between pain-related cortical structures. Pain 2006, 123, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Craig, A.D. How do you feel? Interoception: The sense of the physiological condition of the body. Nat. Rev. Neuroscience 2002, 3, 655–666. [Google Scholar] [CrossRef]
- Evrard, H.C. The Organization of the Primate Insular Cortex. Front. Neuroanat. 2019, 13, 43. [Google Scholar] [CrossRef] [Green Version]
- Geuter, S.; Boll, S.; Eippert, F.; Büchel, C. Functional dissociation of stimulus intensity encoding and predictive coding of pain in the insula. eLife 2017, 6. [Google Scholar] [CrossRef]
- Baliki, M.N.; Geha, P.Y.; Apkarian, A.V. Parsing Pain Perception Between Nociceptive Representation and Magnitude Estimation. J. Neurophysiol. 2009, 101, 875–887. [Google Scholar] [CrossRef] [Green Version]
- Schilder, P. Notes on The Psychopathology of Pain in Neuroses and Psychoses. Psychoanal. Rev. 1931, 18, 1–22. [Google Scholar]
- Gu, X.; Liu, X.; Guise, K.G.; Naidich, T.P.; Hof, P.R.; Fan, J. Functional dissociation of the frontoinsular and anterior cingulate cortices in empathy for pain. J. Neurosci. 2010, 30, 3739–3744. [Google Scholar] [CrossRef] [Green Version]
- Starr, C.J.; Sawaki, L.; Wittenberg, G.F.; Burdette, J.H.; Oshiro, Y.; Quevedo, A.; Coghill, R.C. Roles of the insular cortex in the modulation of pain: Insights from brain lesions. J. Neurosci. 2009, 29, 2684–2694. [Google Scholar] [CrossRef]
- Saleh, T.; Logothetis, N.; Evrard, H. Insular projections to brainstem homeostatic centers in the macaque monkey. Front. Mol. Neurosci. 2017, 11, 11. [Google Scholar] [CrossRef]
- Hodge, R.D.; Miller, J.A.; Novotny, M.; Kalmbach, B.E.; Ting, J.T.; Bakken, T.E.; Aevermann, B.D.; Barkan, E.R.; Berkowitz-Cerasano, M.L.; Cobbs, C.; et al. Transcriptomic evidence that von Economo neurons are regionally specialized extratelencephalic-projecting excitatory neurons. Nat. Commun. 2020, 11, 1172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazzola, L.; Lopez, C.; Faillenot, I.; Chouchou, F.; Mauguière, F.; Isnard, J. Vestibular responses to direct stimulation of the human insular cortex. Ann. Neurol. 2014, 76, 609–619. [Google Scholar] [CrossRef]
- Cavanagh, J.F.; Shackman, A.J. Frontal midline theta reflects anxiety and cognitive control: Meta-analytic evidence. J. Physiol. 2014, 109, 3–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shenhav, A.; Botvinick, M.M.; Cohen, J.D. The expected value of control: An integrative theory of anterior cingulate cortex function. Neuron 2013, 79, 217–240. [Google Scholar] [CrossRef] [Green Version]
- Lewin, W. OBSERVATIONS ON SELECTIVE LEUCOTOMY. J. Neurol. Neurosurg. Psychiatry 1961, 24, 37–44. [Google Scholar] [CrossRef] [Green Version]
- E Scarff, J. Unilateral prefrontal lobotomy for the relief of intractable pain and termination of narcotic addiction. Surgery, Gynecol. Obstet. 1949, 89, 385–392. [Google Scholar]
- Watts, J.W.; Freeman, W. Frontal lobotomy in the treatment of unbearable pain. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 1949, 27, 715–722. [Google Scholar]
- Smith, G.C.; Willis, G.L.; Copolow, A.L.; Recher, H.; Roller, L. Cingulotomy in the rat fails to block opiate withdrawal effects but elevates stress-induced plasma beta-endorphin. Prog. Neuro-Psychopharmacol. Boil. Psychiatry 1988, 12, 683–688. [Google Scholar] [CrossRef]
- Cetas, J.S.; Saedi, T.; Burchiel, K.J. Destructive procedures for the treatment of nonmalignant pain: A structured literature review. J. Neurosurg. 2008, 109, 389–404. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.H.; Banks, G.; Mikell, C.B.; Cash, S.S.; Patel, S.R.; Eskandar, E.N.; Sheth, S.A. Frequency-Dependent Representation of Reinforcement-Related Information in the Human Medial and Lateral Prefrontal Cortex. J. Neurosci. 2015, 35, 15827–15836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woo, C.-W.; Roy, M.; Buhle, J.T.; Wager, T.D. Distinct Brain Systems Mediate the Effects of Nociceptive Input and Self-Regulation on Pain. PLoS Boil. 2015, 13, e1002036. [Google Scholar] [CrossRef] [PubMed]
- Lewin, W.; Whitty, C.W.M. Effects of anterior cingulate stimulation in conscious human subjects. J. Neurophysiol. 1960, 23, 445–447. [Google Scholar] [CrossRef] [PubMed]
- Boccard-Binet, S.; Pereira, E.; Moir, L.; Van Hartevelt, T.; Kringelbach, M.L.; Fitzgerald, J.J.; Baker, I.W.; Green, A.L.; Aziz, T.Z. Deep brain stimulation of the anterior cingulate cortex. NeuroReport 2014, 25, 83–88. [Google Scholar] [CrossRef]
- Spooner, J.; Yu, H.; Kao, C.; Sillay, K.; Konrad, P. Neuromodulation of the cingulum for neuropathic pain after spinal cord injury. J. Neurosurg. 2007, 107, 169–172. [Google Scholar] [CrossRef]
- Boccard-Binet, S.; Prangnell, S.J.; Pycroft, L.; Cheeran, B.; Moir, L.; Pereira, E.; Fitzgerald, J.J.; Green, A.L.; Aziz, T.Z. Long-Term Results of Deep Brain Stimulation of the Anterior Cingulate Cortex for Neuropathic Pain. World Neurosurg. 2017, 106, 625–637. [Google Scholar] [CrossRef]
- Russo, J.F.; Sheth, S.A. Deep brain stimulation of the dorsal anterior cingulate cortex for the treatment of chronic neuropathic pain. Neurosurg. Focus 2015, 38, E11. [Google Scholar] [CrossRef]
- Smith, E.H.; Horga, G.; Yates, M.J.; Mikell, C.B.; Banks, G.P.; Pathak, Y.J.; Schevon, C.A.; McKhann, G.M.; Hayden, B.Y.; Botvinick, M.M.; et al. Widespread temporal coding of cognitive control in the human prefrontal cortex. Nat. Neurosci. 2019, 22, 1883–1891. [Google Scholar] [CrossRef]
- Oluigbo, C.O.; Salma, A.; Rezai, A.R. Targeting the affective and cognitive aspects of chronic neuropathic pain using basal forebrain neuromodulation: Rationale, review and proposal. J. Clin. Neurosci. 2012, 19, 1216–1221. [Google Scholar] [CrossRef]
- Navratilova, E.; Xie, J.Y.; Meske, D.; Qu, C.; Morimura, K.; Okun, A.; Arakawa, N.; Ossipov, M.; Fields, H.L.; Porreca, F. Endogenous opioid activity in the anterior cingulate cortex is required for relief of pain. J. Neurosci. 2015, 35, 7264–7271. [Google Scholar] [CrossRef] [Green Version]
- Baliki, M.N.; Geha, P.Y.; Fields, H.L.; Apkarian, A.V. Predicting Value of Pain and Analgesia: Nucleus Accumbens Response to Noxious Stimuli Changes in the Presence of Chronic Pain. Neuron 2010, 66, 149–160. [Google Scholar] [CrossRef] [Green Version]
- Mallory, G.W.; Abulseoud, O.; Hwang, S.-C.; Gorman, D.A.; Stead, S.M.; Klassen, B.T.; Sandroni, P.; Watson, J.C.; Lee, K.H. The Nucleus Accumbens as a Potential Target for Central Poststroke Pain. Mayo Clin. Proc. 2012, 87, 1025–1031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, K.D.; Pope, G.; Crawley, A.; Mikulis, D. Neural correlates of prickle sensation: A percept-related fMRI study. Nat. Neurosci. 2002, 5, 1121–1122. [Google Scholar] [CrossRef]
- Gao, C.; Gao, H.; Zhang, Q. Event-related brain potentials related to the identification of different types of signs. NeuroReport 2019, 30, 269–273. [Google Scholar] [CrossRef]
- Porro, C.; Cettolo, V.; Francescato, M.P.; Baraldi, P. Temporal and intensity coding of pain in human cortex. J. Neurophysiol. 1998, 80, 3312–3320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arendt-Nielsen, L.; Chen, A. Lasers and other thermal stimulators for activation of skin nociceptors in humans. Neurophysiol. Clin. Neurophysiol. 2003, 33, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Roberts, K.; Papadaki, A.; Gonçalves, C.; Tighe, M.; Atherton, D.; Shenoy, R.; McRobbie, D.W.; Anand, P. Contact heat evoked potentials using simultaneous EEG and fMRI and their correlation with evoked pain. BMC Anesthesiol. 2008, 8, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.-C.; Ohara, S.; Franaszczuk, P.J.; Lenz, F.A. Attention to painful cutaneous laser stimuli evokes directed functional connectivity between activity recorded directly from human pain-related cortical structures. Pain 2011, 152, 664–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.-C.; Ohara, S.; Franaszczuk, P.J.; Crone, N.E.; Lenz, F.A. Attention to painful cutaneous laser stimuli evokes directed functional interactions between human sensory and modulatory pain-related cortical areas. Pain 2011, 152, 2781–2791. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Larrea, L.; Frot, M.; Valeriani, M. Brain generators of laser-evoked potentials: From dipoles to functional significance. Neurophysiol. Clin. Neurophysiol. 2003, 33, 279–292. [Google Scholar] [CrossRef]
- Lorenz, J.; Garcia-Larrea, L. Contribution of attentional and cognitive factors to laser evoked brain potentials. Neurophysiol. Clin. Neurophysiol. 2003, 33, 293–301. [Google Scholar] [CrossRef]
- Mao, J. Current challenges in translational pain research. Trends Pharmacol. Sci. 2012, 33, 568–573. [Google Scholar] [CrossRef] [Green Version]
- Pinheiro, E.S.D.S.; De Queirós, F.C.; Montoya, P.; Santos, C.L.; Nascimento, M.A.D.; Ito, C.H.; Silva, M.; Santos, D.B.N.; Benevides, S.; Miranda, J.G.V.; et al. Electroencephalographic Patterns in Chronic Pain: A Systematic Review of the Literature. PLoS ONE 2016, 11, e0149085. [Google Scholar] [CrossRef] [Green Version]
- Stern, C.; Passingham, R. The nucleus accumbens in monkeys (Macaca fascicularis). Exp. Brain Res. 1995, 106, 239–247. [Google Scholar] [CrossRef]
- Schulz, E.; May, E.S.; Postorino, M.; Tiemann, L.; Nickel, M.; Witkovský, V.; Schmidt, P.; Gross, J.; Ploner, M. Prefrontal Gamma Oscillations Encode Tonic Pain in Humans. Cereb. Cortex 2015, 25, 4407–4414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauck, M.; Domnick, C.; Lorenz, J.; Gerloff, C.; Engel, A.K. Top-down and bottom-up modulation of pain-induced oscillations. Front. Hum. Neurosci. 2015, 9, 9. [Google Scholar] [CrossRef]
- Ploner, M.; Gross, J.; Timmermann, L.; Pollok, B.; Schnitzler, A. Pain Suppresses Spontaneous Brain Rhythms. Cereb. Cortex 2005, 16, 537–540. [Google Scholar] [CrossRef] [PubMed]
- Babiloni, C.; Brancucci, A.; Del Percio, C.; Capotosto, P.; Arendt-Nielsen, L.; Chen, A.C.; Rossini, P.M. Anticipatory Electroencephalography Alpha Rhythm Predicts Subjective Perception of Pain Intensity. J. Pain 2006, 7, 709–717. [Google Scholar] [CrossRef] [PubMed]
- Tu, Y.; Zhang, Z.; Tan, A.; Peng, W.; Hung, Y.S.; Moayedi, M.; Iannetti, G.; Hu, L. Alpha and gamma oscillation amplitudes synergistically predict the perception of forthcoming nociceptive stimuli. Hum. Brain Mapp. 2015, 37, 501–514. [Google Scholar] [CrossRef] [Green Version]
- Apkarian, A.V.; Hashmi, J.A.; Baliki, M.N. Pain and the brain: Specificity and plasticity of the brain in clinical chronic pain. Pain 2010, 152, S49–S64. [Google Scholar] [CrossRef]
- Liu, C.C.; Franaszczuk, P.J.; Crone, N.E.; Jouny, C.; Lenz, F.A. Studies of properties of “Pain Networks” as predictors of targets of stimulation for treatment of pain. Front. Integr. Neurosci. 2011, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manning, J.R.; Jacobs, J.; Fried, I.; Kahana, M.J. Broadband shifts in local field potential power spectra are correlated with single-neuron spiking in humans. J. Neurosci. 2009, 29, 13613–13620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, K.J. Broadband spectral change: Evidence for a macroscale correlate of population firing rate? J. Neurosci. 2010, 30, 6477–6479. [Google Scholar] [CrossRef]
- Craig, A.; Bushnell, M. The thermal grill illusion: Unmasking the burn of cold pain. Science 1994, 265, 252–255. [Google Scholar] [CrossRef] [PubMed]
- Paricio-Montesinos, R.; Schwaller, F.; Udhayachandran, A.; Rau, F.; Walcher, J.; Evangelista, R.; Vriens, J.; Voets, T.; Poulet, J.F.; Lewin, G.R. The Sensory Coding of Warm Perception. Neuron 2020, 106, 830–841.e3. [Google Scholar] [CrossRef] [Green Version]
- Fardo, F.; Beck, B.; Allen, M.; Finnerup, N.B. Beyond labeled lines: A population coding account of the thermal grill illusion. Neurosci. Biobehav. Rev. 2020, 108, 472–479. [Google Scholar] [CrossRef]
- Kammers, M.; De Vignemont, F.; Haggard, P. Cooling the Thermal Grill Illusion through Self-Touch. Curr. Boil. 2010, 20, 1819–1822. [Google Scholar] [CrossRef] [Green Version]
- Patwardhan, S.; Kawazoe, A.; Kerr, D.; Nakatani, M.; Visell, Y. Dynamics and Perception in the Thermal Grill Illusion. IEEE Trans. Haptics 2019, 12, 604–614. [Google Scholar] [CrossRef] [PubMed]
- Lindstedt, F.; Johansson, B.; Martinsen, S.; Kosek, E.; Fransson, P.; Ingvar, M. Evidence for Thalamic Involvement in the Thermal Grill Illusion: An fMRI Study. PLoS ONE 2011, 6, e27075. [Google Scholar] [CrossRef]
- Craig, A.; Reiman, E.M.; Evans, A.; Bushnell, M.C. Functional imaging of an illusion of pain. Nature 1996, 384, 258–260. [Google Scholar] [CrossRef]
- Bouhassira, D.; Kern, D.; Rouaud, J.; Pelle-Lancien, E.; Morain, F. Investigation of the paradoxical painful sensation (‘illusion of pain’) produced by a thermal grill. Pain 2005, 114, 160–167. [Google Scholar] [CrossRef]
- Adam, F.; Alfonsi, P.; Kern, D.; Bouhassira, D. Relationships between the paradoxical painful and nonpainful sensations induced by a thermal grill. Pain 2014, 155, 2612–2617. [Google Scholar] [CrossRef] [PubMed]
- Hunter, J.; Dranga, R.; Van Wyk, M.; Dostrovsky, J. Unique influence of stimulus duration and stimulation site (glabrous vs. hairy skin) on the thermal grill-induced percept. Eur. J. Pain 2014, 19, 202–215. [Google Scholar] [CrossRef] [PubMed]
- Levy, N.; Sturgess, J.; Mills, P. “Pain as the fifth vital sign” and dependence on the “numerical pain scale” is being abandoned in the US: Why? Br. J. Anaesth. 2018, 120, 435–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seymour, B. Pain: A Precision Signal for Reinforcement Learning and Control. Neuron 2019, 101, 1029–1041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caston, R.M.; Smith, E.H.; Davis, T.S.; Rolston, J.D. The Cerebral Localization of Pain: Anatomical and Functional Considerations for Targeted Electrical Therapies. J. Clin. Med. 2020, 9, 1945. https://doi.org/10.3390/jcm9061945
Caston RM, Smith EH, Davis TS, Rolston JD. The Cerebral Localization of Pain: Anatomical and Functional Considerations for Targeted Electrical Therapies. Journal of Clinical Medicine. 2020; 9(6):1945. https://doi.org/10.3390/jcm9061945
Chicago/Turabian StyleCaston, Rose M., Elliot H. Smith, Tyler S. Davis, and John D. Rolston. 2020. "The Cerebral Localization of Pain: Anatomical and Functional Considerations for Targeted Electrical Therapies" Journal of Clinical Medicine 9, no. 6: 1945. https://doi.org/10.3390/jcm9061945
APA StyleCaston, R. M., Smith, E. H., Davis, T. S., & Rolston, J. D. (2020). The Cerebral Localization of Pain: Anatomical and Functional Considerations for Targeted Electrical Therapies. Journal of Clinical Medicine, 9(6), 1945. https://doi.org/10.3390/jcm9061945