Biochemical, Physiological and Yield Characteristics of Red Basil as Affected by Cultivar and Fertilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biological Material and Experimental Site
2.2. Experimental Design
- Biosolids (B): 1000 kg·ha−1 were applied; it was produced at the municipal waste water treatment plant in Iasi, Romania, and had pH 6.96, 26.6% OM, 4.83% total N, 2.43% P2O5, 0.51% K2O, 0.3% MgO, 0.01% Fe, 0.004% Mn, 0.002 Zn, 0.001% Cu.
- Organic (O): 1200 kg·ha−1 of the chicken manure formulate Orgevit® were supplied; it has 65% OM, 90% dry matter, pH 7, 4% N, 3% P2O5, 2.5% K2O, 1% MgO, 0.02% Fe, 0.01% Mn, 0.01% B, 0.01% Zn, 0.001% Cu, 0.001% Mo.
- Microorganisms (M): Rizotech Plus powder was placed in the soil holes made for seedling transplant (60 kg·ha−1), predominantly containing the arbuscular mycorrhizal fungi (AMF) spores of Claroideoglomus etunicatum, Funneliformis mosseae, Glomus aggregatum, Rhizophagus intraradices and, in addition, fungi and bacteria species belonging to genera Trichoderma, Streptomyces, Bacillus, Pseudomonas.
- Chemical (Ch): 350 kg·ha−1 of Nutrispore® were provided. This fertilizer contains 20% of N (urea form), 20% water soluble P2O5, 20% water soluble K2O, 2% water soluble MgO, 0.01% B, 0.02% Fe, 0.01% Mn and 0.003% Zn, and the same microorganisms as reported in the above microorganisms description.
2.3. Yield and Biometrical Determinations
2.4. Leaf Dry Matter
2.5. Nitrate Determination
2.6. SPAD Determination
2.7. Biochemical Analysis
2.8. Statistical Analysis
3. Results
3.1. Yield, Biometrical and Physiological Determinations
3.2. Antioxidant Compounds and Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Caruso, G.; Villari, G.; Borrelli, C.; Russo, G. Effects of crop method and harvest seasons on yield and quality of green asparagus under tunnel in southern Italy. Adv. Hort. Sci. 2012, 26, 51–58. [Google Scholar]
- Stoleru, V.; Munteanu, N.; Sellitto, V.M. New Approach of Organic Vegetable Systems; Aracne Editrice: Rome, Italy, 2014. [Google Scholar]
- Bączek, K.; Kosakowska, O.; Gniewosz, M.; Gientka, I.; Węglarz, Z. Sweet Basil (Ocimum basilicum L.) Productivity and raw material quality from organic cultivation. Agronomy 2019, 9, 279. [Google Scholar] [CrossRef] [Green Version]
- FIBL. 2019. Available online: https://statistics.fibl.org/ (accessed on 6 February 2020).
- Morano, G.; Amalfitano, C.; Sellitto, M.; Cuciniello, A.; Maiello, R.; Caruso, G. Effects of nutritive solution electrical conductivity and plant density on growth, yield and quality of sweet basil grown in gullies by subirrigation. Adv. Hort. Sci. 2017, 31, 25–30. [Google Scholar]
- Lee, J.; Scagel, C.F. Chicoric acid found in basil (Ocimum basilicum L.) leaves. Food Chem. 2009, 115, 650–656. [Google Scholar] [CrossRef]
- Szymanowska, U.; Złotek, U.; Karaś, M.; Baraniak, B. Anti-inflammatory and antioxidative activity of anthocyanins from purple basil leaves induced by selected abiotic elicitors. Food Chem. 2015, 172, 71–77. [Google Scholar] [CrossRef]
- Putievsky, E.; Galambosi, B. Production systems of sweet basil. In Basil: The Genus Ocimum; Hiltunen, R., Holm, Y., Eds.; Harwood Academic Publisher: Berkshire, UK, 1999; pp. 39–65. [Google Scholar]
- Matłok, N.; Gorzelany, J.; Stępień, A.E.; Figiel, A.; Balawejder, M. Effect of fertilization in selected phytometric features and contents of bioactive compounds in dry matter of two varieties of basil (Ocimum basilicum L.). Sustainability 2019, 11, 6590. [Google Scholar] [CrossRef] [Green Version]
- Paton, A.; Harley, R.M.; Harley, M.M. Ocimum: An overview of classification and relationships. In Basil: The Genus Ocimum; Harwood Academic: Amsterdam, The Netherlands, 1999; pp. 1–38. [Google Scholar]
- Hamburdă, S.B.; Teliban, G.C.; Munteanu, N.; Stoleru, V. Effect of intercropping system on the quality and quantity of runner bean (Phaseolus coccineus L.). Not. Bot. Hortic. Agrobo. 2016, 44, 613–618. [Google Scholar] [CrossRef] [Green Version]
- Teliban, G.C.; Burducea, M.; Lobiuc, A.; Stoleru, V.; Hamburdă, S.B.; Galea (Deleanu), F.M.; Onofrei, V.; Zamfirache, M.M.; Munteanu, N. Yield, morphological and physiological comparative aspects in Ocimum basilicum L. under different fertilization types. Sci. Pap. Hortic. USAMV 2016, 59, 69–74. [Google Scholar]
- Zhen, L.; Kai, S.; Bin, Z.; Qingling, D.; Geng, L.; Huifang, H.; Zengjia, L.; Tangyuan, N. Impacts of straw, biogas slurry, manure and mineral fertilizer applications on several biochemical properties and crop yield in a wheat-maize cropping system. Plant Soil Environ. 2019, 65, 1–8. [Google Scholar] [CrossRef]
- Debosz, K.; Petersen, S.O.; Kure, L.K.; Ambus, P. Evaluating effects of sewage sludge and household compost on soil physical, chemical and microbiological properties. Appl. Soil Ecol. 2002, 19, 237–248. [Google Scholar] [CrossRef]
- Jannoura, R.; Joergensen, R.G.; Bruns, C. Organic fertilizer effects on growth, crop yield, and soil microbial biomass indices in sole and intercropped peas and oats under organic farming conditions. Europ. J. Agron. 2014, 52, 259–270. [Google Scholar] [CrossRef]
- Thomsen, I.K.; Kjellerup, V. Yields and N uptake of barley and ryegrass from soils with added animal manure differing in straw and urine content. Eur. J. Agron. 1997, 7, 285–292. [Google Scholar] [CrossRef]
- Berry, P.M.; Sylvester-Bradley, R.; Phillips, L.; Hatch, D.J.; Cuttle, S.P.; Rayns, F.W.; Gosling, P. Is the productivity of organic farms restricted by the supply of available nitrogen? Soil Use Manag. 2002, 18, 248–255. [Google Scholar] [CrossRef]
- Zhou, Y.H.; Zhang, Y.L.; Wang, X.M.; Cui, J.X.; Xia, X.J.; Shi, K.; Yu, J.Q. Effects of nitrogen form on growth, CO2 assimilation, chlorophyll fluorescence, and photosynthetic electron allocation in cucumber and rice plants. J. Zhejiang Univ. 2011, 12, 126–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berner, A.; Hildermann, I.; Fließbach, A.; Pfiffner, L.; Niggli, U.; Mäder, P. Crop yield and soil fertility response to reduced tillage under organic management. Soil Till. Res. 2008, 101, 89–96. [Google Scholar] [CrossRef]
- Ghosh, P.K.; Ajay, K.K.; Bandyopadhyay, M.C.; Manna, K.G.; Mandal, A.K.; Hati, K.M. Comparative effectiveness of cattle manure, poultry manure, phospho- compost and fertilizer-NPK on three cropping system in vertisols of semi-arid tropics. II. Dry matter yield, nodulation, chlorophyll content and enzyme activity. Bioresour. Technol. 2004, 95, 85–93. [Google Scholar] [CrossRef]
- Taie, H.A.A.; Salma, Z.A.R.; Radwan, S. Potential activity of basil plants as a source of antioxidants and anticancer agents as affected by organic and bio-organic fertilization. Not. Bot. Horti Agrobo. 2010, 38, 119–127. [Google Scholar]
- Bufalo, J.; Cantrell, C.L.; Astatkie, T.; Zheljazkov, V.D.; Gawde, A.; Boaro, C.S.F. Organic versus conventional fertilization effects on sweet basil (Ocimum basilicum L.) growth in a greenhouse system. Ind. Crop Prod. 2015, 74, 249–254. [Google Scholar] [CrossRef] [Green Version]
- Sun–Waterhouse, D. The development of fruit–based functional foods targeting the health and wellness market: A review. Int. J. Food Sci. Technol. 2011, 46, 899–920. [Google Scholar] [CrossRef]
- Caruso, G.; Stoleru, V.; Munteanu, N.; Sellitto, V.M.; Teliban, G.C.; Burducea, M.; Țenu, I.; Morano, G.; Butnariu, M. Quality performances of sweet pepper under farming management. Not. Bot. Horti Agrobo. 2019, 47, 458–464. [Google Scholar] [CrossRef] [Green Version]
- Kliebenstein, D.K. Secondary metabolites and plant/environment interactions: A view through Arabidopsis thaliana tinged glasses. Plant Cell Environ. 2004, 27, 675–684. [Google Scholar] [CrossRef]
- Mazid, M.; Khan, T.; Mohammad, F. Role of secondary metabolites in defense mechanisms of plants. Biol. Med. 2011, 3, 232–249. [Google Scholar]
- Amalfitano, C.; Agrelli, D.; Borrelli, C.; Cuciniello, A.; Morano, G.; Caruso, G. Production system effects on growth, pod yield and seed quality of organic faba bean in southern Italy. Folia Hortic. 2018, 30, 423–433. [Google Scholar] [CrossRef] [Green Version]
- Amalfitano, C.; Gomez, L.D.; Frendo, P.; De Pascale, S.; Pepe, O.; Simister, R.; Ventorino, V.; Agrelli, D.; Borrelli, C.; McQueen–Mason, S.J.; et al. Plant–Rhizobium symbiosis, seed nutraceuticals, and waste quality for energy production of Vicia faba L. as affected by crop management. Chem. Biol. Technol. Agric. 2018, 5, 15. [Google Scholar] [CrossRef] [Green Version]
- Lobiuc, A.; Vasilache, V.; Oroian, M.; Stoleru, T.; Burducea, M.; Pintilie, O.; Zamfirache, M.M. Blue and red LED illumination improves growth and bioactive compounds contents in acyanic and cyanic Ocimum basilicum L. microgreens. Molecules 2017, 22, 2111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scagel, C.F.; Lee, J. Phenolic composition of basil plants is differentially altered by plant nutrient status and inoculation with mycorrhizal fungi. Hortscience 2012, 47, 660–671. [Google Scholar] [CrossRef]
- Sellitto, V.M.; Golubkina, N.A.; Pietrantonio, L.; Cozzolino, E.; Cuciniello, A.; Cenvinzo, V.; Imbrea, F.; Caruso, G. Tomato yield, quality, mineral composition and antioxidants as affected by beneficial microorganisms under soil salinity induced by balanced nutrient solutions. Agriculture 2019, 9, 110. [Google Scholar] [CrossRef] [Green Version]
- Golubkina, N.; Zamana, S.; Seredin, T.; Poluboyarinov, P.; Sokolov, S.; Baranova, H.; Krivenkov, L.; Pietrantonio, L.; Caruso, G. Effect of selenium biofortification and beneficial microorganism inoculation on yield, quality and antioxidant properties of shallot bulbs. Plants 2019, 8, 102. [Google Scholar] [CrossRef] [Green Version]
- Ramakrishna, A.; Ravishankar, G.A. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav. 2011, 6, 1720–1731. [Google Scholar]
- Tesi, R. Orticoltura Mediterranea Sostenibile; Patron Editore: Bologna, Italy, 2010; p. 504. [Google Scholar]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the ph differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [Green Version]
- Jakovljević, D.; Stanković, M.; Bojović, B.; Topuzović, M. Regulation of early growth and antioxidant defense mechanism of sweet basil seedlings in response to nutrition. Acta Physiol. Plant. 2017, 39, 243. [Google Scholar] [CrossRef]
- Rippy, J.F.M.; Peet, M.M.; Louws, F.J.; Nelson, P.V.; Orr, D.B.; Sorensen, K.A. Plant development and harvest yields of greenhouse tomatoes in six organic growing systems. Hort. Sci. 2004, 39, 223–229. [Google Scholar] [CrossRef] [Green Version]
- Bergstrand, K.J.; Löfkvist, K.; Asp, H. Dynamics of nitrogen availability in pot grown crops with organic fertilization. Biol. Agric. Hortic. 2019, 35, 143–150. [Google Scholar] [CrossRef]
- Carlisle, W.R.; Wilson, D.P. Microbial activity in growing media—a brief review. Acta Hortic. 1991, 294, 197–206. [Google Scholar] [CrossRef]
- Elliott, G.C. Urea hydrolysis in potting media. J. Amer. Soc. Hort. Sci. 1986, 111, 862–866. [Google Scholar]
- Sifola, M.I.; Barbieri, G. Growth, yield and essential oil content of three cultivars of basil grown under different levels of nitrogen in the field. Sci. Hortic. 2006, 108, 408–413. [Google Scholar] [CrossRef]
- Frabboni, L.; De Simone, G.; Russo, V. The influence of different nitrogen treatments on the growth and yield of basil (Ocimum Basilicum L.). J. Chem. Chem. Eng. 2011, 5, 799–803. [Google Scholar]
- Nurzyńska-Wierdak, R.; Borowski, B.; Dzida, K. Yield and chemical composition of basil herb depending on cultivar and foliar feeding with nitrogen. Acta Sci. Pol. Hortorum Cultus 2011, 10, 207–219. [Google Scholar]
- Voogt, W.; de Visser, P.H.E.; van Winkel, A.; Cuijpers, W.J.M.; van de Burgt, G.J.H.M. Nutrient Management in organic greenhouse production: Navigation between constraints. Acta Hortic. 2011, 915, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Ekelöf, J. Phosphorus Application Strategy in Potato. Ph.D. Thesis, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden, 2014. [Google Scholar]
- Golubkina, A.N.; Seredin, M.T.; Antoshkina, M.; Kosheleva, V.O.; Teliban, G.C.; Caruso, G. Yield, quality, antioxidants and elemental composition of new leek cultivars under organic or conventional systems in a greenhouse. Horticulturae 2018, 4, 39. [Google Scholar] [CrossRef] [Green Version]
- Mazen, A.; Faheed, F.A.; Ahmed, A.F. Study of potential impacts of using sewage sludge in the amendment of desert reclaimed soil on wheat and jews mallow plants. Braz. Arch. Biol. Technol 2010, 53, 917–930. [Google Scholar] [CrossRef] [Green Version]
- Burns, R.G.; DeForest, J.L.; Marxsen, J.; Sinsabaugh, R.L.; Stromberger, M.E.; Wallenstein, M.D.; Weintraub, M.N.; Zoppini, A. Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biol. Biochem. 2013, 58, 216–234. [Google Scholar] [CrossRef]
- Caruso, G.; Conti, S.; La Rocca, G. Influence of crop cycle and nitrogen fertilizer form on yield and nitrate content in different species of vegetables. Adv. Hort. Sci. 2011, 25, 81–89. [Google Scholar]
- Caruso, G.; Villari, G.; Melchionna, G.; Contic, S. Effects of cultural cycles and nutrient solutions on plant growth, yield and fruit quality of alpine strawberry (Fragaria vesca L.) grown in hydroponics. Sci. Hortic. 2011, 129, 479–485. [Google Scholar] [CrossRef]
- Ruiz-Espinoza, F.H.; Murillo-Amador, B.; García-Hernández, J.L.; Fenech-Larios, L.; Rueda-Puente, E.; Troyo-Diéguez, E.; Kaya, C.; Beltrán-Morales, A. Field evaluation of the relationship between chlorophyll content in basil leaves and a portable chlorophyll meter (SPAD-502) readings. J. Plant Nutr. 2010, 33, 423–438. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Cai, Z.Q.; Liu, G.Z.; Wang, H.; Huang, L.; Cai, C.T. Effects of fertilization on the growth, photosynthesis, and biomass accumulation in juvenile plants of three coffee (Coffea arabica L.) cultivars. Photosynthetica 2017, 55, 134–143. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press: Cambridge, MA, USA, 1995; p. 889. [Google Scholar]
- Zhang, X.; Huang, G.; Bian, X.; Zhao, Q. Effects of root interaction and nitrogen fertilization on the chlorophyll content, root activity, photosynthetic characteristics of intercropped soybean and microbial quantity in the rhizosphere. Plant Soil Environ. 2013, 59, 80–88. [Google Scholar] [CrossRef]
- Tarchoune, I.; Sgherri, C.; Baâtour, O.; Izzo, R.; Lachaâl, M.; Navari-Izzo, F.; Ouerghi, Z. Effects of oxidative stress caused by NaCl or Na2SO4 excess on lipoic acid and tocopherols in Genovese and Fine basil (Ocimum basilicum). Ann. Appl. Biol. 2013, 163, 23–32. [Google Scholar] [CrossRef]
- Onofrei, V.; Burducea, M.; Lobiuc, A.; Teliban, G.C.; Ranghiuc, G.; Robu, T. Influence of organic foliar fertilization on antioxidant activity and content of polyphenols in Ocimum basilicum L. Acta Pol. Pharm. Drug Res. 2017, 74, 611–615. [Google Scholar]
- Onofrei, V.; Benchennouf, A.; Jancheva, M.; Loupassaki, S.; Ouaret, W.; Burducea, M.; Lobiuc, A.; Teliban, G.C.; Robu, T. Ecological foliar fertilization effects on essential oil composition of sweet basil (Ocimum basilicum L.) cultivated in a field system. Sci. Hortic. 2018, 239, 104–113. [Google Scholar] [CrossRef]
- Burducea, M.; Lobiuc, A.; Asandulesa, M.; Zaltariov, M.-F.; Burducea, I.; Popescu, S.M.; Zheljazkov, V.D. Effects of sewage sludge amendments on the growth and physiology of sweet basil. Agronomy 2019, 9, 548. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.L. Carbon and nitrogen nutrient balance signaling in plants. Plant Signal Behav. 2009, 4, 584–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakovljević, D.; Topuzović, M.; Stanković, M. Nutrient limitation as a tool for the induction of secondary metabolites with antioxidant activity in basil cultivars. Ind. Crop Prod. 2019, 138, 111462. [Google Scholar] [CrossRef]
- Olteanu, Z.; Oprica, L.; Truta, E.; Lobiuc, A.; Zamfirache, M.M. Effects induced by zinc on some antioxidative enzyme activities and on soluble protein content in young plantlets of barley. An. Ştiinţifice Ale Univ. Alexandru Ioan Cuza, Secţiunea Genet. Şi Biol. Mol. 2014, 15, 23–30. [Google Scholar]
- Burducea, M.; Zheljazkov, D.; Valtcho, D.I.; Lobiuc, A.; Teliban, G.C.; Stoleru, V.; Zamfirache, M.M. Fertilization modifies the essential oil and physiology of basil varieties. Ind. Crop Prod. 2018, 121, 282–293. [Google Scholar] [CrossRef]
- Flanigan, P.M.; Niemeyer, E.D. Effect of cultivar on phenolic levels, anthocyanin composition, and antioxidant properties in purple basil (Ocimum basilicum L.). Food Chem. 2014, 164, 518–526. [Google Scholar] [CrossRef]
Month | Rainfall (mm) | Average Temperature (°C) | PAR (MJ·m−2·d−1) | |||
---|---|---|---|---|---|---|
2016 | 2017 | 2016 | 2017 | 2016 | 2017 | |
May | 72.0 | 71.0 | 15.4 | 16.5 | 9.8 | 10.0 |
June | 111.0 | 47.0 | 21.2 | 21.7 | 10.8 | 10.8 |
July | 12.0 | 48.0 | 23.1 | 22.0 | 11.0 | 10.8 |
August | 52.3 | 39.0 | 21.3 | 22.2 | 9.7 | 9.9 |
Treatment | Fresh Yield (t ha−1) | Dry Yield (t ha−1) | Lateral Stems (no. Per Plant) | Plant Height (cm) |
---|---|---|---|---|
Cultivar | ||||
Op | 8.84 ± 0.55 | 2.27 ± 0.14 | 13.24 ± 0.25 | 42.87 ± 0.70 |
Bz | 9.86 ± 0.51 | 2.54 ± 0.13 | 16.78 ± 0.32 | 45.00 ± 0.57 |
ns | ns | * | * | |
Fertilization type | ||||
Ct | 6.40 ± 0.41 d | 1.61 ± 0.10 c | 14.17 ± 0.84 | 41.33 ± 0.88 b |
B | 8.28 ± 0.46 c | 2.14 ± 0.12 b | 15.17 ± 0.85 | 42.83 ± 0.83 ab |
O | 10.10 ± 0.28 b | 2.65 ± 0.07 a | 15.94 ± 0.91 | 44.67 ± 0.95 ab |
M | 10.10 ± 0.45 b | 2.64 ± 0.12 a | 14.61 ± 0.93 | 45.17 ± 0.65 a |
Ch | 11.85 ± 0.32 a | 2.98 ± 0.08 a | 15.17 ± 0.89 | 45.67 ± 1.20 a |
Treatment | Leaf Dry Matter (%) | Leaf Nitrate Content (mg kg−1 f.w.) | SPAD |
---|---|---|---|
Cultivar | |||
Op | 9.39 ± 0.06 | 294 ± 31 | 38.26 ± 1.27 |
Bz | 9.37 ± 0.07 | 275 ± 30 | 36.77 ± 1.2 |
ns | ns | ns | |
Fertilization type | |||
Ct | 9.2 ± 0.05 b | 220 ± 21 c | 32.02 ± 0.57 d |
B | 9.32 ± 0.06 ab | 313 ± 32 ab | 36.23 ± 0.95 bc |
O | 9.47 ± 0.05 ab | 278 ± 29 ac | 35.18 ± 0.77 cd |
M | 9.37 ± 0.06 ab | 254 ± 24 bc | 40.27 ± 0.31 ab |
Ch | 9.57 ± 0.06 a | 357 ± 38 a | 43.87 ± 0.26 a |
Treatment | Total Phenols | Flavonoids | Anthocyanins |
---|---|---|---|
g·m−2 | |||
Cultivar | |||
Op | 3.26 | 0.75 | 0.12 |
Bz | 3.47 | 0.75 | 0.14 |
ns | ns | ns | |
Fertilization | |||
Ct | 2.16 c | 0.43 c | 0.06 c |
B | 3.22 b | 0.67 b | 0.11 b |
O | 3.74 a | 0.87 a | 0.19 a |
M | 3.62 ab | 0.83 a | 0.16 a |
Ch | 4.00 a | 0.95 a | 0.16 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teliban, G.-C.; Stoleru, V.; Burducea, M.; Lobiuc, A.; Munteanu, N.; Popa, L.-D.; Caruso, G. Biochemical, Physiological and Yield Characteristics of Red Basil as Affected by Cultivar and Fertilization. Agriculture 2020, 10, 48. https://doi.org/10.3390/agriculture10020048
Teliban G-C, Stoleru V, Burducea M, Lobiuc A, Munteanu N, Popa L-D, Caruso G. Biochemical, Physiological and Yield Characteristics of Red Basil as Affected by Cultivar and Fertilization. Agriculture. 2020; 10(2):48. https://doi.org/10.3390/agriculture10020048
Chicago/Turabian StyleTeliban, Gabriel-Ciprian, Vasile Stoleru, Marian Burducea, Andrei Lobiuc, Neculai Munteanu, Lorena-Diana Popa, and Gianluca Caruso. 2020. "Biochemical, Physiological and Yield Characteristics of Red Basil as Affected by Cultivar and Fertilization" Agriculture 10, no. 2: 48. https://doi.org/10.3390/agriculture10020048
APA StyleTeliban, G. -C., Stoleru, V., Burducea, M., Lobiuc, A., Munteanu, N., Popa, L. -D., & Caruso, G. (2020). Biochemical, Physiological and Yield Characteristics of Red Basil as Affected by Cultivar and Fertilization. Agriculture, 10(2), 48. https://doi.org/10.3390/agriculture10020048