The Combined Effect of Low-dose Atropine with Orthokeratology in Pediatric Myopia Control: Review of the Current Treatment Status for Myopia
Abstract
:1. Introduction
2. Mechanism of Action
2.1. Atropine
2.2. Orthokeratology
3. Low-Dose Atropine Efficacy
4. Overnight Orthokeratology Efficacy
5. Efficacy of Low-Dose Atropine Combined with Orthokeratology
6. Safety and Complications
6.1. Atropine
6.2. Orthokeratology
7. Future Research
7.1. When to Interrupt Treatment for Myopia Control?
7.2. New Spectacles Design
7.3. Daily Soft Contact Lenses
7.4. Outdoors Activities and Sunlight Exposition
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Morgan, I.G.; Ohno-Matsui, K.; Saw, S.M. Myopia. Lancet 2012, 379, 1739–1748. [Google Scholar] [CrossRef]
- Pan, C.W.; Ramamurthy, D.; Saw, S.M. Worldwide prevalence and risk factors for myopia. Ophthalmic Physiol. Opt. 2012. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.Y.; Ferreira, A.; Hughes, R.; Carter, G.; Mitchell, P. Epidemiology and disease burden of pathologic myopia and myopic choroidal neovascularization: An evidence-based systematic review. Am. J. Ophthalmol. 2014, 157. [Google Scholar] [CrossRef] [PubMed]
- Zadnik, K.; Sinnott, L.T.; Cotter, S.A.; Jones-Jordan, L.A.; Kleinstein, R.N.; Manny, R.E.; Mutti, D.O.; Hullett, S.; Sims, J.; Weeks, R.; et al. Prediction of juvenile-onset myopia. JAMA Ophthalmol. 2015, 133, 683–689. [Google Scholar] [CrossRef] [PubMed]
- Grzybowski, A.; Kanclerz, P.; Tsubota, K.; Lanca, C.; Saw, S.M. A review on the epidemiology of myopia in school children worldwide. BMC Ophthalmol. 2020, 20, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, H.; Long, E.; Ding, X.; Diao, H.; Chen, Z.; Liu, R.; Huang, J.; Cai, J.; Xu, S.; Zhang, X.; et al. Prediction of myopia development among Chinese school-aged children using refraction data from electronic medical records: A retrospective, multicentre machine learning study. PLoS Med. 2018, 15. [Google Scholar] [CrossRef] [PubMed]
- Medina, A. The progression of corrected myopia. Graefe’s Arch. Clin. Exp. Ophthalmol. 2015, 253, 1273–1277. [Google Scholar] [CrossRef] [Green Version]
- Morgan, I.G.; He, M.; Rose, K.A. Epidemic of pathologic myopia: What can laboratory studies and epidemiology tell us? Retina 2017, 37, 989–997. [Google Scholar] [CrossRef]
- Walline, J.J. Myopia control: A review. Eye Contact Lens 2016, 42, 3–8. [Google Scholar] [CrossRef]
- Leo, S.W.; Adio, A.; Fernandez, A.; Godts, D.; Mojon, D.; Salchow, D.J.; Granet, D.B.; Bremond-Gignac, D.; Li, J.; Nischal, K.K.; et al. Current approaches to myopia control. Curr. Opin. Ophthalmol. 2017, 28, 267–275. [Google Scholar] [CrossRef]
- Lin, H.J.; Wei, C.C.; Chang, C.Y.; Chen, T.H.; Hsu, Y.A.; Hsieh, Y.C.; Chen, H.J.; Wan, L. Role of Chronic Inflammation in Myopia Progression: Clinical Evidence and Experimental Validation. EBioMedicine 2016, 10, 269–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pugazhendhi, S.; Ambati, B.; Hunter, A.A. Pathogenesis and prevention of worsening axial elongation in pathological myopia. Clin. Ophthalmol. 2020, 14, 853–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tkatchenko, T.V.; Troilo, D.; Benavente-Perez, A.; Tkatchenko, A.V. Gene expression in response to optical defocus of opposite signs reveals bidirectional mechanism of visually guided eye growth. PLoS Biol. 2018, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Read, S.A.; Fuss, J.A.; Vincent, S.J.; Collins, M.J.; Alonso-Caneiro, D. Choroidal changes in human myopia: Insights from optical coherence tomography imaging. Clin. Exp. Optom. 2019, 102, 270–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Upadhyay, A.; Beuerman, R.W. Biological Mechanisms of Atropine Control of Myopia. Eye Contact Lens 2020, 46, 129–135. [Google Scholar] [CrossRef]
- Matthijs Blankesteijn, W. Has the search for a marker of activated fibroblasts finally come to an end? J. Mol. Cell. Cardiol. 2015, 88, 120–123. [Google Scholar] [CrossRef]
- Nickla, D.L.; Zhu, X.; Wallman, J. Effects of muscarinic agents on chick choroids in intact eyes and eyecups: Evidence for a muscarinic mechanism in choroidal thinning. Ophthalmic Physiol. Opt. 2013, 33, 245–256. [Google Scholar] [CrossRef] [Green Version]
- Chiang, S.T.H.; Phillips, J.R. Effect of Atropine Eye Drops on Choroidal Thinning Induced by Hyperopic Retinal Defocus. J. Ophthalmol. 2018, 2018, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Prepas, S.B. Light, literacy and the absence of ultraviolet radiation in the development of myopia. Med. Hypotheses 2008, 70, 635–637. [Google Scholar] [CrossRef]
- Metlapally, R.; Wildsoet, C.F. Scleral Mechanisms Underlying Ocular Growth and Myopia. In Progress in Molecular Biology and Translational Science; Elsevier B.V.: Berkeley, CA, USA, 2015; Volume 134, pp. 241–248. ISBN 9780128010594. [Google Scholar]
- Gong, Q.; Janowski, M.; Luo, M.; Wei, H.; Chen, B.; Yang, G.; Liu, L. Efficacy and adverse effects of atropine in childhood myopia a meta-analysis. JAMA Ophthalmol. 2017, 135, 624–630. [Google Scholar] [CrossRef]
- Tan, D.T.H. Author’s reply. Singap. Med. J. 2018, 59, 507. [Google Scholar] [CrossRef]
- Chen, R.; Yu, J.; Lipson, M.; Cheema, A.A.; Chen, Y.; Lian, H.; Huang, J.; McAlinden, C. Comparison of four different orthokeratology lenses in controlling myopia progression. Contact Lens Anterior Eye 2019, 43. [Google Scholar] [CrossRef]
- Smith, E.L.; Hung, L.F.; Huang, J.; Arumugam, B. Effects of local myopic defocus on refractive development in monkeys. Optom. Vis. Sci. 2013, 90, 1176–1186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charm, J. Orthokeratology: Clinical utility and patient perspectives. Clin. Optom. 2017, 9, 33–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lum, E.; Swarbrick, H.A. Lens Dk/t influences the clinical response in overnight orthokeratology. Optom. Vis. Sci. 2011, 88, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, Y.G. Comparison of myopia control between toric and spherical periphery design orthokeratology in myopic children with moderate-to-high corneal astigmatism. Int. J. Ophthalmol. 2018, 11, 650–655. [Google Scholar] [CrossRef]
- Jiang, J.; Lian, L.; Wang, F.; Zhou, L.; Zhang, X.; Song, E. Comparison of Toric and Spherical Orthokeratology Lenses in Patients with Astigmatism. J. Ophthalmol. 2019, 2019. [Google Scholar] [CrossRef]
- Yam, J.C.; Jiang, Y.; Tang, S.M.; Law, A.K.P.; Chan, J.J.; Wong, E.; Ko, S.T.; Young, A.L.; Tham, C.C.; Chen, L.J.; et al. Low-Concentration Atropine for Myopia Progression (LAMP) Study: A Randomized, Double-Blinded, Placebo-Controlled Trial of 0.05%, 0.025%, and 0.01% Atropine Eye Drops in Myopia Control. Ophthalmology 2019, 126, 11–124. [Google Scholar] [CrossRef]
- Chia, A.; Chua, W.H.; Wen, L.; Fong, A.; Goon, Y.Y.; Tan, D. Atropine for the treatment of childhood myopia: Changes after stopping atropine 0.01%, 0.1% and 0.5%. Am. J. Ophthalmol. 2014, 157, 451–457. [Google Scholar] [CrossRef]
- Huang, J.; Wen, D.; Wang, Q.; McAlinden, C.; Flitcroft, I.; Chen, H.; Saw, S.M.; Chen, H.; Bao, F.; Zhao, Y.; et al. Efficacy comparison of 16 interventions for myopia control in children: A network meta-analysis. Ophthalmology 2016, 123, 697–708. [Google Scholar] [CrossRef] [Green Version]
- Chia, A.; Chua, W.H.; Cheung, Y.B.; Wong, W.L.; Lingham, A.; Fong, A.; Tan, D. Atropine for the treatment of childhood Myopia: Safety and efficacy of 0.5%, 0.1%, and 0.01% doses (Atropine for the Treatment of Myopia 2). Ophthalmology 2012, 119, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Azuara-Blanco, A.; Logan, N.; Strang, N.; Saunders, K.; Allen, P.M.; Weir, R.; Doherty, P.; Adams, C.; Gardner, E.; Hogg, R.; et al. Low-dose (0.01%) atropine eye-drops to reduce progression of myopia in children: A multicentre placebo-controlled randomised trial in the UK (CHAMP-UK)—Study protocol. Br. J. Ophthalmol. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.M.; Wu, S.S.; Kang, M.T.; Liu, Y.; Jia, S.M.; Li, S.Y.; Zhan, S.Y.; Liu, L.R.; Li, H.; Chen, W.; et al. Atropine slows myopia progression more in asian than white children by meta-analysis. Optom. Vis. Sci. 2014, 91, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Fu, A.; Stapleton, F.; Wei, L.; Wang, W.; Zhao, B.; Watt, K.; Ji, N.; Lyu, Y. Effect of low-dose atropine on myopia progression, pupil diameter and accommodative amplitude: Low-dose atropine and myopia progression. Br. J. Ophthalmol. 2020. [Google Scholar] [CrossRef]
- Chia, A.; Lu, Q.S.; Tan, D. Five-Year Clinical Trial on Atropine for the Treatment of Myopia 2 Myopia Control with Atropine 0.01% Eyedrops. Ophthalmology 2016, 123, 391–399. [Google Scholar] [CrossRef]
- Charm, J.; Cho, P. High myopia-partial reduction ortho-k: A 2-year randomized study. Optom. Vis. Sci. 2013, 90, 530–539. [Google Scholar] [CrossRef] [Green Version]
- Santodomingo-Rubido, J.; Villa-Collar, C.; Gilmartin, B.; Gutiérrez-Ortega, R. Myopia control with orthokeratology contact lenses in Spain: Refractive and biometric changes. Investig. Ophthalmol. Vis. Sci. 2012, 53, 5060–5065. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.Y.; Cheung, S.W.; Cho, P. Orthokeratology for slowing myopic progression in a pair of identical twins. Contact Lens Anterior Eye 2014, 37, 116–119. [Google Scholar] [CrossRef]
- Pauné, J.; Morales, H.; Armengol, J.; Quevedo, L.; Faria-Ribeiro, M.; González-Méijome, J.M. Myopia Control with a Novel Peripheral Gradient Soft Lens and Orthokeratology: A 2-Year Clinical Trial. Biomed Res. Int. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Du, Y.; Liu, Q.; Ren, C.; Liu, J.; Wang, Q.; Li, L.; Yu, J. Effects of orthokeratology on the progression of low to moderate myopia in Chinese children. BMC Ophthalmol. 2016, 16. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Xu, F.; Zhang, T.; Liu, M.; Wang, D.; Chen, Y.; Liu, Q. Orthokeratology to control myopia progression: A meta-analysis. PLoS ONE 2015, 10, e0124535. [Google Scholar] [CrossRef]
- Zhou, J.; Xie, P.; Wang, D.; Guo, X.; Yang, L. The long-term clinical effects of orthokeratology in high myopia children. Chin. J. Ophthalmol. 2015, 51, 515–519. [Google Scholar] [CrossRef]
- Lee, Y.C.; Wang, J.H.; Chiu, C.J. Effect of Orthokeratology on myopia progression: Twelve-year results of a retrospective cohort study. BMC Ophthalmol. 2017, 17, 243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiraoka, T.; Sekine, Y.; Okamoto, F.; Mihashi, T.; Oshika, T. Safety and efficacy following 10-years of overnight orthokeratology for myopia control. Ophthalmic Physiol. Opt. 2018, 38, 281–289. [Google Scholar] [CrossRef]
- Santodomingo-Rubido, J.; Villa-Collar, C.; Gilmartin, B.; Gutiérrez-Ortega, R.; Sugimoto, K. Long-term Efficacy of Orthokeratology Contact Lens Wear in Controlling the Progression of Childhood Myopia. Curr. Eye Res. 2017, 42, 713–720. [Google Scholar] [CrossRef] [Green Version]
- Cho, P.; Tan, Q. Myopia and orthokeratology for myopia control. Clin. Exp. Optom. 2019, 102, 364–377. [Google Scholar] [CrossRef] [Green Version]
- Bullimore, M.A.; Johnson, L.A. Overnight orthokeratology. Contact Lens Anterior Eye 2020. [Google Scholar] [CrossRef]
- Nti, A.N.; Berntsen, D.A. Optical changes and visual performance with orthokeratology. Clin. Exp. Optom. 2020, 103, 44–54. [Google Scholar] [CrossRef] [Green Version]
- Lyu, Y.; Ji, N.; Fu, A.-C.; Wang, W.-Q.; Wei, L.; Qin, J.; Zhao, B.-X. Comparison of Administration of 0.02% Atropine and Orthokeratology for Myopia Control. Eye Contact Lens Sci. Clin. Pract. 2020. [Google Scholar] [CrossRef]
- Kinoshita, N.; Konno, Y.; Hamada, N.; Kanda, Y.; Shimmura-Tomita, M.; Kakehashi, A. Additive effects of orthokeratology and atropine 0.01% ophthalmic solution in slowing axial elongation in children with myopia: First year results. Jpn. J. Ophthalmol. 2018, 62, 544–553. [Google Scholar] [CrossRef]
- Wan, L.; Wei, C.-C.; Chen, C.; Chang, C.-Y.; Lin, C.-J.; Chen, J.; Tien, P.-T.; Lin, H.-J. The Synergistic Effects of Orthokeratology and Atropine in Slowing the Progression of Myopia. J. Clin. Med. 2018, 7, 259. [Google Scholar] [CrossRef] [PubMed]
- Tan, Q.; Ng, A.L.K.; Cheng, G.P.M.; Woo, V.C.P.; Cho, P. Combined Atropine with Orthokeratology for Myopia Control: Study Design and Preliminary Results. Curr. Eye Res. 2019, 44, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Huang, S.; Zhou, J.; Xiaomei, Q.; Zhou, X.; Xue, F. Adjunctive effect of orthokeratology and low dose atropine on axial elongation in fast-progressing myopic children—A preliminary retrospective study. Contact Lens Anterior Eye 2019, 42, 439–442. [Google Scholar] [CrossRef] [PubMed]
- Verzhanskaya, T.Y.; Tarutta, E.P. Stabilizing effectiveness of orthokeratology and long-term minute-concentration atropine therapy in myopia (draft report). Vestn. Oftalmol. 2017, 133, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Ip, J.M.; Rose, K.A.; Morgan, I.G.; Burlutsky, G.; Mitchell, P. Myopia and the urban environment: Findings in a sample of 12-year-old Australian school children. Investig. Ophthalmol. Vis. Sci. 2008, 49, 3858–3863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, W.; Li, Z.; Hu, Y.; Jiang, J.; Long, W.; Cui, D.; Chen, W.; Yang, X. Short-term effects of atropine combined with orthokeratology (ACO) on choroidal thickness. Contact Lens Anterior Eye 2020. [Google Scholar] [CrossRef]
- Wu, P.C.; Chuang, M.N.; Choi, J.; Chen, H.; Wu, G.; Ohno-Matsui, K.; Jonas, J.B.; Cheung, C.M.G. Update in myopia and treatment strategy of atropine use in myopia control. Eye 2019, 33, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Tan, D.; Tay, S.A.; Loh, K.L.; Chia, A. Topical atropine in the control of myopia. Asia-Pac. J. Ophthalmol. 2016, 5, 424–428. [Google Scholar] [CrossRef]
- Pineles, S.L.; Kraker, R.T.; VanderVeen, D.K.; Hutchinson, A.K.; Galvin, J.A.; Wilson, L.B.; Lambert, S.R. Atropine for the Prevention of Myopia Progression in Children: A Report by the American Academy of Ophthalmology. Ophthalmology 2017, 124, 1857–1866. [Google Scholar] [CrossRef]
- Chen, Q.; Li, M.; Yuan, Y.; Me, R.; Yu, Y.; Shi, G.; Ke, B. Interaction between Corneal and Internal Ocular Aberrations Induced by Orthokeratology and Its Influential Factors. Biomed Res. Int. 2017. [Google Scholar] [CrossRef] [Green Version]
- Tong, L.; Huang, X.L.; Koh, A.L.T.; Zhang, X.; Tan, D.T.H.; Chua, W.H. Atropine for the Treatment of Childhood Myopia: Effect on Myopia Progression after Cessation of Atropine. Ophthalmology 2009, 116, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Lixia, L.; Weizhong, L.; Yunru, L.; Feng, Z.; Can, C.; Zhikuan, Y. Treatment outcomes of myopic anisometropia with 1% atropine: A pilot study. Optom. Vis. Sci. 2013, 90, 1486–1492. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wang, L.; Gao, J.; Yang, M.; Zhao, Q. Influence of Overnight Orthokeratology on Corneal Surface Shape and Optical Quality. J. Ophthalmol. 2017, 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gifford, P.; Li, M.; Lu, H.; Miu, J.; Panjaya, M.; Swarbrick, H.A. Corneal versus ocular aberrations after overnight orthokeratology. Optom. Vis. Sci. 2013, 90, 439–447. [Google Scholar] [CrossRef]
- Chang, C.-F.; Cheng, H.-C. Effect of Orthokeratology Lens on Contrast Sensitivity Function and High-Order Aberrations in Children and Adults. Eye Contact Lens Sci. Clin. Pract. 2019. [Google Scholar] [CrossRef]
- Santolaria-Sanz, E.; Cerviño, A.; González-Méijome, J.M. Corneal Aberrations, Contrast Sensitivity, and Light Distortion in Orthokeratology Patients: 1-Year Results. J. Ophthalmol. 2016. [Google Scholar] [CrossRef] [Green Version]
- Santodomingo-Rubido, J.; Villa-Collar, C.; Gilmartin, B.; Gutiérrez-Ortega, R.; Suzaki, A. Short- and long-term changes in corneal aberrations and axial length induced by orthokeratology in children are not correlated. Eye Contact Lens 2017, 43, 358–363. [Google Scholar] [CrossRef] [Green Version]
- Yoo, Y.S.; Kim, D.Y.; Byun, Y.S.; Ji, Q.; Chung, I.K.; Whang, W.J.; Park, M.R.; Kim, H.S.; Na, K.S.; Joo, C.K.; et al. Impact of peripheral optical properties induced by orthokeratology lens use on myopia progression. Heliyon 2020, 6. [Google Scholar] [CrossRef]
- Lian, Y.; Shen, M.; Huang, S.; Yuan, Y.; Wang, Y.; Zhu, D.; Jiang, J.; Mao, X.; Wang, J.; Lu, F. Corneal reshaping and wavefront aberrations during overnight orthokeratology. Eye Contact Lens 2014, 40, 161–168. [Google Scholar] [CrossRef]
- Guo, X.; Xie, P. Corneal thickness and endothelial observation for youth myopia patients fitted with Ortho-K lens for seven years. Chin. J. Ophthalmol. 2014, 50, 9–13. [Google Scholar] [CrossRef]
- Yeh, T.N.; Green, H.M.; Zhou, Y.; Pitts, J.; Kitamata-Wong, B.; Lee, S.; Wang, S.L.; Lin, M.C. Short-term effects of overnight orthokeratology on corneal epithelial permeability and biomechanical properties. Investig. Ophthalmol. Vis. Sci. 2013, 54, 3902–3911. [Google Scholar] [CrossRef] [PubMed]
- Miao, C.; Xu, X.; Zhang, H. Analysis of corneal complications in children wearing orthokeratology lenses at night. Chin. J. Ophthalmol. 2017, 53, 198–202. [Google Scholar] [CrossRef]
- Santolaria Sanz, E.; Cerviño, A.; Queiros, A.; Villa-Collar, C.; Lopes-Ferreira, D.; González-Méijome, J.M. anue. Short-term changes in light distortion in orthokeratology subjects. Biomed Res. Int. 2015, 2015, 278425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watt, K.; Swarbrick, H.A. Microbial keratitis in overnight orthokeratology: Review of the first 50 cases. Eye Contact Lens 2005, 31, 201–208. [Google Scholar] [CrossRef]
- Tseng, C.H.; Fong, C.F.; Chen, W.L.; Hou, Y.C.; Wang, I.J.; Hu, F.R. Overnight orthokeratology-associated microbial keratitis. Cornea 2005, 24, 778–782. [Google Scholar] [CrossRef]
- Stapleton, F.; Edwards, K.; Keay, L.; Naduvilath, T.; Dart, J.K.G.; Brian, G.; Holden, B. Risk factors for moderate and severe microbial keratitis in daily wear contact lens users. Ophthalmology 2012, 119, 1516–1521. [Google Scholar] [CrossRef]
- Dart, J.K.G.; Radford, C.F.; Minassian, D.; Verma, S.; Stapleton, F. Risk Factors for Microbial Keratitis with Contemporary Contact Lenses. A Case-Control Study. Ophthalmology 2008, 115. [Google Scholar] [CrossRef]
- Khor, W.B.; Prajna, V.N.; Garg, P.; Mehta, J.S.; Xie, L.; Liu, Z.; Padilla, M.D.B.; Joo, C.K.; Inoue, Y.; Goseyarakwong, P.; et al. The Asia Cornea Society Infectious Keratitis Study: A Prospective Multicenter Study of Infectious Keratitis in Asia. Am. J. Ophthalmol. 2018, 195, 161–170. [Google Scholar] [CrossRef]
- Liu, Y.M.; Xie, P. The safety of orthokeratology—A systematic review. Eye Contact Lens 2016, 42, 35–42. [Google Scholar] [CrossRef]
- Cho, P.; Cheung, S.W. Discontinuation of orthokeratology on eyeball elongation (DOEE). Contact Lens Anterior Eye 2017, 40, 82–87. [Google Scholar] [CrossRef]
- Kang, P. Optical and pharmacological strategies of myopia control. Clin. Exp. Optom. 2018, 101, 321–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanda, H.; Oshika, T.; Hiraoka, T.; Hasebe, S.; Ohno-Matsui, K.; Ishiko, S.; Hieda, O.; Torii, H.; Varnas, S.R.; Fujikado, T. Effect of spectacle lenses designed to reduce relative peripheral hyperopia on myopia progression in Japanese children: A 2-year multicenter randomized controlled trial. Jpn. J. Ophthalmol. 2018, 62, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Woo, G.C.; Drobe, B.; Schmid, K.L. Effect of bifocal and prismatic bifocal spectacles on myopia progression in children: Three-year results of a randomized clinical trial. Jama Ophthalmol. 2014, 132, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Lam, C.S.Y.; Tang, W.C.; Tse, D.Y.Y.; Lee, R.P.K.; Chun, R.K.M.; Hasegawa, K.; Qi, H.; Hatanaka, T.; To, C.H. Defocus incorporated multiple segments (DIMS) spectacle lenses slow myopia progression: A 2-year randomised clinical trial. Br. J. Ophthalmol. 2020, 104, 363–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, X.; Brennan, N.A.; Toubouti, Y.; Greenaway, N.L. Safety of soft contact lenses in children: Retrospective review of six randomized controlled trials of myopia control. Acta Ophthalmol. 2020, 98, e346–e351. [Google Scholar] [CrossRef]
- Ruiz-Pomeda, A.; Pérez-Sánchez, B.; Valls, I.; Prieto-Garrido, F.L.; Gutiérrez-Ortega, R.; Villa-Collar, C. MiSight Assessment Study Spain (MASS). A 2-year randomized clinical trial. Graefe’s Arch. Clin. Exp. Ophthalmol. 2018, 256, 1011–1021. [Google Scholar] [CrossRef]
- Chamberlain, P.; Peixoto-De-Matos, S.C.; Logan, N.S.; Ngo, C.; Jones, D.; Young, G. A 3-year Randomized Clinical Trial of MiSight Lenses for Myopia Control. Optom. Vis. Sci. 2019, 96, 556–567. [Google Scholar] [CrossRef] [Green Version]
- Xiong, S.; Sankaridurg, P.; Naduvilath, T.; Zang, J.; Zou, H.; Zhu, J.; Lv, M.; He, X.; Xu, X. Time spent in outdoor activities in relation to myopia prevention and control: A meta-analysis and systematic review. Acta Ophthalmol. 2017, 95, 551–566. [Google Scholar] [CrossRef] [Green Version]
- Sherwin, J.C.; Reacher, M.H.; Keogh, R.H.; Khawaja, A.P.; MacKey, D.A.; Foster, P.J. The association between time spent outdoors and myopia in children and adolescents: A systematic review and meta-analysis. Ophthalmology 2012, 119, 2141–2151. [Google Scholar] [CrossRef]
Author (Year) | Patients | Follow-up (Months) | Treatment | Control | ||
---|---|---|---|---|---|---|
Atropine | Δ AXL (mm) | Group | Δ AXL (mm) | |||
Fu et al. [35] 2020 | 142 | 12 | 0.01% | 0.37 ± 0.22 * | SVG | 0.46 ± 0.35 * |
Azuara-Blanco et al. [33] 2019 | 289 | 24 | 0.01% | NR | Placebo | NR |
Yam et al. [29] 2019 | 438 | 12 | 0.01% | 0.36 ± 0.29 * | Placebo | 0.41 ± 0.22 * |
Author (Year) | Patients | Follow-up (Months) | Treatment Group (OK) | Control | |||
---|---|---|---|---|---|---|---|
Δ SE (D) | Δ AXL (mm) | Group | Δ SE (D) | Δ AXL (mm) | |||
Santodomingo-Rubido et al. [46] 2017 | 30 | 84 | 0.29 ± 0.10 * | 0.91 ± 0.27 * | SVG | −5.00 ± 0.43 * | 1.35 ± 0.27 * |
Lee et al. [44] 2017 | 102 | 24 | 0.17 ± 0.02 * | NR | SVG | −0.52 ± 0.03 * | NR |
Hiraoka et al. [45] 2018 | 92 | 120 | −1.,26 ± 0.98 * | NR | SCL | −1.79 ± 1.24 * | NR |
Lyu et al. [50] 2020 | 247 | 24 | NR | 0.58 ± 0.35 | AT | NR | 0.36 ± 0.30 * |
Author (Year) | Age (Years) | Rx (D) | Follow-up (Months) | Treatment Group | Control Group | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Combination (n) | ∆ Rx (D) | Post VA (LogMAR) | ∆ AXL (mm) | ∆ AXL (mm) | Therapy Alone (n) | ∆ Rx (D) | Post VA (LogMAR) | ||||
Kinoshita et al. [51] 2018 | 10.6 | −2.88 | 12 | 0.01% AT + OK (20) | NR | NR | 0.09 ± 0.12 * | 0.19 ± 0.15 * | OK (20) | NR | NR |
Wan et al. [52] 2018 | 10.4 | −4.25 | 24 | 0.125% AT + OK (20) | ↑ 0.50 D | 0.01 ± 0.01 | 0.55 ± 0.12 * | 0.58 ± 0.09 * | OK (26) | ↑ 0.55 D | 0.01 ± 0.01 |
Wan et al. [52] 2018 | 10.3 | −4.58 | 24 | 0.025% AT + OK (20) | ↑ 0.30 D | 0.01 ± 0.01 | 0.65 ± 0.18 * | 0.83 ± 0.16 * | OK (20) | ↑ 0.83 D | 0.01 ± 0.01 |
Wan et al. [52] 2018 | 10.9 | −6.75 | 24 | 0.125% AT + OK (24) | ↑ 0.25 D | 0.01 ± 0.01 | 0.57 ± 0.17 * | 0.64 ± 0.14 * | OK (29) | ↑ 0.45 D | 0.01 ± 0.01 |
Wan et al. [52] 2018 | 10.8 | −6.48 | 24 | 0.025% AT + OK (20) | ↑ 0.49 D | 0.01 ± 0.00 | 0.58 ± 0.08 * | 0.40 ± 0.15 * | OK (20) | ↑ 0.65 D | 0.01 ± 0.00 |
Chen et al. [54] 2018 | 8.3 | −2.65 | 24 | 0.01% AT + OK (60) | NR | NR | 0.14 ± 0.14 * | 0.25 ± 0.08 * | OK (29) | NR | NR |
Tan et al. [53] 2019 | 9.0 | −2.79 | 1 | 0.01% AT + OK (33) | NR | −0.04 ± 0.07 | −0.05 ± 0.05 * | −0.02 ± 0.03 * | OK (35) | NR | −0.03 ± 0.07 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-González, J.-M.; De-Hita-Cantalejo, C.; Baustita-Llamas, M.-J.; Sánchez-González, M.C.; Capote-Puente, R. The Combined Effect of Low-dose Atropine with Orthokeratology in Pediatric Myopia Control: Review of the Current Treatment Status for Myopia. J. Clin. Med. 2020, 9, 2371. https://doi.org/10.3390/jcm9082371
Sánchez-González J-M, De-Hita-Cantalejo C, Baustita-Llamas M-J, Sánchez-González MC, Capote-Puente R. The Combined Effect of Low-dose Atropine with Orthokeratology in Pediatric Myopia Control: Review of the Current Treatment Status for Myopia. Journal of Clinical Medicine. 2020; 9(8):2371. https://doi.org/10.3390/jcm9082371
Chicago/Turabian StyleSánchez-González, José-María, Concepción De-Hita-Cantalejo, María-José Baustita-Llamas, María Carmen Sánchez-González, and Raúl Capote-Puente. 2020. "The Combined Effect of Low-dose Atropine with Orthokeratology in Pediatric Myopia Control: Review of the Current Treatment Status for Myopia" Journal of Clinical Medicine 9, no. 8: 2371. https://doi.org/10.3390/jcm9082371
APA StyleSánchez-González, J. -M., De-Hita-Cantalejo, C., Baustita-Llamas, M. -J., Sánchez-González, M. C., & Capote-Puente, R. (2020). The Combined Effect of Low-dose Atropine with Orthokeratology in Pediatric Myopia Control: Review of the Current Treatment Status for Myopia. Journal of Clinical Medicine, 9(8), 2371. https://doi.org/10.3390/jcm9082371