Effects of 24-Week Exergame Intervention on the Gray Matter Volume of Different Brain Structures in Women with Fibromyalgia: A Single-Blind, Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Trial Design
2.2. Participants
2.3. Interventions
2.4. Data Collection and Outcomes
2.5. Image Acquisition
2.6. Image Processing
2.7. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wolfe, F.; Clauw, D.J.; Fitzcharles, M.A.; Goldenberg, D.L.; Katz, R.S.; Mease, P.; Russell, A.S.; Russell, I.J.; Winfield, J.B.; Yunus, M.B. The American College of Rheumatology preliminary diagnostic criteria for fibromyalgia and measurement of symptom severity. Arthritis Care Res. 2010, 62, 600–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verbunt, J.A.; Pernot, D.H.; Smeets, R.J. Disability and quality of life in patients with fibromyalgia. Health Qual. Life Outcomes 2008, 6, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mas, A.; Carmona, L.; Valverde, M.; Ribas, B. Prevalence and impact of fibromyalgia on function and quality of life in individuals from the general population: Results from a nationwide study in Spain. Clin. Exp. Rheumatol. 2008, 26, 519. [Google Scholar]
- Castillo, D.; Ernst, T.; Cunningham, E.; Chang, L. Altered associations between pain symptoms and brain morphometry in the pain matrix of HIV-seropositive individuals. J. Neuroimmune Pharmacol. 2018, 13, 77–89. [Google Scholar] [CrossRef] [PubMed]
- McCrae, C.S.; O’Shea, A.M.; Boissoneault, J.; Vatthauer, K.E.; Robinson, M.E.; Staud, R.; Perlstein, W.M.; Craggs, J.G. Fibromyalgia patients have reduced hippocampal volume compared with healthy controls. J. Pain Res. 2015, 8, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, M.E.; Craggs, J.G.; Price, D.D.; Perlstein, W.M.; Staud, R. Gray matter volumes of pain-related brain areas are decreased in fibromyalgia syndrome. J. Pain 2011, 12, 436–443. [Google Scholar] [CrossRef] [Green Version]
- Harris, R.E.; Sundgren, P.C.; Craig, A.D.; Kirshenbaum, E.; Sen, A.; Napadow, V.; Clauw, D.J. Elevated insular glutamate in fibromyalgia is associated with experimental pain. Arthritis Rheum. 2009, 60, 3146–3152. [Google Scholar] [CrossRef] [Green Version]
- Kuchinad, A.; Schweinhardt, P.; Seminowicz, D.A.; Wood, P.B.; Chizh, B.A.; Bushnell, M.C. Accelerated brain gray matter loss in fibromyalgia patients: Premature aging of the brain? J. Neurosci. 2007, 27, 4004–4007. [Google Scholar] [CrossRef]
- Pujol, J.; Macià, D.; Garcia-Fontanals, A.; Blanco-Hinojo, L.; López-Solà, M.; Garcia-Blanco, S.; Poca-Dias, V.; Harrison, B.J.; Contreras-Rodríguez, O.; Monfort, J. The contribution of sensory system functional connectivity reduction to clinical pain in fibromyalgia. PAIN® 2014, 155, 1492–1503. [Google Scholar] [CrossRef]
- Jensen, K.B.; Loitoile, R.; Kosek, E.; Petzke, F.; Carville, S.; Fransson, P.; Marcus, H.; Williams, S.C.R.; Choy, E.; Mainguy, Y. Patients with fibromyalgia display less functional connectivity in the brain’s pain inhibitory network. Mol. Pain 2012, 8, 1744–8069. [Google Scholar] [CrossRef] [Green Version]
- Staud, R. Brain imaging in fibromyalgia syndrome. Clin. Exp. Rheumatol. 2011, 29, S109–S117. [Google Scholar] [PubMed]
- Clauw, D.J.; Arnold, L.M.; McCarberg, B.H. The Science of Fibromyalgia; Elsevier: Amsterdam, The Netherlands, 2011; pp. 907–911. [Google Scholar]
- Sawaddiruk, P.; Paiboonworachat, S.; Chattipakorn, N.; Chattipakorn, S.C. Alterations of brain activity in fibromyalgia patients. J. Clin. Neurosci. 2017, 38, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Burgmer, M.; Gaubitz, M.; Konrad, C.; Wrenger, M.; Hilgart, S.; Heuft, G.; Pfleiderer, B. Decreased gray matter volumes in the cingulo-frontal cortex and the amygdala in patients with fibromyalgia. Psychosom. Med. 2009, 71, 566–573. [Google Scholar] [CrossRef] [PubMed]
- Cohen, H. Controversies and challenges in fibromyalgia: A review and a proposal. Ther. Adv. Musculoskelet. Dis. 2017, 9, 115–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bidonde, J.; Jean Busch, A.; Bath, B.; Milosavljevic, S. Exercise for adults with fibromyalgia: An umbrella systematic review with synthesis of best evidence. Curr. Rheumatol. Rev. 2014, 10, 45–79. [Google Scholar] [CrossRef] [PubMed]
- Andrade, A.; Dominski, F.H.; Sieczkowska, S.M. What we already know about the effects of exercise in patients with fibromyalgia: An umbrella review. In Seminars in Arthritis and Rheumatism; WB Saunders: Philadelphia, PA, USA, 2020. [Google Scholar]
- Macfarlane, G.J.; Kronisch, C.; Dean, L.E.; Atzeni, F.; Häuser, W.; Fluß, E.; Choy, E.; Kosek, E.; Amris, K.; Branco, J. EULAR revised recommendations for the management of fibromyalgia. Ann. Rheum. Dis. 2017, 76, 318–328. [Google Scholar] [CrossRef]
- Hillman, C.H.; Erickson, K.I.; Kramer, A.F. Be smart, exercise your heart: Exercise effects on brain and cognition. Nat. Rev. Neurosci. 2008, 9, 58–65. [Google Scholar] [CrossRef]
- Di Liegro, C.M.; Schiera, G.; Proia, P.; Di Liegro, I. Physical activity and brain health. Genes 2019, 10, 720. [Google Scholar] [CrossRef] [Green Version]
- Voelcker-Rehage, C.; Niemann, C. Structural and functional brain changes related to different types of physical activity across the life span. Neurosci. Biobehav. Rev. 2013, 37, 2268–2295. [Google Scholar] [CrossRef]
- Killgore, W.D.S.; Olson, E.A.; Weber, M. Physical exercise habits correlate with gray matter volume of the hippocampus in healthy adult humans. Sci. Rep. 2013, 3, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Haeger, A.; Costa, A.S.; Schulz, J.B.; Reetz, K. Cerebral changes improved by physical activity during cognitive decline: A systematic review on MRI studies. NeuroImage Clin. 2019, 101933. [Google Scholar] [CrossRef] [PubMed]
- Firth, J.; Stubbs, B.; Vancampfort, D.; Schuch, F.; Lagopoulos, J.; Rosenbaum, S.; Ward, P.B. Effect of aerobic exercise on hippocampal volume in humans: A systematic review and meta-analysis. Neuroimage 2018, 166, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Erickson, K.I.; Voss, M.W.; Prakash, R.S.; Basak, C.; Szabo, A.; Chaddock, L.; Kim, J.S.; Heo, S.; Alves, H.; White, S.M. Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. USA 2011, 108, 3017–3022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motl, R.W.; Pilutti, L.A.; Hubbard, E.A.; Wetter, N.C.; Sosnoff, J.J.; Sutton, B.P. Cardiorespiratory fitness and its association with thalamic, hippocampal, and basal ganglia volumes in multiple sclerosis. NeuroImage Clin. 2015, 7, 661–666. [Google Scholar] [CrossRef] [Green Version]
- Vancampfort, D.; Probst, M.; De Hert, M.; Soundy, A.; Stubbs, B.; Stroobants, M.; De Herdt, A. Neurobiological effects of physical exercise in schizophrenia: A systematic review. Disabil. Rehabil. 2014, 36, 1749–1754. [Google Scholar] [CrossRef]
- Costa, M.T.S.; Vieira, L.P.; de Oliveira Barbosa, E.; Oliveira, L.M.; Maillot, P.; Vaghetti, C.A.O.; Carta, M.G.; Machado, S.; Gatica-Rojas, V.; Monteiro-Junior, R.S. Virtual reality-based exercise with exergames as medicine in different contexts: A short review. Clin. Pract. Epidemiol. Ment. Health CP EMH 2019, 15, 15. [Google Scholar] [CrossRef] [Green Version]
- Park, E.C.; Kim, S.G.; Lee, C.W. The effects of virtual reality game exercise on balance and gait of the elderly. J. Phys. Ther. Sci. 2015, 27, 1157–1159. [Google Scholar] [CrossRef] [Green Version]
- Collado-Mateo, D.; Dominguez-Muñoz, F.J.; Adsuar, J.C.; Garcia-Gordillo, M.A.; Gusi, N. Effects of exergames on quality of life, pain, and disease effect in women with fibromyalgia: A randomized controlled trial. Arch. Phys. Med. Rehabil. 2017, 98, 1725–1731. [Google Scholar] [CrossRef]
- Collado-Mateo, D.; Dominguez-Muñoz, F.J.; Adsuar, J.C.; Merellano-Navarro, E.; Gusi, N. Exergames for women with fibromyalgia: A randomised controlled trial to evaluate the effects on mobility skills, balance and fear of falling. PeerJ 2017, 5, e3211. [Google Scholar] [CrossRef] [Green Version]
- Villafaina, S.; Collado-Mateo, D.; Fuentes, J.P.; Rohlfs-Domínguez, P.; Gusi, N. Effects of exergames on brain dynamics in women with fibromyalgia: A Randomized controlled trial. J. Clin. Med. 2019, 8, 1015. [Google Scholar] [CrossRef] [Green Version]
- Anderson-Hanley, C.; Barcelos, N.M.; Zimmerman, E.A.; Gillen, R.W.; Dunnam, M.; Cohen, B.D.; Yerokhin, V.; Miller, K.E.; Hayes, D.J.; Arciero, P.J. The aerobic and cognitive exercise study (ACES) for community-dwelling older adults with or at-risk for mild cognitive impairment (MCI): Neuropsychological, neurobiological and neuroimaging outcomes of a randomized clinical trial. Front. Aging Neurosci. 2018, 10, 76. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Zhang, H.; Potter, G.G.; Zang, Y.F.; Steffens, D.C.; Guo, H.; Wang, L. Multiple neuroimaging measures for examining exercise-induced neuroplasticity in older adults: A quasi-experimental study. Front. Aging Neurosci. 2017, 9, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Central, B. Effectivity of Virtual Reality Physical Exercise Program in Brain and Motor Aging in Fibromyalgia. Available online: http://www.isrctn.com/ISRCTN65034180 (accessed on 29 July 2020).
- Martín-Martínez, J.P.; Villafaina, S.; Collado-Mateo, D.; Pérez-Gómez, J.; Gusi, N. Effects of 24-week exergame intervention on physical function under single-and dual-task conditions in fibromyalgia: A randomized controlled trial. Scand. J. Med. Sci. Sports 2019, 29, 1610–1617. [Google Scholar] [CrossRef] [PubMed]
- Villafaina, S.; Collado-Mateo, D.; Domínguez-Muñoz, F.J.; Gusi, N.; Fuentes-Garcia, J.P. Effects of exergames on heart rate variability of women with fibromyalgia: A randomized controlled trial. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Villafaina, S.; Borrega-Mouquinho, Y.; Fuentes-García, J.P.; Collado-Mateo, D.; Gusi, N. Effect of exergame training and detraining on lower-body strength, agility, and cardiorespiratory fitness in women with fibromyalgia: Single-blinded randomized controlled trial. Int. J. Environ. Res. Public Health 2020, 17, 161. [Google Scholar] [CrossRef] [Green Version]
- Lewis, G.N.; Rosie, J.A. Virtual reality games for movement rehabilitation in neurological conditions: How do we meet the needs and expectations of the users? Disabil. Rehabil. 2012, 34, 1880–1886. [Google Scholar] [CrossRef]
- Burckhardt, C.S.; Clark, S.; Bennett, R. Fibromyalgia and quality of life: A comparative analysis. J. Rheumatol. 1993, 20, 475–479. [Google Scholar]
- Bennett, R. The Fibromyalgia Impact Questionnaire (FIQ): A review of its development, current version, operating characteristics and uses. Clin. Exp. Rheumatol. 2005, 23, S154. [Google Scholar]
- Esteve-Vives, J.; Redondo, J.R.; Salvat, M.I.S.; de Gracia Blanco, M.; de Miquele, C.A. Proposal for a consensus version of the Fibromyalgia Impact Questionnaire (FIQ) for the Spanish population. Reumatología Clínica 2007, 3, 21–24. [Google Scholar] [CrossRef]
- Rodríguez-Andreu, J.; Ibáñez-Bosch, R.; Portero-Vázquez, A.; Masramon, X.; Rejas, J.; Gálvez, R. Cognitive impairment in patients with fibromyalgia syndrome as assessed by the mini-mental state examination. BMC Musculoskelet. Disord. 2009, 10, 162. [Google Scholar] [CrossRef] [Green Version]
- Segura-Jiménez, V.; Álvarez-Gallardo, I.C.; Carbonell-Baeza, A.; Aparicio, V.A.; Ortega, F.B.; Casimiro, A.J.; Delgado-Fernández, M. Fibromyalgia has a larger impact on physical health than on psychological health, yet both are markedly affected: The al-Ándalus project. In Seminars in Arthritis and Rheumatism; WB Saunders: Philadelphia, PA, USA, 2015; pp. 563–570. [Google Scholar]
- Pankoff, B.A.; Overend, T.J.; Lucy, S.D.; White, K.P. Reliability of the six-minute walk test in people with fibromyalgia. Arthritis Care Res. 2000, 13, 291–295. [Google Scholar] [CrossRef]
- Cade, W.T.; Bohnert, K.L.; Reeds, D.N.; Peterson, L.R.; Bittel, A.J.; Bashir, A.; Byrne, B.J.; Taylor, C.L. Peak oxygen uptake (VO2peak) across childhood, adolescence and young adulthood in Barth syndrome: Data from cross-sectional and longitudinal studies. PLoS ONE 2018, 13, e0197776. [Google Scholar] [CrossRef]
- King, S.; Wessel, J.; Bhambhani, Y.; Maikala, R.; Sholter, D.; Maksymowych, W. Validity and reliability of the 6 minute walk in persons with fibromyalgia. J. Rheumatol. 1999, 26, 2233–2237. [Google Scholar] [PubMed]
- Fischl, B. FreeSurfer. Available online: http://surfer.nmr.mgh.harvard.edu/ (accessed on 29 July 2020).
- Fischl, B. FreeSurfer Recon-All. Available online: http://surfer.nmr.mgh.harvard.edu/fswiki/recon-all (accessed on 29 July 2020).
- Reuter, M.; Rosas, H.D.; Fischl, B. Highly accurate inverse consistent registration: A robust approach. Neuroimage 2010, 53, 1181–1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ségonne, F.; Dale, A.M.; Busa, E.; Glessner, M.; Salat, D.; Hahn, H.K.; Fischl, B. A hybrid approach to the skull stripping problem in MRI. Neuroimage 2004, 22, 1060–1075. [Google Scholar] [CrossRef] [PubMed]
- Fischl, B.; Salat, D.H.; Van Der Kouwe, A.J.W.; Makris, N.; Ségonne, F.; Quinn, B.T.; Dale, A.M. Sequence-independent segmentation of magnetic resonance images. Neuroimage 2004, 23, S69–S84. [Google Scholar] [CrossRef] [Green Version]
- Fischl, B.; Dale, A.M. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc. Natl. Acad. Sci. USA 2000, 97, 11050–11055. [Google Scholar] [CrossRef] [Green Version]
- Sled, J.G.; Zijdenbos, A.P.; Evans, A.C. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 1998, 17, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Ségonne, F.; Pacheco, J.; Fischl, B. Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Trans. Med. Imaging 2007, 26, 518–529. [Google Scholar] [CrossRef]
- Murga, I.; Guillen, V.; Lafuente, J.-V. Cambios en la resonancia magnética cerebral asociados al síndrome de fibromialgia. Med. Clin. (Barc.) 2017, 148, 511–516. [Google Scholar] [CrossRef]
- Gómez-Argüelles, J.M.; Maestú-Unturbe, C.; Gómez-Aguilera, E.J. Neuroimagen en fibromialgia. Rev. Neurol. 2018, 67, 394–402. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.; White, I.R.; Carlin, J.B.; Spratt, M.; Royston, P.; Kenward, M.G.; Wood, A.M.; Carpenter, J.R. Multiple imputation for missing data in epidemiological and clinical research: Potential and pitfalls. BMJ 2009, 338, b2393. [Google Scholar] [CrossRef] [PubMed]
- Fritz, C.O.; Morris, P.E.; Richler, J.J. Effect size estimates: Current use, calculations, and interpretation. J. Exp. Psychol. Gen. 2012, 141, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J. Statistical Power Analysis for the Social Sciences; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1988. [Google Scholar]
- Adcock, M.; Fankhauser, M.; Post, J.; Lutz, K.; Zizlsperger, L.; Luft, A.R.; Guimarães, V.; Schättin, A.; de Bruin, E.D. Effects of an in-home multicomponent exergame training on physical functions, cognition, and brain volume of older adults: A randomized controlled trial. Front. Med. 2020, 6, 321. [Google Scholar] [CrossRef]
- Thomas, A.G.; Dennis, A.; Rawlings, N.B.; Stagg, C.J.; Matthews, L.; Morris, M.; Kolind, S.H.; Foxley, S.; Jenkinson, M.; Nichols, T.E. Multi-modal characterization of rapid anterior hippocampal volume increase associated with aerobic exercise. Neuroimage 2016, 131, 162–170. [Google Scholar] [CrossRef] [Green Version]
- Wittfeld, K.; Jochem, C.; Dörr, M.; Schminke, U.; Gläser, S.; Bahls, M.; Markus, M.R.P.; Felix, S.B.; Leitzmann, M.F.; Ewert, R. Cardiorespiratory fitness and gray matter volume in the temporal, frontal, and cerebellar regions in the general population. In Mayo Clinic Proceedings; Elsevier: Amsterdam, The Netherlands, 2020; pp. 44–56. [Google Scholar]
- Gondoh, Y.; Sensui, H.; Kinomura, S.; Fukuda, H.; Fujimoto, T.; Masud, M.; Nagamatsu, T.; Tamaki, H.; Takekura, H. Effects of aerobic exercise training on brain structure and psychological well-being in young adults. J. Sports Med. Phys. Fit. 2009, 49, 129. [Google Scholar]
- Rehfeld, K.; Lüders, A.; Hökelmann, A.; Lessmann, V.; Kaufmann, J.; Brigadski, T.; Müller, P.; Müller, N.G. Dance training is superior to repetitive physical exercise in inducing brain plasticity in the elderly. PLoS ONE 2018, 13, e0196636. [Google Scholar] [CrossRef] [Green Version]
- Niemann, C.; Godde, B.; Voelcker-Rehage, C. Not only cardiovascular, but also coordinative exercise increases hippocampal volume in older adults. Front. Aging Neurosci. 2014, 6, 170. [Google Scholar] [CrossRef] [Green Version]
- Erickson, K.I.; Leckie, R.L.; Weinstein, A.M. Physical activity, fitness, and gray matter volume. Neurobiol. Aging 2014, 35, S20–S28. [Google Scholar] [CrossRef] [Green Version]
- Schmidt-Wilcke, T.; Luerding, R.; Weigand, T.; Jürgens, T.; Schuierer, G.; Leinisch, E.; Bogdahn, U. Striatal grey matter increase in patients suffering from fibromyalgia—A voxel-based morphometry study. Pain 2007, 132, S109–S116. [Google Scholar] [CrossRef]
- Jensen, K.B.; Srinivasan, P.; Spaeth, R.; Tan, Y.; Kosek, E.; Petzke, F.; Carville, S.; Fransson, P.; Marcus, H.; Williams, S.C.R. Overlapping structural and functional brain changes in patients with long-term exposure to fibromyalgia pain. Arthritis Rheum. 2013, 65, 3293–3303. [Google Scholar] [CrossRef] [PubMed]
- Apkarian, A.V.; Sosa, Y.; Krauss, B.R.; Thomas, P.S.; Fredrickson, B.E.; Levy, R.E.; Harden, R.N.; Chialvo, D.R. Chronic pain patients are impaired on an emotional decision-making task. Pain 2004, 108, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Erickson, K.I.; Prakash, R.S.; Voss, M.W.; Chaddock, L.; Hu, L.; Morris, K.S.; White, S.M.; Wójcicki, T.R.; McAuley, E.; Kramer, A.F. Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus 2009, 19, 1030–1039. [Google Scholar] [CrossRef] [Green Version]
- Pereira, A.C.; Huddleston, D.E.; Brickman, A.M.; Sosunov, A.A.; Hen, R.; McKhann, G.M.; Sloan, R.; Gage, F.H.; Brown, T.R.; Small, S.A. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc. Natl. Acad. Sci. USA 2007, 104, 5638–5643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masaoka, Y.; Homma, I. The source generator of respiratory-related anxiety potential in the human brain. Neurosci. Lett. 2000, 283, 21–24. [Google Scholar] [CrossRef]
- Thieme, K.; Turk, D.C.; Flor, H. Comorbid depression and anxiety in fibromyalgia syndrome: Relationship to somatic and psychosocial variables. Psychosom. Med. 2004, 66, 837–844. [Google Scholar] [CrossRef]
- Gormsen, L.; Rosenberg, R.; Bach, F.W.; Jensen, T.S. Depression, anxiety, health-related quality of life and pain in patients with chronic fibromyalgia and neuropathic pain. Eur. J. Pain 2010, 14, e121–e127. [Google Scholar] [CrossRef]
- Pagano, T.; Matsutani, L.A.; Ferreira, E.A.G.; Marques, A.P.; Pereira, C.A.d.B. Assessment of anxiety and quality of life in fibromyalgia patients. São Paulo Med. J. 2004, 122, 252–258. [Google Scholar] [CrossRef]
- Taki, Y.; Kinomura, S.; Sato, K.; Goto, R.; Kawashima, R.; Fukuda, H. A longitudinal study of gray matter volume decline with age and modifying factors. Neurobiol. Aging 2011, 32, 907–915. [Google Scholar] [CrossRef]
Variable | Exercise Group Median (IQR) | Control Group Median (IQR) | Value of the Contrast | p-Value |
---|---|---|---|---|
Sample size | 25 | 25 | ||
Age (Years) | 54.00 (16.00) | 53.00 (13.00) | −0.351 | 0.800 |
Height (cm) | 160.00 (11.00) | 159.00 (7.00) | −0.351 | 0.800 |
Weight (Kg) | 69.30 (16.20) | 72.35 (19.40) | −0.470 | 0.800 |
BMI (Kg/m²) | 27.00 (4.30) | 28.35 (7.40) | −0.650 | 0.800 |
FIQ-100 | 57.58 (28.47) | 63.90 (23.56) | −0.490 | 0.800 |
Years with FM | 8.50 (10.75) | 11.00 (10.25) | −0.308 | 0.800 |
pVO2 (ml/Kg/min) | 23.77 (4.24) | 24.46 (5.38) | −0.019 | 0.985 |
MMSE | 29.00 (1.00) | 28.50 (2.25) | −2.151 | 0.460 |
Left Hippocampus | 3.04 (0.43) | 2.93 (0.36) | −1.660 | 0.460 |
Right Hippocampus | 3.08 (0.31) | 3.07 (0.33) | −0.760 | 0.800 |
Left Insula | 3.35 (2.06) | 3.34 (2.49) | −0.919 | 0.800 |
Right Insula | 3.82 (1.70) | 4.28 (1.21) | −0.809 | 0.800 |
Left Amygdala | 1.37 (0.19) | 1.41 (0.16) | −0.319 | 0.800 |
Right Amygdala | 1.63 (0.18) | 1.64 (0.22) | −0.873 | 0.800 |
Left Thalamus | 7.83 (0.94) | 7.51 (0.61) | −1.532 | 0.477 |
Right Thalamus | 7.07 (0.81) | 6.81 (0.66) | −1.724 | 0.460 |
Left Cerebellum | 48.37 (9.92) | 46.12 (8.09) | −0.958 | 0.800 |
Right Cerebellum | 51.39 (13.14) | 49.04 (11.27) | −1.681 | 0.460 |
Total Cerebral GM | 436.10 (72.50) | 428.35 (126.54) | −0.319 | 0.800 |
Variables | Between Group Comparison | Within Group Comparison | |||||||
---|---|---|---|---|---|---|---|---|---|
Brain Areas (cm³) | Groups | Pre Median (IQR) | Post Median (IQR) | Value of the Contrast | p-Value | Effect Size | Value of the Contrast | p-Value | Effect Size |
L. Hippocampus | EG | 3.04 (0.43) | 3.15 (0.22) | −0.342 | 0.925 | −0.020 | −2.738 | 0.016 | −0.323 |
CG | 2.93 (0.36) | 3.07 (0.24) | −2.372 | 0.039 | −0.438 | ||||
R. Hippocampus | EG | 3.08 (0.31) | 3.26 (0.36) | −0.075 | 0.925 | 0.071 | −3.011 | 0.013 | −0.354 |
CG | 3.07 (0.33) | 3.15 (0.26) | −2.220 | 0.048 | −0.354 | ||||
L. Insula | EG | 3.35 (2.06) | 5.08 (3.16) | 0.013 | 0.925 | 0.053 | −3.320 | 0.007 | −1.037 |
CG | 3.34 (2.49) | 5.93 (1.12) | −2.896 | 0.016 | −1.245 | ||||
R. Insula | EG | 3.82 (1.70) | 5.76 (2.41) | −0.450 | 0.925 | 0.000 | −2.516 | 0.022 | −0.578 |
CG | 4.28 (1.21) | 5.87 (1.23) | −2.451 | 0.036 | −0.751 | ||||
L. Amygdala | EG | 1.37 (0.19) | 1.39 (0.17) | −0.501 | 0.925 | -0.090 | −0.633 | 0.527 | 0.088 |
CG | 1.41 (0.16) | 1.39 (0.11) | −0.087 | 0.931 | 0.003 | ||||
R. Amygdala | EG | 1.63 (0.18) | 1.68 (0.27) | −0.103 | 0.925 | 0.197 | −2.776 | 0.016 | −0.329 |
CG | 1.64 (0.22) | 1.65 (0.15) | −1.860 | 0.091 | −0.290 | ||||
L. Thalamus | EG | 7.83 (0.94) | 7.72 (0.80) | −0.918 | 0.925 | −0.145 | −4.107 | 0.020 | 0.272 |
CG | 7.51 (0.61) | 7.41 (0.65) | −4.074 | 0.075 | 0.208 | ||||
R. Thalamus | EG | 7.07 (0.81) | 6.95 (0.73) | −1.599 | 0.371 | −0.338 | −1.834 | 0.097 | 0.153 |
CG | 6.81 (0.66) | 6.74 (0.48) | −0.991 | 0.373 | −0.037 | ||||
L. Cerebellum | EG | 48.37 (9.92) | 50.80 (8.43) | 1.601 | 0.706 | -0.397 | −1.705 | 0.114 | −0.158 |
CG | 46.12 (8.09) | 48.27 (5.87) | −2.833 | 0.016 | −0.466 | ||||
R. Cerebellum | EG | 51.39 (13.14) | 52.00 (6.91) | −1.483 | 0.377 | -0.489 | −1.282 | 0.236 | −0.093 |
CG | 49.04 (11.27) | 50.36 (8.96) | −2.798 | 0.016 | −0.426 | ||||
Total Cerebral GM | EG | 436.10 (72.50) | 507.24 (92.04) | −0.595 | 0.814 | -0.177 | −3.750 | < 0.001 | −0.939 |
CG | 428.35 (126.54) | 521.54 (71.29) | −2.972 | 0.016 | −0.965 | ||||
pVO2 (ml/Kg/min) | EG | 23.77 (4.24) | 24.51 (3.86) | −1.911 | 0.371 | 0.462 | −0.807 | 0.455 | −0.108 |
CG | 23.62 (5.23) | 23.02 (5.52) | −1.601 | 0.142 | 0.132 | ||||
MMSE | EG | 29.00 (1.00) | 29.00 (2.50) | −0.983 | 0.706 | −0.108 | −1.996 | 0.075 | 0.404 |
CG | 28.00 (2.00) | 28.00 (4.00) | −0.945 | 0.373 | 0.248 |
Variables | Between Group Comparison | Within Group Comparison | |||||||
---|---|---|---|---|---|---|---|---|---|
Brain Areas (cm³) | Groups | Pre Median (IQR) | Post Median (IQR) | Value of the Contrast | p-Value | Effect Size | Value of the Contrast | p-Value | Effect Size |
L. Hippocampus | EG (N = 28) | 3.10 (0.44) | 3.17 (0.27) | −0.511 | 0.853 | −0.057 | −2.846 | 0.011 | −0.304 |
CG (N = 27) | 2.95 (0.37) | 3.07 (0.23) | −2.560 | 0.026 | −0.434 | ||||
R. Hippocampus | EG (N = 28) | 3.11 (0.31) | 3.28 (0.36) | −0.435 | 0.853 | 0.086 | −3.155 | 0.009 | −0.348 |
CG (N = 27) | 3.09 (0.35) | 3.16 (0.29) | −2.239 | 0.058 | −0.369 | ||||
L. Insula | EG (N = 28) | 3.44 (1.98) | 5.20 (2.64) | −0.549 | 0.853 | 0.107 | −3.628 | < 0.001 | −1.031 |
CG (N = 27) | 3.57 (2.10) | 5.76 (1.24) | −3.628 | < 0.001 | −1.283 | ||||
R. Insula | EG (N = 28) | 4.00 (1.73) | 5.71 (2.26) | −0.261 | 0.853 | 0.023 | −2.951 | 0.011 | −0.611 |
CG (N = 27) | 4.24 (1.66) | 5.78 (1.24) | −2.600 | 0.026 | −0.724 | ||||
L. Amygdala | EG (N = 28) | 1.37 (0.19) | 1.39 (0.17) | −0.301 | 0.853 | −0.150 | −0.557 | 0.593 | 0.127 |
CG (N = 27) | 1.39 (0.16) | 1.39 (0.13) | −0.237 | 0.816 | −0.025 | ||||
R. Amygdala | EG (N = 28) | 1.64 (0.19) | 1.69 (0.27) | −0.187 | 0.853 | 0.155 | −2.900 | 0.011 | -0.302 |
CG (N = 27) | 1.63 (0.22) | 1.65 (0.17) | −1.989 | 0.088 | −0.309 | ||||
L. Thalamus | EG (N = 28) | 7.92 (0.97) | 7.73 (0.83) | −0.559 | 0.853 | −0.159 | −2.774 | 0.030 | 0.288 |
CG (N = 27) | 7.53 (0.63) | 7.41 (0.66) | −2.050 | 0.088 | 0.222 | ||||
R. Thalamus | EG (N = 28) | 7.09 (0.81) | 6.95 (0.75) | −1.832 | 0.355 | −0.330 | −1.957 | 0.082 | 0.161 |
CG (N = 27) | 6.86 (0.68) | 6.74 (0.50) | −0.836 | 0.468 | −0.012 | ||||
L. Cerebellum | EG (N = 28) | 48.18 (8.60) | 50.53 (8.12) | −1.138 | 0.712 | −0.368 | −1.878 | 0.098 | –1.169 |
CG (N = 27) | 46.36 (7.46) | 49.01 (6.09) | −3.031 | 0.013 | −0.447 | ||||
R. Cerebellum | EG (N = 28) | 52.25 (11.40) | 52.18 (7.39) | −1.851 | 0.355 | −0.514 | −1.087 | 0.360 | −0.066 |
CG (N = 27) | 49.41 (10.03) | 50.36 (7.63) | −2.991 | 0.016 | −0.408 | ||||
Total Cerebral GM | EG (N = 28) | 438.64 (80.28) | 498.36 (88.08) | −0.962 | 0.787 | −0.177 | −3.821 | < 0.001 | −0.852 |
CG (N = 27) | 432.38 (125.40) | 520.53 (68.98) | −3.211 | 0.007 | −0.935 | ||||
pVO2 (ml/Kg/min) | EG (N = 28) | 23.87 (4.28) | 24.62 (3.88) | −2.189 | 0.355 | 0.466 | −1.139 | 0.301 | −0.126 |
CG (N = 27) | 24.08 (5.19) | 23.02 (5.37) | −1.685 | 0.126 | 0.134 | ||||
MMSE | EG (N = 28) | 29.00 (2.00) | 29.00 (2.50) | −1.098 | 0.712 | -0.109 | −2.113 | 0.055 | 0.388 |
CG (N = 27) | 29.00 (2.00) | 28.00 (4.00) | −0.945 | 0.407 | 0.231 |
Variables | pVO2 | MMSE | |
---|---|---|---|
L. Hippocampus | Correlation coefficient | 0.349 | 0.229 |
p-value | 0.017 | 0.125 | |
R. Hippocampus | Correlation coefficient | 0.478 | 0.205 |
p-value | 0.001 | 0.173 | |
L. Insula | Correlation coefficient | 0.102 | 0.248 |
p-value | 0.531 | 0.122 | |
R. Insula | Correlation coefficient | 0.102 | −0.137 |
p-value | 0.506 | 0.369 | |
L. Amygdala | Correlation coefficient | 0.363 | 0.144 |
p-value | 0.014 | 0.346 | |
R. Amygdala | Correlation coefficient | 0.360 | 0.054 |
p-value | 0.015 | 0.723 | |
L. Thalamus | Correlation coefficient | 0.265 | 0.146 |
p-value | 0.079 | 0.339 | |
R. Thalamus | Correlation coefficient | 0.249 | 0.259 |
p-value | 0.099 | 0.085 | |
L. Cerebellum | Correlation coefficient | 0.214 | 0.113 |
p-value | 0.158 | 0.458 | |
R. Cerebellum | Correlation coefficient | 0.288 | 0.179 |
p-value | 0.055 | 0.238 | |
Total Cerebral GM | Correlation coefficient | 0.194 | 0.246 |
p-value | 0.201 | 0.103 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leon-Llamas, J.L.; Villafaina, S.; Murillo-Garcia, A.; Dominguez-Muñoz, F.J.; Gusi, N. Effects of 24-Week Exergame Intervention on the Gray Matter Volume of Different Brain Structures in Women with Fibromyalgia: A Single-Blind, Randomized Controlled Trial. J. Clin. Med. 2020, 9, 2436. https://doi.org/10.3390/jcm9082436
Leon-Llamas JL, Villafaina S, Murillo-Garcia A, Dominguez-Muñoz FJ, Gusi N. Effects of 24-Week Exergame Intervention on the Gray Matter Volume of Different Brain Structures in Women with Fibromyalgia: A Single-Blind, Randomized Controlled Trial. Journal of Clinical Medicine. 2020; 9(8):2436. https://doi.org/10.3390/jcm9082436
Chicago/Turabian StyleLeon-Llamas, Juan Luis, Santos Villafaina, Alvaro Murillo-Garcia, Francisco Javier Dominguez-Muñoz, and Narcis Gusi. 2020. "Effects of 24-Week Exergame Intervention on the Gray Matter Volume of Different Brain Structures in Women with Fibromyalgia: A Single-Blind, Randomized Controlled Trial" Journal of Clinical Medicine 9, no. 8: 2436. https://doi.org/10.3390/jcm9082436
APA StyleLeon-Llamas, J. L., Villafaina, S., Murillo-Garcia, A., Dominguez-Muñoz, F. J., & Gusi, N. (2020). Effects of 24-Week Exergame Intervention on the Gray Matter Volume of Different Brain Structures in Women with Fibromyalgia: A Single-Blind, Randomized Controlled Trial. Journal of Clinical Medicine, 9(8), 2436. https://doi.org/10.3390/jcm9082436