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Abstract: Agricultural land is mostly devoted to food production. Production of biomass is limited,
as it competes for land with basic food production. To reduce land loss for growing food, biomass can
be grown on marginal lands that are not usable for food production. The density of plantings have to
be optimized to maximize yield potential. The presented study compares yield parameters end energy
potential of six species of biomass plants (poplar, Siberian elm, black alder, white birch, boxelder
maple, silver maple) cultivated in 18 planting densities from 3448 to 51,282 plants per hectare as short
rotation coppice (SRC). Biomass yield parameters depended on both cultivated species and planting
density. Green mass, dry mass, and shoot diameter was dropping with the increasing planting density
for most tested species. Calculated yield of dry mass was dropping with increasing planting density
for black alder, increasing for Siberian elm and boxelder maple. White birch and silver maple yields
were optimal at moderate planting densities (25,000–30,000). White birch and boxelder maple had
the highest average higher heating value (HHV). The optimal density of plantings should be chosen
to best suit both the needs of cultivated species and to optimize the most important parameters of
produced biomass.

Keywords: energy crops; planting density; calorific value; SRC

1. Introduction

Although the main role of agriculture is food production, a part of agricultural land has always
been devoted to non-food products, mainly within the framework of emerging technologies. Such uses
include the production of bioenergy and various biomaterials [1]. The application of biomass for energy
generation and for industry is of great importance and brings benefits to: (i) energy independence,
(ii) environmental protection, (iii) economy, and (iv) society [2,3]. Non-food crops cultivation should
not compete with food and fodder cultivation on high-yielding, fertile soils of good agricultural quality.
On the other hand, the number of available food and fodder species able to produce a satisfactory yield
on light, sandy soils of rather poor agricultural quality is not wide [4,5]. The cultivation of tree species
using the short rotation coppice technique of lignocellulose biomass production had spread following
the first oil crisis. Plants cultivated as short rotation coppices (SRCs) are characterized by a high growth
rate, adequate sprouting of the stool bed, and an adaptation to sub-optimal environmental conditions [6].
Plantations for woody biomass production can be adapted depending on planting density and rotation
length. Available experimental results indicate that a decrease in stem circumference is a commonly
observed response to increasing planting density in poplar. However, studies also showed fast
growing hardwoods tree height can increase, decrease, or remain unchanged with increasing planting
density [7,8].
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Agricultural biodiversity is of great importance nowadays. Plants of different genotype (species,
varieties) including those cultivated as SRC, differ in habitat requirements for optimal growth and
development and create different habitats for wildlife. Production conditions such as soil quality,
water availability, harvest cycle, and technology (i.e., planting density) have an impact on biomass
production, but the strength and direction of this impact could vary between species.

The goal of this study was to the determine the grow rate, biometric parameters, and biomass
caloric value of six trees species cultivated as SRC depending on planting density.

2. Materials and Methods

2.1. Site Characteristics and Experimental Design

The experiment was conducted in the experimental farm of Institute of Soil Science and Plant
Cultivation—State Research Institute in Osiny, Poland (N: 51◦28′16.37”, E: 22◦3′5.11”). The experiment
was established in spring 2010 on heavy black soil with a heavy clay granulometric composition.
The following trees were included in the experiment:

• Poplar (Populs L.), AF2 variety;
• Siberian elm (Ulmus pumila);
• Black alder (Alnus glutinosa);
• White birch (Betula pubecsens);
• Boxelder maple (Acer negundo);
• Silver maple (Acer saccharinum L.).

Trees were planted in April 2010 at 18 ranges of density in a “Nelder wheel design” [9] (see Figure 1).
Eighteen concentric rings of trees were planted at radii ranging from 1.5 to 11 m as indicated in Table 1.
An additional outer ring was planted as a guard ring to minimize the edge effect. The center of the circle
was planted with a small ring to also form a guard. Each of the experimental rings contained 24 trees
(six tested species in four replications) planted et equal distances around the circumference, giving a
range from 3448 to 51,282 trees per hectare in equivalent planting density (Table 1). Those 24 trees
planted as a concentric ring of increasing diameter formed 24 rows of experiment. Each tested species
was represented in four rows (replications). Two rows of the same species were always adjacent to
each other, while the other two were on the opposite side of the circle—creating an experimental
arrangement in the form of a mirror reflection (see Figure 1).

Table 1. Planting distances and tree densities.

Ring No. Distance to the Center [m] Distance to Previous Ring [m] Density [Plants ha−1]

1 1.0 Guard ring
2 1.5 0.5 51,282
3 2.0 0.5 48,462
4 2.5 0.5 30,769
5 3.0 0.5 25,477
6 3.5 0.5 21,739
7 4.0 0.5 19,231
8 4.5 0.5 16,949
9 5.0 0.5 15,384
10 5.5 0.5 14,286
11 6.0 0.5 12,739
12 6.5 0.5 11,764
13 7.0 0.5 10,929
14 7.5 0.5 10,204
15 8.0 0.5 9569
16 8.5 0.5 9009
17 9.0 0.5 8510
18 9.5 0.5 8064
19 10.0 Guard ring
20 11.0 1.0 3448
21 12.0 Guard ring
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Figure 1. Distribution of species in the experiment design according to Nelder (1962) design (dots of
different color represents trees of different species).

2.2. Biomass Analyses

Trees were harvested after 7 years of growth in February 2017. The harvest was made by hand.
Shoot diameter at a height of 15 cm was determined using an electronic caliper with an accuracy of
0.1 mm. Each plant was cut at a height of 5 cm above the ground level. Plant height was determined
from the cut place to the top of the plant with the accuracy of 1 cm. Yield of green mass was determined
by weighing whole plants immediately after harvesting (green mass included limbs and/or barks).
Whole plants were chipped and carefully mixed. Representative biomass samples (in 5 replications)
were taken to determine the share of dry mass. In the laboratory, biomass moisture was determined by
a drying method at a temperature of 80 ◦C for a period of 14 days. The dry mass yield was determined
from the ratio of the green mass yield and its moisture content. Dried samples of trees were burned
in calorimeter (KL-12Mn calorimeter, Precyzja-Bit, Bydgoszcz, Poland) in order to assess the higher
heating value—HHV (or gross calorific value) of the biomass.

2.3. Statistical Analyses

Statistical analysis of results was performed using Statistica 10.0 software (StatSoft Polska, Krakow,
Poland)). Few clear extreme outliers (observations located outside upper or lower quartile) were
removed from the dataset according to the software manual. The level of significance for analysis was
set to p = 0.05.

Subsequently, the normality of the distribution was tested using the Shapiro–Wilk and
Kolmogorow–Smirnow tests. The vast majority of the examined features were characterized by
a non-normal distribution. Data transformation attempts have not changed the data distribution.
Therefore, nonparametric Kruskal–Wallis tests for comparison of many groups of independent variables
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were used to assess the significance of differences. Because of data distribution, all average values
presented in the study are medians.

The green mass, the share of dry mass, dry mass, and the biometric features of the examined trees,
depending on the plant density, were characterized by using the trend equation. The criterion for
selecting the trend equation was the highest value of the determination coefficient.

In addition, for each tree species correlation coefficient for the tested parameters relationship
was calculated.

Woody plants intended for industry are, by definition, grown in long cycles, and therefore,
their growth in subsequent years was not studied. Annual yields were not assessed as experimental
design was not adapted to it (it would result in a complete failure of the basic methodological
assumptions due to invasive nature of such measurements (annual harvesting)). However, potential
annual biomass of dry mass was calculated Ydm (t ha−1 year−1). To calculate the potential annual
biomass yield of dry mass at given (chosen) density, the measured average dry mass of a single plant
(Pdm) (kg) was multiplied by actual density of plantings (plants per hectare) (Dact). The obtained result
(t ha −1) was divided by the number of years of cultivation, which was 7.

Potential annual biomass yield of dry mass:

Ydm =
PdmDact

7

3. Results and Discussion

3.1. Green Mass

The highest green mass of plants (GM) were observed in poplar AF2. On average, a single plant
of poplar weighted 29.1 kg (median). Boxelder maple green mass was on average at a level of 9.3 kg
per plant. Black alder, white birch, silver maple, and Siberian elm had a GM on a similar level (Table 2).
Nevertheless, the lowest GM was recorded for silver maple, and it was only 2.6 kg per plant. GM was
positively correlated with plant height and shoot diameter for all tested plants. For Polar AF2 and
Siberian elm, a negative correlation between the green mass of the plants and the share of dry mass
was noted. The GM was dropping significantly with the increasing planting density for all tested
species. The strength of response of species to the increasing stand density showed some differences.
The strongest negative response was observed in black alder, while white birch and silver maple were
the least sensitive species to increasing planting density. In the case of other species, the strength of
dependence was at a similar level (Figure 2, Table 3). Wilkinson et al. [10] showed that yield of green
matter of 1-year-old and 3-year-old willow (Salix ssp.) was increasing significantly with increasing
plant density (density from 10,000 to 25,000 of plants per hectare).

Table 2. Median values of tested plants and their biometric features.

Specification
Green
Mass
[kg]

Share of
Dry Mass

[%]

Dry
Mass
[kg]

Plant
Height

[m]

Shoot
Diameter

[mm]

Higher Heating
Value
[J g−1]

Potential Yield
of Dry Mass
[t ha−1 yr−1]

Poplar AF2 var. 29.1 a * 42.8 a 13.1 a 10.6 a 113.5 a 17,908 a 15.8 a
Siberian elm 2.8 b 58.5 b 1.7 b 4.7 d 41.8 b 18,664 bc 5.2 b
Black alder 5.3 bc 48.2 c 2.5 bc 6.6 bc 60.4 c 18,366 ab 3.9 b
White birch 5.5 bc 52.4 c 2.9 bc 7.0 b 59.4 bc 19,509 c 2.2 b

Boxelder maple 9.3 c 50.8 c 4.7 c 6.8 b 63.8 c 19,158 c 9.8 c
Silver maple 2.6 b 51.8 c 1.4 b 5.2 cd 39.2 b 18,726 bc 4.7 b

* Data marked with the same letter do not differ significantly between species (α = 0.05).
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Table 3. Correlation matrix for the studied features.

Plant Specification Green Mass
[kg Plant −1]

Share of Dry
Mass
[%]

Dry Mass
[kg Plant −1]

Plant
Height

[m]

Shoot
Diameter

[mm]

Higher Heating
Value
[J g−1]

Potential Yield
of Dry Mass
[t ha−1 yr−1]

Poplar AF2 var.

Plant density [plants ha−1] −0.619 * 0.152 −0.651 −0.384 −0.367 −0.485 0.025

Green mass [kg] −0.542 0.993 0.822 0.815 0.435 0.377

Share of dry matter [%] −0.454 −0.650 −0.389 −0.350 −0.131

Dry mass [kg plant −1] 0.797 0.796 0.428 0.399

Plant height [m] 0.676 0.443 0.525

Shoot diameter [mm] 0.346 0.130

Higher heating value [J g−1] 0.086

Siberian elm

Plant density [plants ha−1] −0.660 0.457 −0.663 −0.402 −0.628 0.248 0.414

Green mass [kg] −0.504 1.000 0.774 0.923 −0.065 0.309

Share of dry matter [%] −0.479 −0.376 −0.439 0.356 −0.087

Dry mass [kg plants −1] 0.777 0.925 −0.061 0.306

Plant height [m] 0.793 −0.023 0.518

Shoot diameter [mm] −0.124 0.234

Higher heating value [J g−1] 0.235

Black alder

Plant density [plants ha−1] −0.833 0.409 −0.804 −0.775 −0.874 0.115 −0.539

Green mass [kg] −0.357 0.929 0.616 0.884 −0.166 0.437

Share of dry matter [%] −0.025 −0.257 −0.293 −0.317 −0.257

Dry mass [kg plant −1] 0.603 0.850 −0.304 0.437

Plant height [m] 0.841 −0.129 0.346

Shoot diameter [mm] −0.129 0.280

Higher heating value [J g−1] −0.149
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Table 3. Cont.

Plant Specification Green Mass
[kg Plant −1]

Share of Dry
Mass
[%]

Dry Mass
[kg Plant −1]

Plant
Height

[m]

Shoot
Diameter

[mm]

Higher Heating
Value
[J g−1]

Potential Yield
of Dry Mass
[t ha−1 yr−1]

White birch

Plant density [plants ha−1] −0.589 0.301 −0.589 −0.188 −0.639 −0.095 −0.175

Green mass [kg] −0.278 0.998 0.598 0.679 −0.139 0.728

Share of dry matter [%] −0.227 −0.457 −0.175 −0.520 −0.185

Dry mass [kg plant −1] 0.588 0.684 −0.170 0.727

Plant height [m] 0.563 0.062 0.434

Shoot diameter [mm] 0.169 0.233

Higher heating value [J g−1] −0.288

Boxelder maple

Plant density [plants ha−1] −0.684 −0.486 −0.670 −0.642 −0.706 0.321 0.493

Green mass [kg] 0.185 1.000 0.587 0.956 −0.388 −0.068

Share of dry matter [%] 0.245 0.119 0.229 −0.109 −0.360

Dry mass [kg plant −1] 0.580 0.957 −0.395 −0.095

Plant height [m] 0.630 −0.163 0.121

Shoot diameter [mm] −0.313 −0.130

Higher heating value [J g−1] 0.196

Silver maple

Plant density [plants ha−1] −0.590 −0.209 −0.601 −0.124 −0.621 −0.064 0.378

Green mass [kg] 0.041 0.994 0.567 0.865 −0.112 0.326

Share of dry matter [%] 0.144 −0.450 −0.140 −0.172 −0.281

Dry mass [kg plant −1] 0.518 0.839 −0.121 0.295

Plant height [m] 0.668 −0.087 0.549

Shoot diameter [mm] −0.013 0.197

Higher heating value [J g−1] −0.539

* Significant correlations are in bold (α = 0.05).
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Figure 2. Relationship between green mass of plants (kg plant−1) and planting density (plants ha−1).

3.2. Dry Mass

Very similar relationships were found for the dry mass (DM) of plants as for green matter.
This shows that the dry mass/green mass ratio (or in other words—moisture content) is at constant
level at different plating densities and, therefore, have little or no effect on yields. The highest dry mass
(DM) of plants were observed in poplar AF2. On average, a plant of poplar weighted 13.1 kg (median).
Boxelder maple green mass was on average at a level of 4.7 kg per plant. Black alder, white birch, silver
maple, and Siberian elm had a dry mass of plant on a similar level (Table 2). Nevertheless, the lowest dry
mass of plants was recorded for silver maple, and it was only 1.4 kg per plant. Walle et al. [11] compared
the dry mass of 4-year-old SRC of poplar (Populus trichocarpa × deltoids), birch (Betula pendula Roth),
and maple (Acer pseudoplatanus L.) cultivated with a density of 20,000, 6667, and 6667 plants per hectare,
respectively. The authors found that the average dry mass of plants grown under these conditions
was 831, 2007, and 738 g, respectively, which was a noticeably different result than in presented study;
however, the growing conditions were also different to the plants tested by Walle et al. [11], which were
also about 3 years younger than in the presented study. DM in the presented study was positively
correlated with plant height and shoot diameter for all tested plants. For Siberian elm, a negative
correlation between the dry mass of the plants and the share of dry mass was noted. The dry mass of
plants dropped significantly with the increasing planting density for all tested species. The strength of
response of species to the increasing stand density showed some differences. The strongest negative
response was observed for black alder, while white birch and silver maple were the least sensitive
species to increasing plant density. In the case of other species, the strength of dependence was at
a similar level (Figure 3, Table 3). Other authors investigated the response of dry mass of plants to
increasing density and found out that it was also dropping for willow (Salix ssp.) [12] and for oak
(Quercus robur) [13].
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3.3. Share of Dry Mass

The highest dry to green mass (DM to GM) ratio was observed for Siberian elm (58.5%), while the
lowest was observed for poplar AF2 (42.8%). White birch, silver maple, boxelder maple, and black
alder DM to GM ratio was on a similar level (52.4, 51.8, 50.8, and 48.2%, respectively) (Table 2). DM to
GM ratio varied depending on the stand density, but also on the tested species. Share of dry mass was
negatively correlated with green mass of plants for three tested species (poplar AF2, Siberian elm and
boxelder maple). Share of dry mass also negatively correlated with plant height for poplar AF2 and
with higher heating value for white birch (Table 3). Poplar AF2 and silver maple showed no reaction of
DM to GM ratio to increasing density of plants, while Siberian elm, black alder, and white birch showed
moderately positive increase in DM to GM ratio with increasing plant density. Boxelder maple showed
negative response of DM to GM ratio to increasing plant density (Figure 4). Wilkinson et al. [10] found dry
mass of 1-year-old and 3-year-old willow (Salix ssp.) not dependent on density of plantings (similar
to poplar AF2 and silver maple reaction in presented study). In addition, Stolarski et al. [14] and
Kulig et al. [15] found no effect of planting density on the fresh–dry matter ratio of willow. This was
also confirmed by Elfeel and Elmagboul [16] for other woody species—leucaena leucocephala. On the
other hand, Achinelli et al. [17] found that dry to fresh matter content ratio in willow was higher in
more dense stands (similar effect to Siberian elm, black alder, and white birch in the discussed study).
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3.4. Potential Yield of Dry Mass

Poplar AF2 had the highest calculated potential of dry mass yield (after 7 years) of about 15 t ha−1

for all tested planting densities. Boxelder maple was able to match yielding potential that AF2 poplar
only at planting density of about 40,000 plants per hectare. Silver maple reached about 50% of this
potential (about 7.5–8 t ha−1), while other tested species reached about 5 t ha−1 of dry mass yield.
(Figure 3). The calculated annual yield of dry mass was positively correlated with plant height for
poplar AF2, Siberian elm, and silver maple. There was also a positive correlation with plant density for
boxelder maple and negative for black alder. In the case of white birch, a strong positive correlation was
found with green and dry mass of plants (Table 3). Despite the fact that the dry mass of individual trees
decreased with increasing density, the calculated annual yield of dry matter of Siberian elm, boxelder
maple, and silver maple was increasing with increasing density of planting (Figure 5). The same was
also observed by Geyer, Argent, and Walawender [18] for 7-year-old Siberian elm. Authors found that
annual yields of dry matter of Siberian elm were at a level of 4.7 t ha−1 with stand density of 1400 plants
per hectare, while they increased significantly to 9.8 t ha−1 with stand density of 7000 plants per hectare.
In the presented study, calculated annual dry mass yields of Siberian elm varied between 1.8 t ha−1 for
the lowest density and 7.4 t ha−1 for the highest density. Geyer and Walawender [19] reported that
annual dry mass yield of 7-year-old silver maple was increasing from 5.3 t ha −1 at 1400 plants per
hectare to 11.2 t ha−1 at 7000 plants per hectare. In addition, other authors found that for some species
such as willow (Salix L.) [10] and black locust (Robinia pseudoacacia) [20] annual yield of dry mass
was increasing with increasing planting density. Niemczyk et al. [21] found that annual yields of a
7-year-old poplar can reach up to 8 t ha−1. Truax et al. [22] also found a positive correlation of planting
density and yield of 8-year-old hybrid poplar. Stolarski et al. [23] found that annual dry mass yield
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of willow planted with densities from 12,000 to 96,000 was increasing from 12,000 to 24,000 (optimal
density) and decreasing with increasing density from 24,000 to 96,000. Similar reaction was found in
presented study silver maple (optimal planting density of about 25,000–30,000 plants per hectare).
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3.5. Height of Plants

Plants of poplar AF2 were, on average, the highest of all tested species (10.6 m). Black alder,
boxelder maple, and white birch’s height was on a similar level of 6.6–7.0 m. Silver maple and Siberian
elm had, on average, the lowest plants of both 5.2 and 4.7 m, respectively (Table 2). Siberian elm plants
in Geyer, Argent, and Walawender [18] were, on average, higher (6.3 m) than in presented study (4.7 m).
Geyer, Barden, and Preece [24] found that 6-year-old silver maple clones of dense stands (no accurate
data available) were 7.3 m high. Plant height for all tested species was positively correlated with their
green and dry mass and shoot diameter. In addition, for poplar AF2, plant height was negatively
correlated with share of dry mass, and, for black alder, with plant density (Table 3). Height of tested
plants varied on planting density. In most cases, the decrease in plant height with increasing density
of planting started from the very begging—from about 3500 plants per hectare (poplar AF2, black
alder, boxelder maple, and Siberian elm) (Figure 6). Geyer, Argent, and Walawender [18] also found
this relationship for the 7-year-old Siberian elm, whose height was, on average, 6.4 m for the stand
density of 1400 plants per hectare and was dropping to 6.2 m for the density of 7000 plants per hectare.
A similar relationship was presented by Perez et al. [25] for a 3-year-old Siberian elm. In addition,
it was confirmed by Geyer and Walawender for silver maple [19] and black locust [20]. On the other
hand, Toillon et al. [8] found that height of poplar increases with increased planting density in favorable
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site conditions (as an effect of increased competition for light), while in less favorable conditions,
height of plants remained unaffected by increasing planting density. Benomar et al. [7] showed that
the relationship between the density and height of plants is also strongly influenced by the genotype.
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3.6. Shoots Diameter

Plants of poplar AF2 were, on average, of the greatest shoot diameter (113.5 mm). Boxelder maple,
black alder, and white birch’s shoot diameter was on similar level (63.8, 604, 59.4 mm, respectively).
Siberian elm and silver maple had the lowest shoot diameter of 41.8 mm both (Table 2). Geyer, Argent,
and Walawender [18] found 7-year-old Siberian elm to have, on average, stems of diameter of 109 mm
at 10 cm. Walle et al. [11] found that shoots diameter (at 30 cm) of 4-year-old poplar (Populus trichocarpa
× deltoids) (336 mm) and maple (Acer pseudoplatanus L.) (310 mm) were lower than shoot diameter of
birch (Betula pendula Roth) (493 mm). These authors conducted research on other clones/species of
trees in different habitat conditions than in presented study; however, differences in results show the
importance of the selection of appropriate species/cultivars and proper density of planting to make the
best use of habitat conditions ensuring high biomass accumulation.

Shoot diameter for all tested species was positively correlated with their green and dry mass and
shoot diameter. For all tested species, a negative correlation with the planting density was found
(Table 3). Shoot diameter of all tested plant species were decreasing with increasing planting density,
but the strength of this reaction varied between species (Figure 7). The decrease in stem diameter is a
common response to increasing planting density [18,26–28], which can also be modified by species
genotype (clone) [29].
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3.7. Higher Heating Value

Tested energy sources differed significantly in higher heating value (HHV). White birch and
boxelder maple had the highest average HHV value (19,509 and 19,158 J g−1 o, respectively). The lowest
HHV was observed for poplar AF2 (17,908 J g−1 o). Dry mass of Siberian elm, black alder, and silver
maple had a similar HHV value of around 18,500 J g−1 o (Table 2). Geyer, Argent, and Walawender [18]
found that HHV of 7-year-old Siberian was between 18,900 and 20,200 J g−1 (19,700 J g−1 on average),
which is a higher HHV value than in the presented. Study stand density had no effect on most species’
HHV. A statistically significant negative correlation of HHV with the plant density was found only for
poplar AF2 and white birch (Table 3, Figure 8). In the case of other species, no relationship between
HHV and planting density was found. Literature study shows that HHV is highly variable and
depends on both genetic factors (species, cultivars) [15,30,31] and cultivation conditions (soil quality,
management methods) [30,32] or even plant age [33].
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3.8. Survival Rate

The highest survival rate after 7 years was observed for boxelder maple (100%), silver maple,
and Siberian elm (both 99%). Black alder survival rate was also at moderately good level (81%),
while poplar AF2 and white birch survival rate was the lowest (69% and 54%, respectively). Survival
rate in the presented study was dropping with increasing planting densities (for whole experimental
design), but some species were unaffected by increasing density (boxelder and silver maple, Siberian
elm), while white birch, poplar AF2, and black alder survival rates were dropping with increasing
densities (Figure 9). According to Trnka et al. (2008) [34], survival rate of 6-year-old poplar at
dense stand (10,000 plants per hectare) varied between 37% and 73% depending on the genotype.
Geyer et al. (1987) [18] found that survival rate of 7-year-old Siberian elm was “almost perfect” and
did not vary on planting densities from 1400 to 7000 plants per hectare (stands of lower densities than
in presented study). Moreover, Geyer (2006) [35] found that survival rate decreases substantially for
most tested species at spacing distances less than 1 m (more than 10,000 plants per hectare), while 2 m
spacing (2500 plants per hectare) was found optimal for high biomass production and high longevity
of plantation. Authors also found that silver maple survival after five years of cultivation was at a
level of 97%.
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4. Conclusions

Biomass yield parameters of six tested SRC plants strongly depended on both genotype (species)
and planting density. The strength and direction of reaction of plants to increasing planting density
varied between species. The green mass, dry mass, and shoot diameter of plants was dropping with
the increasing planting density for almost all tested species (insignificant negative correlation of shoot
diameter and planting density of poplar AF2). At the same time, function curve of calculated potential
yield of dry mass and planting density was dropping with increasing planting density for black alder,
increasing for Siberian elm and boxelder maple, and was concave for white birch and silver maple
(with optimal planting density of about 25,000–30,000 plants per hectare). Planting density seemed to
have no effect on calculated potential yield of dry mass for AF2 poplar.

White birch and boxelder maple had the highest average higher heating value (HHV) (19,509 and
19,158 J g−1, respectively). The lowest HHV was observed for poplar AF2 (17,908 J g−1). Dry mass of
all other species had similar HHV value of around 18,500 J g−1. A tendency towards reduced higher
heating value of plants in more dense stands was observed, but it was confirmed only for AF2 poplar.

Presented study showed that, in the study conditions, poplar AF2 was the most promising SRC
plant, with calculated potential dry mass yield of about 15 t ha−1 at wide range of planting densities,
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with boxelder maple being the only species able to match AF2 poplar’s yielding performance
(at 40,000 plants per hectare). The study showed the importance of testing and selection of
best-performing species, to maximize biomass accumulation at local site conditions. The optimal
density of plantings should be chosen to best suit the needs of cultivated species but also to meet the
needs of the industry by optimizing the most important (for the industry) parameters of produced
biomass. Cultivation of renewable resources, such as energy crops, must be optimized to site-specific
conditions. This includes cultivation on poor soils or marginal soils to minimize their competitiveness
against food crops. Optimization of energy crop yields can contribute to the goals of bioeconomy and
sustainable development.
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coppice biomass as an industrial and energy feedstock. Ind. Crops Prod. 2011, 33, 217–223. [CrossRef]

15. Kulig, B.; Gacek, E.; Wojciechowski, R.; Oleksy, A.; Kołodziejczyk, M.; Szewczyk, W.; Klimek-Kopyra, A.
Biomass yield and energy efficiency of willow depending on cultivar, harvesting frequency and planting
density. Plant. Soil Environ. 2019, 65, 377–386. [CrossRef]

16. Elfeel, A.A.; Elmagboul, A.H. Effect of planting density on eucaena leucocephala forage and Woody stems
production under arid dry climate. Int. J. Agric. Res. 2016, 2, 7–11.

17. Achinelli, F.G.; Doffo, G.; Barotto, A.J.; Luquez, V.; Monteoliva, S. Effects of irrigation, plantation density and
clonal composition on woody biomass quality for bioenergy in a short rotation culture system with willows
(Salix spp.). Rev. Árvore 2018, 42, 1–8. [CrossRef]

18. Geyer, W.A.; Argent, R.M.; Walawender, W.P. Biomass properties and gasification behavior of 7-year-old
Siberian elm. Wood Fiber Sci. 1987, 19, 176–182.

19. Geyer, W.A.; Walawender, W.P. Biomass properties and gasification behavior of young silver maple trees.
Wood Fiber Sci. 1997, 29, 85–90.

20. Geyer, W.A.; Walawender, W.P. Biomass properties and gasification behavior of young black locust. Wood Fiber
Sci. 1994, 26, 354–359.

21. Niemczyk, M.; Kaliszewski, A.; Jewiarz, M.; Wróbel, M.; Mudryk, K. Productivity and biomass characteristics
of selected poplar (Populus spp.) cultivars under the climatic conditions of northern Poland. Biomass Bioenergy
2018, 111, 46–51. [CrossRef]

22. Truax, B.; Fortier, J.; Gagnon, D.; Lambert, F. Planting density and site effects on stem dimensions, stand
productivity, biomass partitioning, carbon stocks and soil nutrient supply in hybrid poplar plantations.
Forests 2018, 9, 293. [CrossRef]

23. Stolarski, M.J.; Szczukowski, S.; Tworkowski, J.; Krzyżaniak, M.; Załuski, D. Willow production during 12
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