Impact of Axial Eye Size on Retinal Microvasculature Density in the Macular Region
Abstract
:1. Introduction
2. Methods
2.1. Study Participants and Recruitment
2.2. Hypothesis and Sampling
2.3. Ocular Health, OCTA Imaging, Refraction and Biometry
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Holden, B.A.; Fricke, T.R.; Wilson, D.A.; Jong, M.; Naidoo, K.S.; Sankaridurg, P.; Wong, T.Y.; Naduvilath, T.J.; Resnikoff, S. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology 2016, 123, 1036–1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gifford, K.L.; Richdale, K.; Kang, P.; Aller, T.A.; Lam, C.S.; Liu, Y.M.; Michaud, L.; Mulder, J.; Orr, J.B.; Rose, K.A.; et al. Imi—Clinial management guidelines report. Investig. Ophthalmol. Vis. Sci. 2019, 60, M184–M203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abokyi, S.; Ilechie, A.; Nsiah, P.; Darko-Takyi, C.; Abu, E.K.; Osei-Akoto, Y.J.; Youfegan-Baanam, M. Visual impairment attributable to uncorrected refractive error and other causes in the ghanaian youth: The university of cape coast survey. J. Optom. 2016, 9, 64–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flitcroft, D.I. The complex interactions of retinal, optical and environmental factors in myopia aetiology. Prog. Retin. Eye Res. 2012, 31, 622–660. [Google Scholar] [CrossRef] [PubMed]
- Man, R.E.; Lamoureux, E.L.; Taouk, Y.; Xie, J.; Sasongko, M.B.; Best, W.J.; Noonan, J.E.; Kawasaki, R.; Wang, J.J.; Luu, C.D. Axial length, retinal function, and oxygen consumption: A potential mechanism for a lower risk of diabetic retinopathy in longer eyes. Investig. Ophthalmol. Vis. Sci. 2013, 54, 7691–7698. [Google Scholar] [CrossRef]
- Al-Sheikh, M.; Falavarjani, K.G.; Pfau, M.; Uji, A.; Le, P.P.; Sadda, S.R. Quantitative features of the choriocapillaris in healthy individuals using swept-source optical coherence tomography angiography. Ophthalmic Surg Lasers Imaging Retin. 2017, 48, 623–631. [Google Scholar] [CrossRef]
- Meng, W.; Butterworth, J.; Malecaze, F.; Calvas, P. Axial length of myopia: A review of current research. Ophthalmologica 2011, 225, 127–134. [Google Scholar] [CrossRef]
- Flitcroft, D.I. Emmetropisation and the aetiology of refractive errors. Eye 2014, 28, 169. [Google Scholar] [CrossRef] [Green Version]
- Coscas, F.; Sellam, A.; Glacet-Bernard, A.; Jung, C.; Goudot, M.; Miere, A.; Souied, E.H. Normative data for vascular density in superficial and deep capillary plexuses of healthy adults assessed by optical coherence tomography angiography. Investig. Ophthalmol. Vis. Sci. 2016, 57, OCT211–OCT223. [Google Scholar] [CrossRef]
- Sampson, D.M.; Gong, P.; An, D.; Menghini, M.; Hansen, A.; Mackey, D.A.; Sampson, D.D.; Chen, F.K. Axial length variation impacts on superficial retinal vessel density and foveal avascular zone area measurements using optical coherence tomography angiography. Investig. Ophthalmol. Vis. Sci. 2017, 58, 3065–3072. [Google Scholar] [CrossRef]
- Yu, D.Y.; Cringle, S.J. Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease. Prog. Retin. Eye Res. 2001, 20, 175–208. [Google Scholar] [CrossRef]
- Fotedar, R.; Wang, J.J.; Burlutsky, G.; Morgan, I.G.; Rose, K.; Wong, T.Y.; Mitchell, P. Distribution of axial length and ocular biometry measured using partial coherence laser interferometry (iol master) in an older white population. Ophthalmology 2010, 117, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Bueno-Gimeno, I.; Espana-Gregori, E.; Gene-Sampedro, A.; Lanzagorta-Aresti, A.; Pinero-Llorens, D.P. Relationship among corneal biomechanics, refractive error, and axial length. Optom. Vis. Sci. 2014, 91, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Foster, P.J.; Broadway, D.C.; Hayat, S.; Luben, R.; Dalzell, N.; Bingham, S.; Wareham, N.J.; Khaw, K.T. Refractive error, axial length and anterior chamber depth of the eye in british adults: The epic-norfolk eye study. Br. J. Ophthalmol. 2010, 94, 827–830. [Google Scholar] [CrossRef]
- Lim, L.S.; Cheung, C.Y.; Lin, X.; Mitchell, P.; Wong, T.Y.; Mei-Saw, S. Influence of refractive error and axial length on retinal vessel geometric characteristics. Investig. Ophthalmol. Vis. Sci. 2011, 52, 669–678. [Google Scholar] [CrossRef] [Green Version]
- Mutti, D.O.; Hayes, J.R.; Mitchell, G.L.; Jones, L.A.; Moeschberger, M.L.; Cotter, S.A.; Kleinstein, R.N.; Manny, R.E.; Twelker, J.D.; Zadnik, K.; et al. Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia. Investig. Ophthalmol. Vis. Sci. 2007, 48, 2510–2519. [Google Scholar] [CrossRef]
- Ip, J.M.; Huynh, S.C.; Kifley, A.; Rose, K.A.; Morgan, I.G.; Varma, R.; Mitchell, P. Variation of the contribution from axial length and other oculometric parameters to refraction by age and ethnicity. Investig. Ophthalmol. Vis. Sci. 2007, 48, 4846–4853. [Google Scholar] [CrossRef]
- Ojaimi, E.; Rose, K.A.; Morgan, I.G.; Smith, W.; Martin, F.J.; Kifley, A.; Robaei, D.; Mitchell, P. Distribution of ocular biometric parameters and refraction in a population-based study of australian children. Investig. Ophthalmol. Vis. Sci. 2005, 46, 2748–2754. [Google Scholar] [CrossRef] [Green Version]
- Lim, H.B.; Kim, Y.W.; Kim, J.M.; Jo, Y.J.; Kim, J.Y. The importance of signal strength in quantitative assessment of retinal vessel density using optical coherence tomography angiography. Sci. Rep. 2018, 8, 12897. [Google Scholar] [CrossRef]
- Khan, H.M.; Gentle, A.; Armitage, J.A.; To, C.H.; Lam, A.K.C. Multiple scan averaging to yield accurate quantitative analysis of optical coherence tomography angiograms. Sci. Rep. 2020, 10, 6194. [Google Scholar] [CrossRef]
- Garner, L.F.; Stewart, A.W.; Kinnear, R.F.; Frith, M.J. The nepal longitudinal study: Predicting myopia from the rate of increase in vitreous chamber depth. Optom. Vis. Sci. 2004, 81, 44–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pournaras, C.J.; Rungger-Brandle, E.; Riva, C.E.; Hardarson, S.H.; Stefansson, E. Regulation of retinal blood flow in health and disease. Prog. Retin. Eye Res. 2008, 27, 284–330. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Kong, X.; Jiang, C.; Li, M.; Yu, J.; Sun, X. Is the peripapillary retinal perfusion related to myopia in healthy eyes? A prospective comparative study. BMJ Open 2016, 6, e010791. [Google Scholar] [CrossRef]
- Benavente-Perez, A.; Hosking, S.L.; Logan, N.S.; Broadway, D.C. Ocular blood flow measurements in healthy human myopic eyes. Graefes Arch. Clin. Exp. Ophthalmol. 2010, 248, 1587–1594. [Google Scholar] [CrossRef] [PubMed]
- Shimada, N.; Ohno-Matsui, K.; Harino, S.; Yoshida, T.; Yasuzumi, K.; Kojima, A.; Kobayashi, K.; Futagami, S.; Tokoro, T.; Mochizuki, M. Reduction of retinal blood flow in high myopia. Graefes Arch. Clin. Exp. Ophthalmol. 2004, 242, 284–288. [Google Scholar] [CrossRef]
- Al-Sheikh, M.; Phasukkijwatana, N.; Dolz-Marco, R.; Rahimi, M.; Iafe, N.A.; Freund, K.B.; Sadda, S.R.; Sarraf, D. Quantitative oct angiography of the retinal microvasculature and the choriocapillaris in myopic eyes. Investig. Ophthalmol. Vis. Sci. 2017, 58, 2063–2069. [Google Scholar] [CrossRef] [Green Version]
- Fan, H.; Chen, H.Y.; Ma, H.J.; Chang, Z.; Yin, H.Q.; Ng, D.S.; Cheung, C.Y.; Hu, S.; Xiang, X.; Tang, S.B.; et al. Reduced macular vascular density in myopic eyes. Chin. Med. J. (Engl.) 2017, 130, 445–451. [Google Scholar] [CrossRef]
- Leng, Y.; Tam, E.K.; Falavarjani, K.G.; Tsui, I. Effect of age and myopia on retinal microvasculature. Ophthalmic Surg Lasers Imaging Retin. 2018, 49, 925–931. [Google Scholar] [CrossRef]
- Suwan, Y.; Fard, M.A.; Geyman, L.S.; Tantraworasin, A.; Chui, T.Y.; Rosen, R.B.; Ritch, R. Association of myopia with peripapillary perfused capillary density in patients with glaucoma: An optical coherence tomography angiography study. JAMA Ophthalmol. 2018, 136, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Mann, C.J. Observational research methods. Research design ii: Cohort, cross sectional, and case-control studies. Emerg. Med. J. 2003, 20, 54–60. [Google Scholar] [CrossRef]
- Mo, J.; Duan, A.; Chan, S.; Wang, X.; Wei, W. Vascular flow density in pathological myopia: An optical coherence tomography angiography study. BMJ Open 2017, 7, e013571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milani, P.; Montesano, G.; Rossetti, L.; Bergamini, F.; Pece, A. Vessel density, retinal thickness, and choriocapillaris vascular flow in myopic eyes on oct angiography. Graefes Arch. Clin. Exp. Ophthalmol. 2018, 256, 1419–1427. [Google Scholar] [CrossRef] [PubMed]
- Jaworski, A.; Gentle, A.; Zele, A.J.; Vingrys, A.J.; McBrien, N.A. Altered visual sensitivity in axial high myopia: A local postreceptoral phenomenon? Investig. Ophthalmol. Vis. Sci. 2006, 47, 3695–3702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutkowski, P.; May, C.A. Nutrition and vascular supply of retinal ganglion cells during human development. Front. Neurol. 2016, 7, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osborne, N.N.; Melena, J.; Chidlow, G.; Wood, J.P. A hypothesis to explain ganglion cell death caused by vascular insults at the optic nerve head: Possible implication for the treatment of glaucoma. Br. J. Ophthalmol. 2001, 85, 1252–1259. [Google Scholar] [CrossRef] [Green Version]
- Quigley, H.A.; Dunkelberger, G.R.; Green, W.R. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am. J. Ophthalmol. 1989, 107, 453–464. [Google Scholar] [CrossRef]
- Chen, W.; Song, H.; Xie, S.; Han, Q.; Tang, X.; Chu, Y. Correlation of macular choroidal thickness with concentrations of aqueous vascular endothelial growth factor in high myopia. Curr. Eye Res. 2015, 40, 307–313. [Google Scholar] [CrossRef]
- Takusagawa, H.L.; Liu, L.; Ma, K.N.; Jia, Y.; Gao, S.S.; Zhang, M.; Edmunds, B.; Parikh, M.; Tehrani, S.; Morrison, J.C.; et al. Projection-resolved optical coherence tomography angiography of macular retinal circulation in glaucoma. Ophthalmology 2017, 124, 1589–1599. [Google Scholar] [CrossRef]
- Park, S.H.; Cho, H.; Hwang, S.J.; Jeon, B.; Seong, M.; Yeom, H.; Kang, M.H.; Lim, H.W.; Shin, Y.U. Changes in the retinal microvasculature measured using optical coherence tomography angiography according to age. J. Clin. Med. 2020, 9, 883. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Jiang, H.; Shi, Y.; Qu, D.; Gregori, G.; Zheng, F.; Rundek, T.; Wang, J. Age-related alterations in the retinal microvasculature, microcirculation, and microstructure. Investig. Ophthalmol. Vis. Sci. 2017, 58, 3804–3817. [Google Scholar] [CrossRef] [Green Version]
- Llanas, S.; Linderman, R.E.; Chen, F.K.; Carroll, J. Assessing the use of incorrectly scaled optical coherence tomography angiography images in peer-reviewed studies: A systematic review. JAMA Ophthalmol. 2020, 138, 86–94. [Google Scholar] [CrossRef] [PubMed]
Descriptive(s) | ‘Hyperopes’ (<23.50 mm) | ‘Emmetropes’ (≥23.50 & ≤24.50 mm) | ‘Low Myopes’ (>24.50 & ≤25.50 mm) | ‘Moderate Myopes’ (>25.50mm & ≤26.49 mm) | ‘High Myopes’ (≥26.50 mm) | p Value |
---|---|---|---|---|---|---|
N (=104) | 20 | 30 | 18 | 17 | 19 | |
Age (years) | 21 (5) | 21 (4) | 21 (5) | 21 (10) | 21 (21) | 0.940 |
MSE (D) | +0.07 (1.59) | −1.44 (2.49) | −3.40 (4.14) | −5.00 (2.38) | −7.12 (3.63) | <0.001 |
Axial Length (mm) | 22.84 ± 0.73 | 24.05 ± 0.30 | 25.0 ± 0.32 | 26.02 ± 0.27 | 27.10 ± 0.55 | <0.001 |
Vitreous Chamber Depth (mm) | 15.69 ± 0.63 | 16.85 ± 0.49 | 17.88 ± 0.52 | 18.44 ± 0.51 | 19.63 ± 0.81 | <0.001 |
Gender (Male:Female = 40:64) | 4:16 | 11:19 | 7:11 | 8:9 | 10:9 | 0.281 |
Laterality (OD:OS = 69:35) | 16:4 | 21:9 | 11:7 | 10:7 | 11:8 | 0.540 |
Macular thickness (Aggregated; µm) | 309 ± 13.0 | 309 ± 13.7 | 307 ± 16.2 | 312 ± 13.5 | 308 ± 14.0 | 0.490 |
Macular thickness (Fovea; µm) | 256 ± 23.5 | 253 ± 19.5 | 249 ± 22.6 | 256 ± 17.4 | 254 ± 19.6 | 0.822 |
Macular thickness (para-fovea; µm) | 315 ± 12.9 | 316 ± 13.6 | 315 ± 15.9 | 317 ± 14.0 | 305 ± 14.7 | 0.859 |
Perfusion Area (aggregated; %) | 38.3% ± 1.53 | 38.6% ± 1.42 | 37.9% ± 1.56 | 37.5% ± 1.64 | 36.3% ± 1.26 | <0.001 |
Perfusion Area (fovea; %) | 21.9 ± 5.95 | 22.7 ± 4.53 | 20.6 ± 4.69 | 21.2 ± 4.16 | 20.4 ± 4.13 | 0.439 |
Perfusion Area (para-fovea; %) | 40.4% ± 1.48 | 40.6% ± 1.34 | 40.1% ± 1.48 | 39.6% ± 1.59 | 38.3% ± 1.2 | <0.001 |
VLD (aggregated;—mm−1) | 21.4 ± 0.86 | 21.7 ± 0.81 | 21.6 ± 0.92 | 21.4 ± 0.87 | 20.5 ± 0.68 | <0.001 |
VLD (fovea;—mm−1) | 12.5 ± 3.50 | 13.1 ± 2.56 | 12.1 ± 2.79 | 12.6 ± 2.30 | 12.2 ± 2.35 | 0.727 |
VLD (para-fovea;—mm−1) | 22.6 ± 0.81 | 22.9 ± 0.76 | 22.8 ± 0.88 | 22.5 ± 0.87 | 21.7 ± 0.76 | <0.001 |
GCL-IPL thickness (µm) | 84 (6) | 83 (5) | 80 (7) | 81 (9) | 77 (6) | <0.001 |
Outcome Measures | ‘Emmetropes’ vs ‘High Myopes’ | |
---|---|---|
Mean absolute difference (p-value) | Relative difference (%) | |
Perfusion Area (aggregated; %) | −2.24 (p < 0.001) | 5.8% |
Perfusion Area (para-fovea; %) | −2.24 (p < 0.001) | 5.5% |
VLD (aggregated;—mm−1) | −1.25 (p < 0.001) | 5.8% |
VLD (para-fovea;—mm−1) | −1.20 (p < 0.001) | 5.2% |
GCL-IPL thickness (µm) | −6.79 (p < 0.001) | 8.1% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.H.; Lam, A.K.C.; Armitage, J.A.; Hanna, L.; To, C.-h.; Gentle, A. Impact of Axial Eye Size on Retinal Microvasculature Density in the Macular Region. J. Clin. Med. 2020, 9, 2539. https://doi.org/10.3390/jcm9082539
Khan MH, Lam AKC, Armitage JA, Hanna L, To C-h, Gentle A. Impact of Axial Eye Size on Retinal Microvasculature Density in the Macular Region. Journal of Clinical Medicine. 2020; 9(8):2539. https://doi.org/10.3390/jcm9082539
Chicago/Turabian StyleKhan, M. Hafi, Andrew K. C. Lam, James A. Armitage, Lisa Hanna, Chi-ho To, and Alex Gentle. 2020. "Impact of Axial Eye Size on Retinal Microvasculature Density in the Macular Region" Journal of Clinical Medicine 9, no. 8: 2539. https://doi.org/10.3390/jcm9082539
APA StyleKhan, M. H., Lam, A. K. C., Armitage, J. A., Hanna, L., To, C. -h., & Gentle, A. (2020). Impact of Axial Eye Size on Retinal Microvasculature Density in the Macular Region. Journal of Clinical Medicine, 9(8), 2539. https://doi.org/10.3390/jcm9082539