Activated L-Arginine/Nitric Oxide Pathway in Pediatric Cystic Fibrosis and Its Association with Pancreatic Insufficiency, Liver Involvement and Nourishment: An Overview and New Results
Abstract
:1. Introduction
2. Experimental Section
2.1. Subjects
2.2. Biochemical Analyses
2.3. Statistical Analyses
3. Results
3.1. Clinical Characterization of the CF Patients
3.2. The Arg/NO Pathway Status: Comparison of CF Patients with Healthy Controls
3.3. The Arg/NO Pathway Status and the Involvement of Pancreas and Liver
3.4. The Arg/NO Pathway Status and the Nutritional Status of the CF Patients
3.5. Correlation Analysis of Arg/NO Metabolites and Disease Parameters
4. Discussion
4.1. Potential Roles of Liver, Pancreas and Kidney in Pediatric Cystic Fibrosis
4.2. Potential ADMA-Related Cardiovascular Risk in Pediatric Cystic Fibrosis
4.3. External Sources of Arg, ADMA and DMA
4.4. Arg/NO Metabolism in Nutritional Failure
4.5. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Naehrig, S.; Chao, C.-M.; Naehrlich, L. Cystic Fibrosis. Dtsch. Arztebl. Int. 2017, 114, 564–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabris, L.; Fiorotto, R.; Spirli, C.; Cadamuro, M.; Mariotti, V.; Perugorria, M.J.; Banales, J.M.; Strazzabosco, M. Pathobiology of inherited biliary diseases: A roadmap to understand acquired liver diseases. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 497–511. [Google Scholar] [CrossRef] [PubMed]
- Cohen, T.S.; Prince, A. Cystic fibrosis: A mucosal immunodeficiency syndrome. Nat. Med. 2012, 18, 509–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castellani, C.; Assael, B.M. Cystic fibrosis: A clinical view. Cell. Mol. Life Sci. 2017, 74, 129–140. [Google Scholar] [CrossRef]
- Wilschanski, M.; Novak, I. The Cystic Fibrosis of Exocrine Pancreas. Cold Spring Harb. Perspect. Med. 2013, 3, a009746. [Google Scholar] [CrossRef]
- Turck, D.; Braegger, C.P.; Colombo, C.; Declercq, D.; Morton, A.; Pancheva, R.; Robberecht, E.; Stern, M.; Strandvik, B.; Wolfe, S.; et al. ESPEN-ESPGHAN-ECFS guidelines on nutrition care for infants, children, and adults with cystic fibrosis. Clin. Nutr. 2016, 35, 557–577. [Google Scholar] [CrossRef] [Green Version]
- Gibson-Corley, K.N.; Meyerholz, D.K.; Engelhardt, J.F. Pancreatic pathophysiology in cystic fibrosis. J. Pathol. 2016, 238, 311–320. [Google Scholar] [CrossRef] [Green Version]
- Flass, T.; Narkewicz, M.R. Cirrhosis and other liver disease in cystic fibrosis. J. Cyst. Fibros. 2013, 12, 116–124. [Google Scholar] [CrossRef] [Green Version]
- Hollander, F.M.; de Roos, N.M.; Heijerman, H.G.M. The optimal approach to nutrition and cystic fibrosis: Latest evidence and recommendations. Curr. Opin. Pulm. Med. 2017, 23, 556–561. [Google Scholar] [CrossRef]
- Wu, G.; Bazer, F.W.; Davis, T.A.; Kim, S.W.; Li, P.; Marc Rhoads, J.; Carey Satterfield, M.; Smith, S.B.; Spencer, T.E.; Yin, Y. Arginine metabolism and nutrition in growth, health and disease. Amino Acids 2009, 37, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Morris, C.R.; Hamilton-Reeves, J.; Martindale, R.G.; Sarav, M.; Ochoa Gautier, J.B. Acquired Amino Acid Deficiencies: A Focus on Arginine and Glutamine. Nutr. Clin. Pract. 2017, 32, 30S–47S. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, J.O.; Gladwin, M.T.; Weitzberg, E. Strategies to increase nitric oxide signalling in cardiovascular disease. Nat. Rev. Drug Discov. 2015, 14, 623–641. [Google Scholar] [CrossRef] [PubMed]
- Chachlaki, K.; Garthwaite, J.; Prevot, V. The gentle art of saying NO: How nitric oxide gets things done in the hypothalamus. Nat. Rev. Endocrinol. 2017, 13, 521–535. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.; Vodovotz, Y.; Tzeng, E.; Billiar, T.R. Nitric oxide, a protective molecule in the cardiovascular system. Nitric Oxide 2013, 35, 175–185. [Google Scholar] [CrossRef]
- Webb, A.J.; Patel, N.; Loukogeorgakis, S.; Okorie, M.; Aboud, Z.; Misra, S.; Rashid, R.; Miall, P.; Deanfield, J.; Benjamin, N.; et al. Acute Blood Pressure Lowering, Vasoprotective, and Antiplatelet Properties of Dietary Nitrate via Bioconversion to Nitrite. Hypertension 2008, 51, 784–790. [Google Scholar] [CrossRef] [Green Version]
- Leone, A.; Moncada, S.; Vallance, P.; Calver, A.; Collier, J. Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 1992, 339, 572–575. [Google Scholar] [CrossRef]
- Ogawa, T.; Kimoto, M.; Sasaoka, K. Purification and properties of a new enzyme, NG,NG-dimethylarginine dimethylaminohydrolase, from rat kidney. J. Biol. Chem. 1989, 264, 10205–10209. [Google Scholar]
- Ogawa, T.; Kimoto, M.; Sasaoka, K. Occurrence of a new enzyme catalyzing the direct conversion of NG,NG-dimethyl-L-arginine to L-citrulline in rats. Biochem. Biophys. Res. Commun. 1987, 148, 671–677. [Google Scholar] [CrossRef]
- Achan, V.; Broadhead, M.; Malaki, M.; Whitley, G.; Leiper, J.; MacAllister, R.; Vallance, P. Asymmetric Dimethylarginine Causes Hypertension and Cardiac Dysfunction in Humans and Is Actively Metabolized by Dimethylarginine Dimethylaminohydrolase. ATVB 2003, 23, 1455–1459. [Google Scholar] [CrossRef] [Green Version]
- Murphy, R.B.; Tommasi, S.; Lewis, B.C.; Mangoni, A.A. Inhibitors of the Hydrolytic Enzyme Dimethylarginine Dimethylaminohydrolase (DDAH): Discovery, Synthesis and Development. Molecules 2016, 21, 615. [Google Scholar] [CrossRef] [Green Version]
- Jansen, K.; Hanusch, B.; Pross, S.; Hanff, E.; Drabert, K.; Bollenbach, A.; Dugave, I.; Carmann, C.; Siefen, R.G.; Emons, B.; et al. Enhanced Nitric Oxide (NO) and Decreased ADMA Synthesis in Pediatric ADHD and Selective Potentiation of NO Synthesis by Methylphenidate. J. Clin. Med. 2020, 9, 175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanzelmeyer, N.; Tsikas, D.; Chobanyan-Jürgens, K.; Beckmann, B.; Vaske, B.; Illsinger, S.; Das, A.M.; Lücke, T. Asymmetric dimethylarginine in children with homocystinuria or phenylketonuria. Amino Acids 2012, 42, 1765–1772. [Google Scholar] [CrossRef] [PubMed]
- Carmann, C.; Lilienthal, E.; Weigt-Usinger, K.; Schmidt-Choudhury, A.; Hörster, I.; Kayacelebi, A.A.; Beckmann, B.; Chobanyan-Jürgens, K.; Tsikas, D.; Lücke, T. The L-arginine/NO pathway, homoarginine, and nitrite-dependent renal carbonic anhydrase activity in young people with type 1 diabetes mellitus. Amino Acids 2015, 47, 1865–1874. [Google Scholar] [CrossRef] [PubMed]
- Lücke, T.; Tsikas, D.; Kanzelmeyer, N.; Vaske, B.; Das, A.M. Elevated plasma concentrations of the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine in citrullinemia. Metab. Clin. Exp. 2006, 55, 1599–1603. [Google Scholar] [CrossRef]
- Lücke, T.; Kanzelmeyer, N.; Kemper, M.J.; Tsikas, D.; Das, A.M. Developmental changes in the L-arginine/nitric oxide pathway from infancy to adulthood: Plasma asymmetric dimethylarginine levels decrease with age. Clin. Chem. Lab. Med. 2007, 45, 1525–1530. [Google Scholar] [CrossRef] [Green Version]
- Grasemann, H.; Al-Saleh, S.; Scott, J.A.; Shehnaz, D.; Mehl, A.; Amin, R.; Rafii, M.; Pencharz, P.; Belik, J.; Ratjen, F. Asymmetric dimethylarginine contributes to airway nitric oxide deficiency in patients with cystic fibrosis. Am. J. Respir. Crit. Care Med. 2011, 183, 1363–1368. [Google Scholar] [CrossRef]
- Lucca, F.; Da Dalt, L.; Ros, M.; Gucciardi, A.; Pirillo, P.; Naturale, M.; Perilongo, G.; Giordano, G.; Baraldi, E. Asymmetric dimethylarginine and related metabolites in exhaled breath condensate of children with cystic fibrosis. Clin. Respir. J. 2018, 12, 140–148. [Google Scholar] [CrossRef]
- Grasemann, H.; Schwiertz, R.; Grasemann, C.; Vester, U.; Racké, K.; Ratjen, F. Decreased systemic bioavailability of L-arginine in patients with cystic fibrosis. Respir. Res. 2006, 7, 87. [Google Scholar] [CrossRef] [Green Version]
- Engelen, M.P.K.J.; Com, G.; Luiking, Y.C.; Deutz, N.E.P. Stimulated nitric oxide production and arginine deficiency in children with cystic fibrosis with nutritional failure. J. Pediatr. 2013, 163, 369–375. [Google Scholar] [CrossRef] [Green Version]
- Tsikas, D.; Böger, R.H.; Sandmann, J.; Bode-Böger, S.M.; Frölich, J.C. Endogenous nitric oxide synthase inhibitors are responsible for the L -arginine paradox. FEBS Lett. 2000, 478, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Mels, C.M.C.; Huisman, H.W.; Smith, W.; Schutte, R.; Schwedhelm, E.; Atzler, D.; Böger, R.H.; Ware, L.J.; Schutte, A.E. The relationship of nitric oxide synthesis capacity, oxidative stress, and albumin-to-creatinine ratio in black and white men: The SABPA study. AGE 2016, 38, 405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grasemann, H.; Schwiertz, R.; Matthiesen, S.; Racké, K.; Ratjen, F. Increased arginase activity in cystic fibrosis airways. Am. J. Respir. Crit. Care Med. 2005, 172, 1523–1528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oświęcimska, J.; Ziora, K.; Ziora, D.; Machura, E.; Smerdziński, S.; Pyś-Spychała, M.; Kasperski, J.; Zamłyński, J.; Kasperska-Zajac, A. Elevated levels of exhaled nitric oxide in patients with anorexia nervosa. Eur. Child Adolesc. Psychiatry 2014, 23, 845–850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues Pereira, N.; Bandeira Moss, M.; Assumpção, C.R.; Cardoso, C.B.; Mann, G.E.; Brunini, T.M.C.; Mendes-Ribeiro, A.C. Oxidative stress, l-arginine-nitric oxide and arginase pathways in platelets from adolescents with anorexia nervosa. Blood Cells Mol. Dis. 2010, 44, 164–168. [Google Scholar] [CrossRef]
- Kromeyer-Hauschild, K.; Wabitsch, M.; Kunze, D.; Geller, F.; Geiß, H.C.; Hesse, V.; von Hippel, A.; Jaeger, U.; Johnsen, D.; Korte, W.; et al. Perzentile für den Body-mass-Index für das Kindes- und Jugendalter unter Heranziehung verschiedener deutscher Stichproben. Monatsschr Kinderheilkd 2001, 149, 807–818. [Google Scholar] [CrossRef] [Green Version]
- Neuhauser, H.; Schienkiewitz, A.; Rosario, A.S.; Dortschy, R.; Kurth, B.-M. Referenzperzentile für anthropometrische Maßzahlen und Blutdruck aus der Studie zur Gesundheit von Kindern und Jugendlichen in Deutschland (KiGGS). Gesundheitsberichterstattung des Bundes 2013. [Google Scholar] [CrossRef]
- Malmberg, L.P.; Petäys, T.; Haahtela, T.; Laatikainen, T.; Jousilahti, P.; Vartiainen, E.; Mäkelä, M.J. Exhaled nitric oxide in healthy nonatopic school-age children: Determinants and height-adjusted reference values. Pediatr. Pulmonol. 2006, 41, 635–642. [Google Scholar] [CrossRef]
- Tsikas, D. Circulating and excretory nitrite and nitrate: Their value as measures of nitric oxide synthesis, bioavailability and activity is inherently limited. Nitric Oxide 2015, 45, 1–3. [Google Scholar] [CrossRef]
- Tsikas, D. Analysis of nitrite and nitrate in biological fluids by assays based on the Griess reaction: Appraisal of the Griess reaction in the L-arginine/nitric oxide area of research. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2007, 851, 51–70. [Google Scholar] [CrossRef]
- Tsikas, D. GC-MS and HPLC methods for peroxynitrite (ONOO- and O15NOO-) analysis: A study on stability, decomposition to nitrite and nitrate, laboratory synthesis, and formation of peroxynitrite from S-nitrosoglutathione (GSNO) and KO2. Analyst 2011, 136, 979–987. [Google Scholar] [CrossRef]
- Tsikas, D.; Böger, R.H.; Bode-Böger, S.M.; Gutzki, F.M.; Frölich, J.C. Quantification of nitrite and nitrate in human urine and plasma as pentafluorobenzyl derivatives by gas chromatography-mass spectrometry using their 15N-labelled analogs. J. Chromatogr. B Biomed. Appl. 1994, 661, 185–191. [Google Scholar] [CrossRef]
- Hanff, E.; Lützow, M.; Kayacelebi, A.A.; Finkel, A.; Maassen, M.; Yanchev, G.R.; Haghikia, A.; Bavendiek, U.; Buck, A.; Lücke, T.; et al. Simultaneous GC-ECNICI-MS measurement of nitrite, nitrate and creatinine in human urine and plasma in clinical settings. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1047, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Tsikas, D.; Schubert, B.; Gutzki, F.-M.; Sandmann, J.; Frölich, J.C. Quantitative determination of circulating and urinary asymmetric dimethylarginine (ADMA) in humans by gas chromatography-tandem mass spectrometry as methyl ester tri(N-pentafluoropropionyl) derivative. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2003, 798, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Tsikas, D.; Thum, T.; Becker, T.; Pham, V.V.; Chobanyan, K.; Mitschke, A.; Beckmann, B.; Gutzki, F.-M.; Bauersachs, J.; Stichtenoth, D.O. Accurate quantification of dimethylamine (DMA) in human urine by gas chromatography-mass spectrometry as pentafluorobenzamide derivative: Evaluation of the relationship between DMA and its precursor asymmetric dimethylarginine (ADMA) in health and disease. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2007, 851, 229–239. [Google Scholar] [CrossRef]
- Bollenbach, A.; Bakker, S.J.L.; Tsikas, D. GC-MS measurement of biological NG-hydroxy-L-arginine, a stepmotherly investigated endogenous nitric oxide synthase substrate and arginase inhibitor. Amino Acids 2019, 51, 627–640. [Google Scholar] [CrossRef]
- Bollenbach, A.; Hanff, E.; Tsikas, D. Investigation of NG-hydroxy-l-arginine interference in the quantitative determination of nitrite and nitrate in human plasma and urine by GC-NICI-MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2018, 1100-1101, 174–178. [Google Scholar] [CrossRef]
- Tsikas, D.; Hanff, E.; Bollenbach, A.; Kruger, R.; Pham, V.V.; Chobanyan-Jürgens, K.; Wedekind, D.; Arndt, T.; Jörns, A.; Berbée, J.F.P.; et al. Results, meta-analysis and a first evaluation of UNOxR, the urinary nitrate-to-nitrite molar ratio, as a measure of nitrite reabsorption in experimental and clinical settings. Amino Acids 2018, 50, 799–821. [Google Scholar] [CrossRef] [Green Version]
- Shwachman, H.; Kulczycki, L.L. Long-term study of one hundred five patients with cystic fibrosis; studies made over a five- to fourteen-year period. AMA J. Dis. Child. 1958, 96, 6–15. [Google Scholar] [CrossRef]
- Chrispin, A.R.; Norman, A.P. The systematic evaluation of the chest radiograph in cystic fibrosis. Pediatr. Radiol. 1974, 2, 101–105. [Google Scholar] [CrossRef]
- Kim, S.-O.; Corey, M.; Stephenson, A.L.; Strug, L.J. Reference percentiles of FEV1 for the Canadian cystic fibrosis population: Comparisons across time and countries. Thorax 2018, 73, 446–450. [Google Scholar] [CrossRef]
- Schlesinger, S.; Sonntag, S.R.; Lieb, W.; Maas, R.; Shimosawa, T. Asymmetric and Symmetric Dimethylarginine as Risk Markers for Total Mortality and Cardiovascular Outcomes: A Systematic Review and Meta-Analysis of Prospective Studies. PLoS ONE 2016, 11, e0165811. [Google Scholar] [CrossRef] [PubMed]
- Anthony, S.; Leiper, J.; Vallance, P. Endogenous production of nitric oxide synthase inhibitors. Vasc. Med. 2005, 10 (Suppl. S1), S3–S9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallance, P.; Leone, A.; Calver, A.; Collier, J.; Moncada, S. Endogenous dimethylarginine as an inhibitor of nitric oxide synthesis. J. Cardiovasc. Pharmacol. 1992, 20 (Suppl. S12), S60–S62. [Google Scholar] [CrossRef]
- Leiper, J.M.; Vallance, P. The synthesis and metabolism of asymmetric dimethylarginine (ADMA). Eur. J. Clin. Pharmacol. 2006, 62, 33–38. [Google Scholar] [CrossRef]
- Jarzebska, N.; Mangoni, A.A.; Martens-Lobenhoffer, J.; Bode-Böger, S.M.; Rodionov, R.N. The Second Life of Methylarginines as Cardiovascular Targets. Int. J. Mol. Sci. 2019, 20, 4592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martens-Lobenhoffer, J.; Bode-Böger, S.M. Mass spectrometric quantification of L-arginine and its pathway related substances in biofluids: The road to maturity. J. Chromatogr. B 2014, 964, 89–102. [Google Scholar] [CrossRef]
- Kerley, C.P.; Kilbride, E.; Greally, P.; Elnazir, B. Dietary Nitrate Acutely and Markedly Increased Exhaled Nitric Oxide in a Cystic Fibrosis Case. Clin. Med. Res. 2016, 14, 151–155. [Google Scholar] [CrossRef] [Green Version]
- Closs, E.I.; Simon, A.; Vékony, N.; Rotmann, A. Plasma Membrane Transporters for Arginine. J. Nutr. 2004, 134, 2752S–2759S. [Google Scholar] [CrossRef]
- Bulau, P.; Zakrzewicz, D.; Kitowska, K.; Leiper, J.; Gunther, A.; Grimminger, F.; Eickelberg, O. Analysis of methylarginine metabolism in the cardiovascular system identifies the lung as a major source of ADMA. Am. J. Physiol. Lung Cell. Mol. Physiol. 2007, 292, L18–L24. [Google Scholar] [CrossRef] [Green Version]
- Richterich, R.; Friolet, B.; Dauwalder, H. Effect of Acetazolamide on Sweat Electrolytes in Mucoviscidosis. JAMA 1963, 186, 182. [Google Scholar] [CrossRef]
- Emrich, H.M.; Ullrich, K.J. Ausscheidung verschiedener Stoffe im Schweiss in Abhängigkeit von der Schweissflussrate. Pflugers Arch. Gesamte Physiol. Menschen Tiere 1966, 290, 298–310. [Google Scholar] [CrossRef] [PubMed]
- Slegers, J.F.G.; Moons, W.M. Effect of Acetazolamide on the Chloride Shift and the Sodium Pump in Secretory Cells. Nature 1968, 181–182. [Google Scholar] [CrossRef] [PubMed]
- Fanjul, M.; Salvador, C.; Alvarez, L.; Cantet, S.; Hollande, E. Targeting of carbonic anhydrase IV to plasma membranes is altered in cultured human pancreatic duct cells expressing a mutated (ΔF508) CFTR. Eur. J. Cell Biol. 2002, 81, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Ogata, T. Bicarbonate secretion by rat bile duct brush cells indicated by immunohistochemical localization of CFTR, anion exchanger AE2, Na+/HCO3− cotransporter, carbonic anhydrase II, Na+/H+ exchangers NHE1 and NHE3, H+/K+-ATPase, and Na+/K+-ATPase. Med. Mol. Morphol. 2006, 39, 44–48. [Google Scholar] [CrossRef]
- Xie, C.; Tang, X.; Xu, W.; Diao, R.; Cai, Z.; Chan, H.C.; Zhou, W.-L. A Host Defense Mechanism Involving CFTR-Mediated Bicarbonate Secretion in Bacterial Prostatitis. PLoS ONE 2010, 5, e15255. [Google Scholar] [CrossRef] [Green Version]
- Pederzoli, A.; Mandrioli, M.; Mola, L. Expression of carbonic anhydrase, cystic fibrosis transmembrane regulator (CFTR) and V-H+-ATPase in the lancelet Branchiostoma lanceolatum (Pallas, 1774). Acta Histochem. 2014, 116, 487–492. [Google Scholar] [CrossRef]
- Jantarajit, W.; Lertsuwan, K.; Teerapornpuntakit, J.; Krishnamra, N.; Charoenphandhu, N. CFTR-mediated anion secretion across intestinal epithelium-like Caco-2 monolayer under PTH stimulation is dependent on intermediate conductance K + channels. Am. J. Physiol. Cell Physiol. 2017, 313, C118–C129. [Google Scholar] [CrossRef]
- Duranton, C.; Rubera, I.; Cougnon, M.; Melis, N.; Chargui, A.; Mograbi, B.; Tauc, M. CFTR Is Involved in the Fine Tuning of Intracellular Redox Status. Am. J. Pathol. 2012, 181, 1367–1377. [Google Scholar] [CrossRef]
- Krantz, C.; Janson, C.; Hollsing, A.; Alving, K.; Malinovschi, A. Exhaled and nasal nitric oxide in relation to lung function, blood cell counts and disease characteristics in cystic fibrosis. J. Breath Res. 2017, 11, 26001. [Google Scholar] [CrossRef]
- Umeda, M.; Hiramoto, M.; Watanabe, A.; Tsunoda, N.; Imai, T. Arginine-induced insulin secretion in endoplasmic reticulum. Biochem. Biophys. Res. Commun. 2015, 466, 717–722. [Google Scholar] [CrossRef] [Green Version]
- Kurohane Kaneko, Y.; Ishikawa, T. Dual role of nitric oxide in pancreatic β-cells. J. Pharmacol. Sci. 2013, 123, 295–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hart, N.J.; Aramandla, R.; Poffenberger, G.; Fayolle, C.; Thames, A.H.; Bautista, A.; Spigelman, A.F.; Babon, J.A.B.; DeNicola, M.E.; Dadi, P.K.; et al. Cystic fibrosis–related diabetes is caused by islet loss and inflammation. JCI Insight 2018, 3, 338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darville, M.I.; Eizirik, D.L. Regulation by cytokines of the inducible nitric oxide synthase promoter in insulin-producing cells. Diabetologia 1998, 41, 1101–1108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novelli, M.; Pocai, A.; Lajoix, A.D.; Beffy, P.; Bezzi, D.; Marchetti, P.; Gross, R.; Masiello, P. Alteration of β-cell constitutive NO synthase activity is involved in the abnormal insulin response to arginine in a new rat model of type 2 diabetes. Mol. Cell. Endocrinol. 2004, 219, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Kelsey, R.; Manderson Koivula, F.N.; McClenaghan, N.H.; Kelly, C. Cystic Fibrosis–Related Diabetes: Pathophysiology and Therapeutic Challenges. Clin. Med. Insights Endocrinol. Diabetes 2019, 12, 117955141985177. [Google Scholar] [CrossRef] [Green Version]
- Horowitz, J.D.; Heresztyn, T. An overview of plasma concentrations of asymmetric dimethylarginine (ADMA) in health and disease and in clinical studies: Methodological considerations. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2007, 851, 42–50. [Google Scholar] [CrossRef]
- Schnabel, R.; Blankenberg, S.; Lubos, E.; Lackner, K.J.; Rupprecht, H.J.; Espinola-Klein, C.; Jachmann, N.; Post, F.; Peetz, D.; Bickel, C.; et al. Asymmetric dimethylarginine and the risk of cardiovascular events and death in patients with coronary artery disease: Results from the AtheroGene Study. Circ. Res. 2005, 97, e53–e59. [Google Scholar] [CrossRef] [Green Version]
- Hurley, M.N.; McKeever, T.M.; Prayle, A.P.; Fogarty, A.W.; Smyth, A.R. Rate of improvement of CF life expectancy exceeds that of general population—Observational death registration study. J. Cyst. Fibros. 2014, 13, 410–415. [Google Scholar] [CrossRef] [Green Version]
- Skolnik, K.; Levy, R.D.; Wilcox, P.G.; Quon, B.S. Coronary artery disease in cystic fibrosis: An emerging concern? J. Cyst. Fibros. 2016, 15, e70–e71. [Google Scholar] [CrossRef] [Green Version]
- Vizzardi, E.; Sciatti, E.; Bonadei, I.; Cani, D.S.; Menotti, E.; Prati, F.; Dallapellegrina, L.; Metra, M.; Berlendis, M.; Poli, P.; et al. Macro- and microvascular functions in cystic fibrosis adults without cardiovascular risk factors: A case-control study. Monaldi Arch. Chest Dis. 2019, 89. [Google Scholar] [CrossRef]
- Labombarda, F.; Saloux, E.; Brouard, J.; Bergot, E.; Milliez, P. Heart involvement in cystic fibrosis: A specific cystic fibrosis-related myocardial changes? Respir. Med. 2016, 118, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Tsikas, D.; Bollenbach, A.; Hanff, E.; Kayacelebi, A.A. Asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA) and homoarginine (hArg): The ADMA, SDMA and hArg paradoxes. Cardiovasc. Diabetol. 2018, 17, 131. [Google Scholar] [CrossRef] [PubMed]
- Beltran-Alvarez, P.; Pagans, S.; Brugada, R. The Cardiac Sodium Channel Is Post-Translationally Modified by Arginine Methylation. J. Proteome Res. 2011, 10, 3712–3719. [Google Scholar] [CrossRef] [PubMed]
- Beltran-Alvarez, P.; Feixas, F.; Osuna, S.; Díaz-Hernández, R.; Brugada, R.; Pagans, S. Interplay between R513 methylation and S516 phosphorylation of the cardiac voltage-gated sodium channel. Amino Acids 2015, 47, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Beltran-Alvarez, P.; Tarradas, A.; Chiva, C.; Pérez-Serra, A.; Batlle, M.; Pérez-Villa, F.; Schulte, U.; Sabidó, E.; Brugada, R.; Pagans, S. Identification of N-terminal protein acetylation and arginine methylation of the voltage-gated sodium channel in end-stage heart failure human heart. J. Mol. Cell. Cardiol. 2014, 76, 126–129. [Google Scholar] [CrossRef]
- Rougé, C.; Des Robert, C.; Robins, A.; Le Bacquer, O.; Volteau, C.; La Cochetière, M.-F.; de Darmaun, D. Manipulation of citrulline availability in humans. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 293, G1061–G1067. [Google Scholar] [CrossRef] [Green Version]
- Chandana, T.; Venkatesh, Y.P. Occurrence, Functions and Biological Significance of Arginine-Rich Proteins. Curr. Protein Pept. Sci. 2016, 17, 507–516. [Google Scholar] [CrossRef]
- Food Composition and Nutrition Tables. Die Zusammensetzung der Lebensmittel, Nährwert-Tabellen; 8th revised and completed edition—8, revidierte und ergänzte Auflage—8e édition, revue et complétée; Souci, S.W.; Fachmann, W.; Kraut, H.; Andersen, G. (Eds.) MedPharm Scientific Publishers an imprint of Wissenschaftliche Verlagsgesellschaft: Stuttgart, Germany, 2016; ISBN 978-3-8047-5072-2. [Google Scholar]
- Kayacelebi, A.A.; Langen, J.; Weigt-Usinger, K.; Chobanyan-Jürgens, K.; Mariotti, F.; Schneider, J.Y.; Rothmann, S.; Frölich, J.C.; Atzler, D.; Choe, C.-U.; et al. Biosynthesis of homoarginine (hArg) and asymmetric dimethylarginine (ADMA) from acutely and chronically administered free L-arginine in humans. Amino Acids 2015, 47, 1893–1908. [Google Scholar] [CrossRef]
- Cloutier, M.; Gingras, D.; Bendayan, M. Internalization and transcytosis of pancreatic enzymes by the intestinal mucosa. J. Histochem. Cytochem. 2006, 54, 781–794. [Google Scholar] [CrossRef]
- Lozinska, L.; Prykhodko, O.; Sureda, E.A.; Szwiec, K.; Podgurniak, P.; Pierzynowski, S.; Weström, B. Monitoring changes in plasma levels of pancreatic and intestinal enzymes in a model of pancreatic exocrine insufficiency--induced by pancreatic duct-ligation--in young pigs. Adv. Med. Sci. 2015, 60, 112–117. [Google Scholar] [CrossRef]
- Isley, W.L.; Underwood, L.E.; Clemmons, D.R. Dietary components that regulate serum somatomedin-C concentrations in humans. J. Clin. Investig. 1983, 71, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Fontana, L.; Weiss, E.P.; Villareal, D.T.; Klein, S.; Holloszy, J.O. Long-term effects of calorie or protein restriction on serum IGF-1 and IGFBP-3 concentration in humans. Aging Cell 2008, 7, 681–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soliman, A.T.; Hassan, A.E.; Aref, M.K.; Hintz, R.L.; Rosenfeld, R.G.; Rogol, A.D. Serum insulin-like growth factors I and II concentrations and growth hormone and insulin responses to arginine infusion in children with protein-energy malnutrition before and after nutritional rehabilitation. Pediatr. Res. 1986, 20, 1122–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caregaro, L.; Favaro, A.; Santonastaso, P.; Alberino, F.; Di Pascoli, L.; Nardi, M.; Favaro, S.; Gatta, A. Insulin-like growth factor 1 (IGF-1), a nutritional marker in patients with eating disorders. Clin. Nutr. 2001, 20, 251–257. [Google Scholar] [CrossRef]
- Zeng, G.; Quon, M.J. Insulin-stimulated production of nitric oxide is inhibited by wortmannin. Direct measurement in vascular endothelial cells. J. Clin. Investig. 1996, 98, 894–898. [Google Scholar] [CrossRef] [Green Version]
- Darrah, R.; Bederman, I.; Vitko, M.; Valerio, D.M.; Drumm, M.L.; Hodges, C.A. Growth deficits in cystic fibrosis mice begin in utero prior to IGF-1 reduction. PLoS ONE 2017, 12, e0175467. [Google Scholar] [CrossRef]
- Pascucci, C.; de Biase, R.V.; Savi, D.; Quattrucci, S.; Isidori, A.M.; Lubrano, C.; Gnessi, L.; Lenzi, A. Deregulation of the growth hormone/insulin-like growth factor-1 axis in adults with cystic fibrosis. J. Endocrinol. Investig. 2018, 41, 591–596. [Google Scholar] [CrossRef]
- Kim, M.; Lee, Y.J.; Song, H.J.; Shim, J.K.; Chang, D.H.; Yu, W.K.; Lee, S.-H.; Lee, J.H. Supplementation with nutrients modulating insulin-like growth factor-1 negatively correlated with changes in the levels of pro-inflammatory cytokines in community-dwelling elderly people at risk of undernutrition. J. Hum. Nutr. Diet. 2017, 30, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Huseman, C.A.; Colombo, J.L.; Brooks, M.A.; Smay, J.R.; Greger, N.G.; Sammut, P.H.; Bier, D.M. Anabolic effect of biosynthetic growth hormone in cystic fibrosis patients. Pediatr. Pulmonol. 1996, 22, 90–95. [Google Scholar] [CrossRef]
- Hardin, D.S.; Sy, J.P. Effects of growth hormone treatment in children with cystic fibrosis: The National Cooperative Growth Study experience. J. Pediatr. 1997, 131, S65–S69. [Google Scholar] [CrossRef]
- Langen, J.; Kayacelebi, A.A.; Beckmann, B.; Weigt-Usinger, K.; Carmann, C.; Hörster, I.; Lilienthal, E.; Richter-Unruh, A.; Tsikas, D.; Lücke, T. Homoarginine (hArg) and asymmetric dimethylarginine (ADMA) in short stature children without and with growth hormone deficiency: HArg and ADMA are involved differently in growth in the childhood. Amino Acids 2015, 47, 1875–1883. [Google Scholar] [CrossRef] [PubMed]
- Docx, M.K.F.; Gewillig, M.; Simons, A.; Vandenberghe, P.; Weyler, J.; Ramet, J.; Mertens, L. Pericardial effusions in adolescent girls with anorexia nervosa: Clinical course and risk factors. Eat. Disord. 2010, 18, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Inagaki, T.; Yamamoto, M.; Tsubouchi, K.; Miyaoka, T.; Uegaki, J.; Maeda, T.; Horiguchi, J.; Yamane, Y.; Kato, Y. Echocardiographic investigation of pericardial effusion in a case of anorexia nervosa. Int. J. Eat. Disord. 2003, 33, 364–366. [Google Scholar] [CrossRef]
- Di Cola, G.; Jacoangeli, F.; Jacoangeli, F.; Lombardo, M.; Iellamo, F. Cardiovascular disorders in anorexia nervosa and potential therapeutic targets. Intern. Emerg. Med. 2014, 9, 717–721. [Google Scholar] [CrossRef]
- Miller, K.K.; Grinspoon, S.K.; Ciampa, J.; Hier, J.; Herzog, D.; Klibanski, A. Medical findings in outpatients with anorexia nervosa. Arch. Intern. Med. 2005, 165, 561–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shamim, T.; Golden, N.; Arden, M.; Filiberto, L.; Shenker, I. Resolution of vital sign instability: An objective measure of medical stability in anorexia nervosa. J. Adolesc. Health 2003, 32, 73–77. [Google Scholar] [CrossRef]
- Vignini, A.; D’Angelo, M.; Nanetti, L.; Camilloni, M.A.; Cester, A.M.; Faloia, E.; Salvolini, E.; Mazzanti, L. Anorexia nervosa: A role for L-arginine supplementation in cardiovascular risk factors? Int. J. Eat. Disord. 2010, 43, 464–471. [Google Scholar] [CrossRef]
- Sachs, K.V.; Harnke, B.; Mehler, P.S.; Krantz, M.J. Cardiovascular complications of anorexia nervosa: A systematic review. Int. J. Eat. Disord. 2016, 49, 238–248. [Google Scholar] [CrossRef]
- Mitchell, S.C.; Zhang, A.Q.; Smith, R.L. Dimethylamine and diet. Food Chem. Toxicol. 2008, 46, 1734–1738. [Google Scholar] [CrossRef]
CF Patients | Healthy Controls | p | |
---|---|---|---|
Number of subjects (n) | 70 | 78 | |
Age (years) | 11.8 (8.25–14.0) | 11.3 (8.19–13.2) | 0.450 |
Male [n (%)] | 30 (42.9) | 39 (50) | 0.384 |
Arg (P) (µM) | 90.3 ± 20.4 | 75.6 ± 18.6 | <0.001 |
Citrulline (P) (µM) | 36 (29–42) | not measured | - |
ADMA (P) (µM) | 0.62 ± 0.12 | 0.57 ± 0.11 | 0.030 |
Arg/ADMA ratio (P) | 148 ± 27.9 | 135 ± 33.7 | 0.014 |
Nitrate (P) (µM) | 43.3 (37.4–51.9) | 33.1 (27.1–42.8) | <0.001 |
Nitrite (P) (µM) | 2.07 (1.86–2.28) | 1.95 (0.83–2.33) | 0.033 |
PNOxR | 20.9 (17.3–24.3) | 22.8 (14.0–41.9) | 0.518 |
ADMA (U) (µM/mM creatinine) | 8.17 ± 3.21 | 7.21 ± 3.13 | 0.088 |
DMA (U) (µM/mM creatinine) | 57.9 (47.0–70.4) | 40.7 (25.9–56.0) | <0.001 |
DMA/ADMA (U) | 7.62 (6.40–8.54) | 6.05 (4.12–9.29) | 0.001 |
Nitrate (U) (µM/mM creatinine) | 159 (113–221) | 115 (80.2–156) | 0.001 |
Nitrite (U) (µM/mM creatinine) | 0.20 (0.13–0.35) | 0.24 (0.16–0.46) | 0.478 |
UNOxR | 746 (498–1022) | 501 (285–864) | 0.003 |
CF Patients | Healthy Controls | p | ||
---|---|---|---|---|
Insufficient pancreas | Sufficient pancreas | |||
Number of subjects (n) | 60 | 10 | 78 | - |
Age (years) | 11.1 [8.23–13.7] | 13.2 [9.65–15.4] | 11.3 [8.19–13.2] | 0.317 |
Male (n (%)) | 25 (41.7) | 5 (50.0) | 39 (50.0) | 0.636+ |
Arg (P) (µM) | 94.1 ± 18.8 | 68.3 ± 15.5 | 75.6 ± 18.6 | <0.001 |
Citrulline (P) (µM) | 37.0 [31.0–44.0] | 28.5 (23.3–36.0) | not measured | 0.010 |
ADMA (P) (µM) | 0.63 ± 0.12 | 0.52 ± 0.06 | 0.57 ± 0.11 | 0.001 |
Arg/ADMA ratio (P) | 150 ± 27.3 | 132 ± 27.8 | 134 ± 33.7 | 0.012 |
Nitrate (P) (µM) | 44.1 (38.5–52.2) | 38.4 (26.7–45.7) | 33.1 (27.1–42.8) | <0.001 |
Nitrite (P) (µM) | 2.06 (1.86–2.27) | 2.07 (1.94–2.42) | 1.95 (0.83–2.33) | 0.100 |
PNOxR | 21.5 (18.3–25.3) | 15.8 (12.5–22.0) | 22.8 (14.0–41.9) | 0.177 |
ADMA (U) (µM/mM creatinine) | 8.26 ± 2.42 | 7.64 ± 6.27 | 7.21 ± 3.13 | 0.201 |
DMA (U) (µM/mM creatinine) | 57.9 (48.4–70.5) | 52.7 (43.9–65.1) | 40.7 (25.9–56.0) | <0.001 |
DMA/ADMA (U) | 7.33 (6.37–8.31) | 8.06 (7.67–11.1) | 6.05 (4.12–9.29) | 0.002 |
Nitrate (U) (µM/mM creatinine) | 167 (119–239) | 102 (73.3–184) | 115 (80.2–156) | <0.001 |
Nitrite (U) (µM/mM creatinine) | 0.22 (0.15–0.35) | 0.13 (0.11–0.34) | 0.24 (0.16–0.46) | 0.338 |
UNOxR | 752 (511–1025) | 666 (391–864) | 501 (285–864) | 0.009 |
CF Patients | Healthy Control | p | ||
---|---|---|---|---|
Liver involvement | No liver involvement | |||
Number of subjects (n) | 8 | 62 | 78 | - |
Age years | 12.0 (7.86–17.1) | 11.8 (8.25–14.0) | 11.3 (8.19–13.2) | 0.611 |
Male (n (%)) | 3 (37.5) | 27 (43.5) | 39 (50.0) | 0.707+ |
Arg (P) (µM) | 83.3 ± 18.8 | 91.2 ± 20.6 | 75.6 ± 18.6 | <0.001 |
Citrulline (P) (µM) | 36.5 (28.3–38.5) | 36.0 (29.0–43.5) | not measured | 0.619 |
ADMA (P) (µM) | 0.60 ± 0.16 | 0.62 ± 0.12 | 0.57 ± 0.11 | 0.088 |
Arg/ADMA (P) | 141 ± 16.4 | 149 ± 29.1 | 135 ± 33.7 | 0.040 |
Nitrate (P) (µM) | 39.0 (35.4–40.9) | 44.4 (37.8–52.8) | 33.1 (27.1–42.8) | <0.001 |
Nitrite (P) (µM) | 2.06 (1.63–2.37) | 2.07 (1.86–2.27) | 1.95 (0.83–2.33) | 0.100 |
PNOxR | 18.3 (16.3–21.8) | 21.4 (17.6–25.1) | 22.8 (14.0–41.9) | 0.531 |
ADMA (U) (µM/mM creatinine) | 7.14 ± 2.76 | 8.31 ± 3.26 | 7.21 ± 3.13 | 0.146 |
DMA (U) (µM/mM creatinine) | 57.3 (41.5–87.8) | 58.2 (47.7–70.2) | 40.7 (25.9–56.0) | <0.001 |
DMA/ADMA (U) | 9.64 (6.93–12.2) | 7.41 (6.36–8.16) | 6.05 (4.12–9.29) | 0.001 |
Nitrate (U) (µM/mM creatinine) | 110 (90.0–229) | 167 (120–221) | 115 (80.2–156) | 0.002 |
Nitrite (U) (µM/mM creatinine) | 0.17 (0.09–0.81) | 0.20 (0.14–0.35) | 0.24 (0.16–0.46) | 0.707 |
UNOxR | 652 (304–986] | 746 (576–1026] | 501 (285–864] | 0.007 |
CF Patients | p | ||
---|---|---|---|
Nutritional Failure a | Sufficient Nourishmentb | ||
Number of subjects (n) | 11 | 11 | - |
Age (years) | 13.2 (10.2–14.2) | 13.1 (10.1–14.7) | 0.949 |
Male (n (%)) | 3 (27.3) | 3 (27.3) | 1.000 |
Systolic blood pressure (mmHg) | 115 (108–116) | 114 (112–120) | 0.606 |
Diastolic blood pressure (mmHg) | 62 (60–72) | 70 (60–75) | 0.365 |
Arg (P) (µM) | 88.2 ± 16.8 | 95.2 ± 18.3 | 0.367 |
Citrulline (P) (µM) | 33.3 ± 10.2 | 37.2 ± 9.26 | 0.358 |
ADMA (P) (µM) | 0.68 ± 0.11 | 0.61 ± 0.12 | 0.169 |
Arg/ADMA (P) | 130 ± 19.1 | 158 ± 26.5 | 0.010 |
Nitrate (P) (µM) | 50.4 ± 16.6 | 44.1 ± 12.4 | 0.322 |
Nitrite (P) (µM) | 2.03 (1.85–2.34) | 1.91 (1.81–2.70) | 0.748 |
PNOxR | 25.1 ± 9.07 | 20.6 ± 6.25 | 0.191 |
ADMA (U) (µM/mM creatinine) | 8.93 (7.12–10.3) | 6.53 (5.40–7.58) | 0.007 |
DMA (U) (µM/mM creatinine) | 56.5 (52.3–65.6) | 46.6 (43.5–70.9) | 0.151 |
DMA/ADMA | 7.31 (6.05–7.79) | 7.84 (6.42–10.3) | 0.193 |
Nitrate (U) (µM/mM creatinine) | 203 ± 105 | 142 ± 57.2 | 0.105 |
Nitrite (U) (µM/mM creatinine) | 0.24 ± 0.10 | 0.18 ± 0.08 | 0.120 |
UNOxR | 912 ± 404 | 855 ± 277 | 0.701 |
CF Patients | p | ||
---|---|---|---|
Nutritional Failure a | Sufficient Nourishment b | ||
Number of subjects (n) | 11 | 11 | - |
Height (percentile) | 35.0 ± 27.2 | 39.1 ± 21.7 | 0.699 |
BMIp (percentile) | 3.56 (1.25–6.75) | 45.9 (28.0–68.2) | <0.001 |
Shwachmann-Score | 70 (65–75) | 75 (75–75) | 0.008 |
FEV1% | 73.0 ± 22.2 | 96.2 ± 16.3 | 0.011 |
MEF25% | 43.3 ± 27.6 | 74.1 ± 53.4 | 0.105 |
Crispin-Norman-Score | 10.4 ± 5.39 | 4.55 ± 2.94 | 0.005 |
FENO (ppb) | 8.20 (4.70–15.7) | 10.2 (7.08–13.2) | 0.765 |
Fischer-Quotient | 3.50 ± 0.85 | 3.27 ± 0.43 | 0.432 |
Prothrombin time (%) | 81.8 ± 9.38 | 81.2 ± 11.6 | 0.889 |
Cholesterol (mM) | 3.39 ± 0.57 | 3.62 ± 0.91 | 0.538 |
Triglycerides (mM) | 1.05 (0.77–1.37) | 1.36 (0.92–2.12) | 0.203 |
Urea (mM) | 3.95 ± 0.79 | 4.07 ± 1.19 | 0.787 |
GFR (mL/min) | 145 ± 11.4 | 129 ± 17.6 | 0.020 |
Pancreas sufficiency (n (%)) | 1 (9.1) | 2 (18.2) | 1.00+ |
Liver involvement (n (%)) | 1 (9.1) | 2 (18.2) | 1.00+ |
P. aeruginosa negative (n (%)) | 5 (45.5) | 8 (72.2) | 0.387+ |
ABPA (n (%)) | 3 (27.3) | 1 (9.1) | 0.586+ |
Acute infect (n (%)) | 6 (54.5) | 5 (45.5) | 1.00+ |
Steroid treatment (n (%)) | 5 (45.5) | 2 (18.2) | 0.361+ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brinkmann, F.; Hanusch, B.; Ballmann, M.; Mayorandan, S.; Bollenbach, A.; Chobanyan-Jürgens, K.; Jansen, K.; Schmidt-Choudhury, A.; Derichs, N.; Tsikas, D.; et al. Activated L-Arginine/Nitric Oxide Pathway in Pediatric Cystic Fibrosis and Its Association with Pancreatic Insufficiency, Liver Involvement and Nourishment: An Overview and New Results. J. Clin. Med. 2020, 9, 2012. https://doi.org/10.3390/jcm9062012
Brinkmann F, Hanusch B, Ballmann M, Mayorandan S, Bollenbach A, Chobanyan-Jürgens K, Jansen K, Schmidt-Choudhury A, Derichs N, Tsikas D, et al. Activated L-Arginine/Nitric Oxide Pathway in Pediatric Cystic Fibrosis and Its Association with Pancreatic Insufficiency, Liver Involvement and Nourishment: An Overview and New Results. Journal of Clinical Medicine. 2020; 9(6):2012. https://doi.org/10.3390/jcm9062012
Chicago/Turabian StyleBrinkmann, Folke, Beatrice Hanusch, Manfred Ballmann, Sebene Mayorandan, Alexander Bollenbach, Kristine Chobanyan-Jürgens, Kathrin Jansen, Anjona Schmidt-Choudhury, Nico Derichs, Dimitrios Tsikas, and et al. 2020. "Activated L-Arginine/Nitric Oxide Pathway in Pediatric Cystic Fibrosis and Its Association with Pancreatic Insufficiency, Liver Involvement and Nourishment: An Overview and New Results" Journal of Clinical Medicine 9, no. 6: 2012. https://doi.org/10.3390/jcm9062012
APA StyleBrinkmann, F., Hanusch, B., Ballmann, M., Mayorandan, S., Bollenbach, A., Chobanyan-Jürgens, K., Jansen, K., Schmidt-Choudhury, A., Derichs, N., Tsikas, D., & Lücke, T. (2020). Activated L-Arginine/Nitric Oxide Pathway in Pediatric Cystic Fibrosis and Its Association with Pancreatic Insufficiency, Liver Involvement and Nourishment: An Overview and New Results. Journal of Clinical Medicine, 9(6), 2012. https://doi.org/10.3390/jcm9062012