Neural Visual Detection of Grain Weevil (Sitophilus granarius L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
- the air temperature,
- the air humidity,
- the amount of available food.
2.2. Method
- −
- mass (mg),
- −
- equivalent diameter (mm),
- −
- humidity (%),
- −
- hardness (according to the selected hardness scale).
3. Results and Discussion
- A—input layer: PSP function: linear, activation function: linear saturated function;
- B—hidden layer: PSP function: radial activation function–Gauss function;
- C—output layer: PSP function: linear saturated function, activation function: linear saturated function;
- PSP—postsynaptic potential.
- −
- RBFs are one-direction networks;
- −
- RBFs are trained with a “no teacher” technique;
- −
- they have a three-layer architecture: there is an input, hidden (radial) layer, and output layer,
- −
- the declared connections in the network allow only communication between the neurons from the neighboring layers;
- −
- the input neuron activation functions are of linear nature, the hidden neuron functions are of nonlinear (radial) nature, and the output neurons are fully linear.
- −
- n—number of cases;
- −
- yi—real values;
- −
- zi—values set with network.
- −
- 0.2322 for the training file;
- −
- 0.2462 for the validation file;
- −
- 0.2502 for the test file.
4. Conclusions
- The results of the study demonstrated that artificial neural networks can be used as effective tools supporting the process of identifying pests feeding on stored wheat grain.
- The generated RBF-type neural model with the structure 4:10:1 proved to be optimal in the process of solving problems of grain weevil identification, based on four selected physical properties of the caryopses.
- The analysis of the sensitivity of the generated neural model to the input variables demonstrated the existence of various ranks for individual representative signals. The fact that humidity ranked the highest indicates a high degree of significance of this variable. The subsequent parameters are mass, equivalent diameter, and hardness (in this order).
- The results of the study indicate the possibility of supporting the decision-making processes taking place during agricultural products storage. In particular, the generated RBF-type (4:10:1) neural model may constitute the kernel of the IT system supporting the process of identification of the degree the stored grain is infected by grain weevil.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boniecki, P.; Piekarska-Boniecka, H.; Świerczyński, K.; Koszela, K.; Zaborowicz, M.; Przybył, J. Detection of the granary weevil based on X-ray images of damaged wheat kernels. J. Stored Prod. Res. 2014, 56, 38–42. [Google Scholar] [CrossRef]
- Sun, J.; He, X.; Ge, X.; Wu, X.; Shen, J.; Song, Y. Detection of key organs in tomato based on deep migration learning in a complex background. Agriculture 2018, 8, 196. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.H.; Cho, J.H.; Lee, S.H. Identification of butterfly based on their shapes when viewed from different angles using an artificial neural network. J. Asia Pac. Entomol. 2014, 17, 143–149. [Google Scholar] [CrossRef]
- Kodogiannis, V.S.; Kontogianni, E.; Lygouras, J.N. Neural network based identification of meat spoilage using Fourier-transform infrared spectra. J. Food Eng. 2014, 142, 118–131. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Ji, G.; Phillips, P. Fruit classification using computer vision and feedforward neural network. J. Food Eng. 2014, 143, 167–177. [Google Scholar] [CrossRef]
- Zaborowicz, M.; Boniecki, P.; Koszela, K.; Przybylak, A.; Przybył, J. Application of neural image analysis in evaluating the quality of greenhouse tomatoes. Sci. Hortic. 2017, 218, 222–229. [Google Scholar] [CrossRef]
- Kashaninejad, M.; Dehghani, A.A.; Kashiri, M. Modeling of wheat soaking using two artificial neural networks (MLP and RBF). J. Food Eng. 2009, 91, 602–607. [Google Scholar] [CrossRef]
- Przybylak, A.; Ślósarz, P.; Boniecki, P.; Koszela, K.; Zaborowicz, M.; Przybył, K.; Wojcieszak, D.; Szulc, R.; Ludwiczak, A.; Górna, K. Marbling classification of lambs carcasses with the artificial neural image analysis. In Proceedings of the Seventh International Conference on Digital Image Processing (ICDIP 2015), Los Angeles, CA, USA, 6 July 2015. [Google Scholar]
- Boniecki, P.; Przybył, J.; Zaborowicz, M.; Górna, K.; Dach, J.; Okoń, P.; Przybył, K.; Mioduszewska, N.; Idziaszek, P. SOFM-type artificial neural network for the non-parametric quality-based classification of potatoes. In Proceedings of the SPIE—The International Society for Optical Engineering, Chengu, China, 29 August 2016; Volume 10033. [Google Scholar]
- Przybył, K.; Zaborowicz, M.; Koszela, K.; Boniecki, P.; Mueller, W.; Raba, B.; Lewicki, A. Organoleptic damage classification of potatoes with the use of image analysis in production process. In Proceedings of the SPIE—The International Society for Optical Engineering, Athens, Greece, 16 April 2014; Volume 9159. [Google Scholar]
- Boniecki, P.; Koszela, K.; Piekarska-Boniecka, H.; Weres, J.; Zaborowicz, M.; Kujawa, S.; Majewski, A.; Raba, B. Neural identification of selected apple pests. Comput. Electron. Agric. 2015, 110, 9–16. [Google Scholar] [CrossRef]
- Piekarska-Boniecka, H.; Kadłubowski, W.; Siatkowski, I. A study of bionomy of the privet sawfly (Macrophya punctumalbum (L.)) (Hymenoptera, Tenthredinidae)—A pest of park plants. Acta Sci. Pol. Hortorum Cult. 2008, 7, 3–11. [Google Scholar]
- Riverol, C.; Cooney, J. Estimation of the ester formation during beer fermentation using neural networks. J. Food Eng. 2007, 82, 585–588. [Google Scholar] [CrossRef]
- Cheng, H.D.; Jiang, X.H.; Sun, Y.; Wang, J. Color image segmentation: Advances and prospects. Pattern Recognit. 2001, 34, 2259–2281. [Google Scholar] [CrossRef]
- Niewiada, A.; Nawrot, J.; Szafranek, J.; Szafranek, B.; Synak, E.; Jeleń, H.; Wąsowicz, E. Some factors affecting egg-laying of the granary weevil (Sitophilus granarius L.). J. Stored Prod. Res. 2005, 41, 544–555. [Google Scholar] [CrossRef]
- Olejarski, P.; Horoszkiewicz-Janka, J.; Bocianowski, J. Influence of fungi on feeding and development of granary weevil (Sitophilus granarius L.)/Wpyw grzybów zasiedlajacych ziarno zbóz na zerowanie i rozwój woka zbozowego (Sitophilus granarius L.). Prog. Plant Prot. 2010, 50, 1711–1718. [Google Scholar]
- Olejarski, P. Detection of pests in grain stores. Ochr. Rosl. 2005, 50, 12–14. [Google Scholar]
- Liu, D.; Ning, X.; Li, Z.; Yang, D.; Li, H.; Gao, L. Discriminating and elimination of damaged soybean seeds based on image characteristics. J. Stored Prod. Res. 2015, 60, 67–74. [Google Scholar] [CrossRef]
- Mahesh, S.; Jayas, D.S.; Paliwal, J.; White, N.D.G. Hyperspectral imaging to classify and monitor quality of agricultural materials. J. Stored Prod. Res. 2015, 61, 17–26. [Google Scholar] [CrossRef]
- Koszela, K.; Raba, B.; Zaborowicz, M.; Przybył, K.; Wojcieszak, D.; Czekała, W.; Ludwiczak, A.; Przybylak, A.; Boniecki, P.; Przybył, J. Computer image analysis in caryopses quality evaluation as exemplified by malting barley. In Proceedings of the SPIE—The International Society for Optical Engineering, Los Angeles, CA, USA, 6 July 2015; Volume 9631. [Google Scholar]
- Przybył, K.; Górna, K.; Wojcieszak, D.; Czekała, W.; Ludwiczak, A.; Przybylak, A.; Boniecki, P.; Koszela, K.; Zaborowicz, M.; Janczak, D.; et al. The recognition of potato varieties using of neural image analysis method. In Proceedings of the SPIE—The International Society for Optical Engineering, Los Angeles, CA, USA, 6 July 2015; Volume 9631. [Google Scholar]
- Muñoz, I.; Rubio-Celorio, M.; Garcia-Gil, N.; Guàrdia, M.D.; Fulladosa, E. Computer image analysis as a tool for classifying marbling: A case study in dry-cured ham. J. Food Eng. 2015, 166, 148–155. [Google Scholar] [CrossRef]
- Koszela, K.; Łukomski, M.; Mueller, W.; Górna, K.; Okoń, P.; Boniecki, P.; Zaborowicz, M.; Wojcieszak, D. Classification of dried vegetables using computer image analysis and artificial neural networks. In Proceedings of the SPIE—The International Society for Optical Engineering, Hong Kong, China, 21 July 2017; Volume 10420, p. 1042031. [Google Scholar]
- Zaborowicz, M.; Boniecki, P.; Koszela, K.; Przybył, J.; Mazur, R.; Kujawa, S.; Pilarski, K. Use of artificial neural networks in the identification and classification of tomatoes. In Proceedings of the SPIE—The International Society for Optical Engineering, Beijing, China, 19 July 2013; Volume 8878. [Google Scholar]
- Zaborowicz, M.; Boniecki, P.; Koszela, K.; Przybył, J.; Mazur, R.; Kujawa, S.; Pilarski, K. Computer Image Analysis in Obtaining Characteristics of Images Greenhouse Tomatoes in the Process of Generating Learning Sets of Artificial Neural Networks. In Proceedings of the 6TH International Conference on Digital Image Processing (ICDIP 2014), Athens, Greece, 16 April 2014; Volume 9159. [Google Scholar]
- Koszela, K.; Otrząsek, J.; Zaborowicz, M.; Boniecki, P.; Mueller, W.; Raba, B.; Lewicki, A.; Przybył, K. Quality assessment of microwave-vacuum dried material with the use of computer image analysis and neural model. In Proceedings of the SPIE—The International Society for Optical Engineering, Athens, Greece, 16 April 2014; Volume 9159, p. 915913. [Google Scholar]
- Raba, B.; Nowakowski, K.; Lewicki, A.; Przybył, K.; Zaborowicz, M.; Koszela, K.; Boniecki, P.; Mueller, W. The non-touching method of the malting barley quality evaluation. In Proceedings of the—The International Society for Optical Engineering, Athens, Greece, 16 April 2014; Volume 9159. [Google Scholar]
- Nabney, I.T. Efficient training of RBF networks for classification. Int. J. Neural Syst. 2004, 14, 201–208. [Google Scholar] [CrossRef]
- Przybył, K.; Gawałek, J.; Koszela, K.; Wawrzyniak, J.; Gierz, L. Artificial neural networks and electron microscopy to evaluate the quality of fruit and vegetable spray-dried powders. Case study: Strawberry powder. Comput. Electron. Agric. 2018, 155, 314–323. [Google Scholar] [CrossRef]
- Mueller, W.; Idziaszek, P.; Boniecki, P.; Zaborowicz, M.; Koszela, K.; Kujawa, S.; Kozłowski, R.J.; Przybył, K.; Niedbała, G. An IT system for the simultaneous management of vector and raster images. In Proceedings of the SPIE—The International Society for Optical Engineering, Chengu, China, 29 August 2016; Volume 10033. [Google Scholar]
- Czekała, W.; Dach, J.; Ludwiczak, A.; Przybylak, A.; Boniecki, P.; Koszela, K.; Zaborowicz, M.; Przybył, K.; Wojcieszak, D.; Witaszek, K. The use of image analysis to investigate C: N ratio in the mixture of chicken manure and straw. In Proceedings of the SPIE—The International Society for Optical Engineering, Los Angeles, CA, USA, 6 July 2015; Volume 9631. [Google Scholar]
- Jordan, M.I.; Bishop, C.M. Neural networks. In Computer Science Handbook, 2nd ed.; CRC Press: Basingstoke, Hampshire, UK, 2004. [Google Scholar]
- Schölkopf, B.; Sung, K.K.; Burges, C.J.; Girosi, F.; Niyogi, P.; Poggio, T.; Vapnik, V. Comparing support vector machines with gaussian kernels to radial basis function classifiers. IEEE Trans. Signal Process. 1997, 45, 2758–2765. [Google Scholar] [CrossRef] [Green Version]
- Schwenker, F.; Kestler, H.A.; Palm, G. Three learning phases for radial-basis-function networks. Neural Netw. 2001, 14, 439–458. [Google Scholar] [CrossRef]
No. | Mass (mg) | Equivalent Diameter (mm) | Humidity (%) | Hardness | Grain Weevil (Yes, No) |
---|---|---|---|---|---|
1 | 34.7 | 3.0 | 14.4 | 118.6 | yes |
2 | 34.6 | 3.1 | 12.8 | 69.9 | yes |
3 | 34.7 | 2.9 | 14.3 | 81.3 | no |
… | … | … | … | … | … |
1799 | 34.5 | 2.8 | 14.3 | 60.1 | no |
1800 | 34.5 | 2.7 | 15.3 | 86.6 | yes |
Mass | Equivalent Diameter | Humidity | Hardness | |
---|---|---|---|---|
Ratio | 1.075 | 1.022 | 1.118 | 1.002 |
Rank | 2 | 3 | 1 | 4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boniecki, P.; Koszela, K.; Świerczyński, K.; Skwarcz, J.; Zaborowicz, M.; Przybył, J. Neural Visual Detection of Grain Weevil (Sitophilus granarius L.). Agriculture 2020, 10, 25. https://doi.org/10.3390/agriculture10010025
Boniecki P, Koszela K, Świerczyński K, Skwarcz J, Zaborowicz M, Przybył J. Neural Visual Detection of Grain Weevil (Sitophilus granarius L.). Agriculture. 2020; 10(1):25. https://doi.org/10.3390/agriculture10010025
Chicago/Turabian StyleBoniecki, Piotr, Krzysztof Koszela, Krzysztof Świerczyński, Jacek Skwarcz, Maciej Zaborowicz, and Jacek Przybył. 2020. "Neural Visual Detection of Grain Weevil (Sitophilus granarius L.)" Agriculture 10, no. 1: 25. https://doi.org/10.3390/agriculture10010025
APA StyleBoniecki, P., Koszela, K., Świerczyński, K., Skwarcz, J., Zaborowicz, M., & Przybył, J. (2020). Neural Visual Detection of Grain Weevil (Sitophilus granarius L.). Agriculture, 10(1), 25. https://doi.org/10.3390/agriculture10010025