DEA Performance Measurements in Cotton Production of Harran Plain, Turkey: A Single and Double Bootstrap Truncated Regression Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Survey Design and Variable Selection for the Empirical Specification
2.2. The Modeling Approach
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Simar and Wilson’s Algorithm # 1
Appendix B. Simar and Wilson’s Algorithm # 2
References
- TUIK. Crop Production Statistics. Available online: http://www.turkstat.gov.tr/PreTablo.do?alt_id=1001 (accessed on 12 May 2018).
- Sirtioglu, I. Turkey Cotton and Products. Available online: https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Cotton%20and%20Products%20Annual_Ankara_Turkey_3-23-2018.pdf (accessed on 12 May 2019).
- Pınar, M.; Akyıl, N.; Er, S.; Ertürk, Y.E. Cotton Production Status and Projection Report: 1997–1998, 2nd ed.; Agricultural Economics and Policy Development Institute (TEPGE): Ankara, Turkey, 1998. (In Turkish)
- Basal, H.; Sezener, V. Turkey Cotton Report. In Proceedings of the 11th Regional Meeting of the International Cotton Advisory Committee, Antalya, Turkey, 5–7 November 2012; pp. 5–7. [Google Scholar]
- Cullu, M.A.; Aydemir, M.; Qadir, M.; Almaca, A.; Ozturkmen, A.R.; Bilgic, A.; Agca, N. Implication of groundwater fluctuation on the seasonal salt dynamic in the Harran Plain, south-eastern Turkey. Irrig. Drain. 2010, 59, 465–476. [Google Scholar] [CrossRef]
- Agricultural Production Statistics by Country. Available online: https://www.indexmundi.com/agriculture/ (accessed on 4 August 2019).
- Binici, T.; Demircan, V.; Zulauf, C.R. Assessing production efficiency of dairy farms in Burdur province, Turkey. J. Agric. Rural Dev. Trop. Subtrop. 2006, 107, 1–10. [Google Scholar]
- Simar, L.; Wilson, P.W. Statistical inference in nonparametric frontier models: The State of the Art. J. Prod. Anal. 2000, 13, 49–78. [Google Scholar] [CrossRef]
- Latruffe, L.; Balcombe, K.; Davidova, S.; Zawalinska, K. Technical and scale efficiency of crop and livestock farms in Poland: Does specialization matter? Agric. Econ. 2005, 32, 281–296. [Google Scholar] [CrossRef]
- Yamane, T. Statistics An Introductory Analysis, 2nd ed.; Harper and Row: New York, NY, USA, 1967. [Google Scholar]
- Bojnec, Š.; Latruffe, L. Determinants of technical efficiency of Slovenian farms. Post Commun. Econ. 2009, 21, 117–124. [Google Scholar] [CrossRef]
- Larsén, K. Effects of machinery-sharing arrangements on farm efficiency: Evidence from Sweden. Agric. Econ. 2010, 41, 497–506. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Norris, M.; Zhang, Z. Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries. Am. Econ. Rev. 1994, 84, 66–83. [Google Scholar]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Farrell, M.J. The Measurement of Productive Efficiency. J. Royal Stat. Soc. Ser. A 1957, 120, 253–281. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef] [Green Version]
- Koopmans, T. Activity Analysis of Production and Allocation, 1st ed.; John Wiley & Sons: New York, NY, USA, 1951. [Google Scholar]
- Simar, L.; Wilson, P.W. Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models. Manag. Sci. 1998, 44, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Coelli, T.; Rahman, S.; Thirtle, C. Technical, allocative, cost and scale efficiencies in Bangladesh rice cultivation: A non-parametric approach. J. Agric. Econ. 2002, 53, 607–626. [Google Scholar] [CrossRef]
- Monchuk, D.C.; Chen, Z.; Bonaparte, Y. Explaining production inefficiency in China’s agriculture using data envelopment analysis and semi-parametric bootstrapping. China Econ. Rev. 2010, 21, 346–354. [Google Scholar] [CrossRef]
- Brümmer, B. Estimating confidence intervals for technical efficiency: The case of private farms in Slovenia. Eur. Rev. Agric. Econ. 2001, 28, 285–306. [Google Scholar] [CrossRef]
- Balcombe, K.; Fraser, I.; Latruffe, L.; Rahman, M.; Smith, L. An application of the DEA double bootstrap to examine sources of efficiency in Bangladesh rice farming. Appl. Econ. 2008, 40, 1919–1925. [Google Scholar] [CrossRef] [Green Version]
- Olson, K.; Vu, L. Economic efficiency in farm households: Trends, explanatory factors, and estimation methods. Agric. Econ. 2009, 40, 587–599. [Google Scholar] [CrossRef]
- Simar, L.; Wilson, P.W. Estimation and inference in two-stage, semi-parametric models of production processes. J. Econ. 2007, 136, 31–64. [Google Scholar] [CrossRef]
- Lerman, Z. Productivity and Efficiency of Individual farms in Poland: A Case for Land Consolidation. Available online: https://ageconsearch.umn.edu/record/19835 (accessed on 8 February 2020).
- Latruffe, L.; Davidova, S.; Balcombe, K. Application of a double bootstrap to investigation of determinants of technical efficiency of farms in Central Europe. J. Prod. Anal. 2008, 29, 183–191. [Google Scholar] [CrossRef]
- Aravindakshan, S.; Rossi, F.; Amjath-Babu, T.S.; Veettil, P.C. Application of a bias-corrected meta-frontier approach and an endogenous switching regression to analyze the technical efficiency of conservation tillage for wheat in South Asia. J. Prod. Anal. 2018, 49, 153–171. [Google Scholar] [CrossRef] [Green Version]
- Berry, R.A.; Cline, W.R. Agrarian Structure and Productivity in Developing Countries: A Study Prepared for the International Labour Office Within the Framework of the World Employment Programme; John Hopkins University Press: Baltimore, MD, USA, 1979; ISBN 978-0-8018-2190-5. [Google Scholar]
- Ramalho, E.A.; Ramalho, J.J.S.; Henriques, P.D. Fractional regression models for second stage DEA efficiency analyses. J. Prod. Anal. 2010, 34, 239–255. [Google Scholar] [CrossRef]
- Grabowski, R.; Kraft, S.; Pasurka, C.; Aly, H.Y. A ray-homothetic production frontier and efficiency: Grain farms in Southern Illinois. Eur. Rev. Agric. Econ. 1990, 17, 435–448. [Google Scholar] [CrossRef]
- Barrett, C.B. On price risk and the inverse farm size-productivity relationship. J. Dev. Econ. 1996, 51, 193–215. [Google Scholar] [CrossRef] [Green Version]
- Helfand, S.M.; Levine, E.S. Farm size and the determinants of productive efficiency in the Brazilian Center-West. Agric. Econ. 2004, 31, 241–249. [Google Scholar] [CrossRef]
- Wadud, A.; White, B. Farm household efficiency in Bangladesh: A comparison of stochastic frontier and DEA methods. Appl. Econ. 2000, 32, 1665–1673. [Google Scholar] [CrossRef]
Variable Name | Variable Description | Mean | Std. Dev | Min. | Max. | VIF |
---|---|---|---|---|---|---|
First Stage Variables (DEA Variables) | ||||||
YIELD | Total cotton yield (kg/da) | 461.498 | 111.555 | 120.000 | 965.500 | N/A |
SEED | Cotton seed quantity (kg/da) | 2.502 | 0.963 | 1.030 | 6.667 | N/A |
FRTLZR | Net nitrogen and net phosphorus used in cotton production (kg/da) | 28.263 | 10.662 | 9.884 | 86.575 | N/A |
LABOR | Working hours depleted (family as well as hired labor/da) | 51.466 | 41.434 | 2.091 | 71.867 | N/A |
PESTICIDE | Herbicide and insecticide value (Turkish Liras/da) | 27.264 | 14.543 | 2.091 | 71.867 | N/A |
OTHRCAP | Value of working capital other than seeds, fertilizers, and pesticides and fixed capital, including depreciation, repair, and maintenance (Turkish Liras/da) | 293.643 | 109.589 | 62.200 | 611.022 | N/A |
LAND a | Cotton area (da) | 107.905 | 111.397 | 6.500 | 800.000 | N/A |
Second Stage Variables | ||||||
EXPERN1 | 1 if farming experience less than 10 years, 0 otherwise (reference group) | 0.192 | 0.395 | 0.000 | 1.000 | N/A |
EXPERN2 | 1 if farming experience between 10 and 20 years, 0 otherwise | 0.424 | 0.496 | 0.000 | 1.000 | 2.303 |
EXPERN3 | 1 if farming experience between 20 and 30 years, 0 otherwise | 0.232 | 0.424 | 0.000 | 1.000 | 2.027 |
EXPERN4 | 1 if farming experience greater than 30 years, 0 otherwise | 0.152 | 0.360 | 0.000 | 1.000 | 2.240 |
ESCHOOL | 1 if farmer attended an elementary school, 0 otherwise (reference group) | 0.496 | 0.502 | 0.000 | 1.000 | N/A |
SSCHOOL | 1 if farmer attended a secondary school, 0 otherwise | 0.128 | 0.335 | 0.000 | 1.000 | 1.386 |
HSCHOOL | 1 if farmer attended a high school, 0 otherwise | 0.376 | 0.486 | 0.000 | 1.000 | 1.884 |
HSIZE1 | 1 if household size less than 6 members, 0 otherwise | 0.224 | 0.419 | 0.000 | 1.000 | N/A |
HSIZE2 | 1 if household size between 6 and 10 members, 0 otherwise | 0.400 | 0.492 | 0.000 | 1.000 | 2.195 |
HSIZE3 | 1 if household size greater than 10 members, 0 otherwise (reference group) | 0.376 | 0.486 | 0.000 | 1.000 | 2.605 |
OFF-FARM | 1 if farmer has an off-farm job, 0 otherwise | 0.304 | 0.462 | 0.000 | 1.000 | 1.429 |
FSIZE1 | 1 if farm size under cotton less than 5 ha, 0 otherwise | 0.328 | 0.471 | 0.000 | 1.000 | N/A |
FSIZE2 | 1 if farm size under cotton between 5 and 10 ha, 0 otherwise | 0.272 | 0.447 | 0.000 | 1.000 | 1.936 |
FSIZE3 | 1 if farm size under cotton between 10 and 20 ha, 0 otherwise | 0.216 | 0.413 | 0.000 | 1.000 | 2.532 |
FSIZE4 | 1 if farm size under cotton greater than 20 ha, 0 otherwise (Reference group) | 0.184 | 0.389 | 0.000 | 1.000 | 5.499 |
LNDOWNR | 1 if farmer owns the land he farms, 0 otherwise | 0.824 | 0.382 | 0.000 | 1.000 | 1.218 |
LOCNCNTR | 1 if farm is located in the central district of Sanliurfa (reference group) | 0.496 | 0.502 | 0.000 | 1.000 | N/A |
LOCNACKL | 1 if land is located in the Akcakale district of Sanliurfa | 0.232 | 0.424 | 0.000 | 1.000 | 1.720 |
LOCNHRRN | 1 if farm is located in the Harran district of Sanliurfa | 0.272 | 0.447 | 0.000 | 1.000 | 1.579 |
HRDLBOR | 1 if farm uses only family labor, 0 otherwise | 0.112 | 0.317 | 0.000 | 1.000 | 1.713 |
FMLYLBRT | Share of family labor in total labor (%) | 0.317 | 0.315 | 0.000 | 1.000 | 1.561 |
TRACTDMY | 1 if owns a tractor, 0 otherwise | 0.720 | 0.451 | 0.000 | 1.000 | 2.228 |
TMACHNRY | Number of total machines on the farm except tractors | 6.760 | 5.583 | 0.000 | 22.000 | 3.372 |
PRCLNMBR | Number owned or rented parcels | 1.976 | 1.329 | 1.000 | 7.000 | 1.468 |
IRRGNMBR | Number of times irrigation is applied to the land in operation | 6.688 | 1.568 | 3.000 | 12.000 | 1.805 |
CAPLABRT | Natural log of capital to labor ratio | 2.484 | 0.988 | 0.711 | 4.301 | 2.029 |
LNDLABRT | Natural log of land to labor ratio | −5.821 | 1.024 | −7.532 | −3.847 | 1.039 |
SUBSIDY | Cotton support amount given based on production (Turkish Liras/10,000) | 2.572 | 2.658 | 0.158 | 18.480 | 4.470 |
Variables | Mean | Std. Dev. | Min. | Max. | Lower 95% CI | Upper 95% CI |
---|---|---|---|---|---|---|
CRS | ||||||
Uncorrected TEx100 | 71.20 | 19.10 | 26.10 | 100 | 67.84 b | 74.57 b |
% of TE = 1 | 12.80 | |||||
% of TE ≥ 0.90 | 18.40 | |||||
% of TE ≥ 0.50 | 84.00 | |||||
Bias-corrected TEx100 | 64.11 | 16.20 | 23.70 | 90.50 | 59.20 a | 70.10 a |
61.25 b | 66.98 b | |||||
% of TE ≥ 0.90 | 0.80 | |||||
% of TE ≥ 0.50 | 79.20 | |||||
VRS | ||||||
Uncorrected TEx100 | 83.50 | 13.90 | 39.70 | 100 | 81.05 b | 85.95 b |
% of TE = 1 | 21.60 | |||||
% of TE ≥ 0.90 | 37.60 | |||||
% of TE ≥ 0.50 | 99.20 | |||||
Bias-corrected TEx100 | 76.75 | 11.60 | 36.50 | 93.80 | 70.70 a | 82.90 a |
74.70 b | 78.80 b | |||||
% of TE ≥ 0.90 | 7.20 | |||||
% of TE ≥ 0.50 | 99.20 |
Variable Classifications | Ln-Capital | Ln-Labor | Ln-Land | Ln-Yield | Bias-Corrected Efficiency × 100 | Farm Number |
---|---|---|---|---|---|---|
Mean (Std. Dev.) | Mean (Std. Dev.) | Mean (Std. Dev.) | Mean (Std. Dev.) | Mean (Std. Dev.) | ||
Ln-Capital Classifications | ||||||
<8 | 7.819 (0.010) | 6.862 (6.862) | −0.327 (0.147) | 6.240 (0.053) | 76.424 (14.205) | 2 |
8 ≤ Ln-Capital < 9 | 8.584 (0.345) | 6.935 (0.763) | 0.610 (0.318) | 5.993 (0.299) | 83.437 (6.320) | 9 |
9 ≤ Ln-Capital < 10 | 9.579 (0.313) | 7.370 (0.864) | 1.283 (0.417) | 6.116 (0.307) | 75.659 (11.012) | 36 |
10 ≤ Ln-Capital < 11 | 10.391 (0.241) | 7.704 (0.988) | 2.086 (0.361) | 6.138 (0.232) | 78.043 (11.873) | 46 |
≥11 | 11.510 (0.402) | 8.633 (0.865) | 3.112 (0.462) | 6.059 (0.254) | 74.257 (12.476) | 32 |
Ln-Labor Classifications | ||||||
<6 | 9.297 (0.647) | 5.771 (0.313) | 1.044 (0.616) | 6.145 (0.098) | 86.058 (0.810) | 6 |
6 ≤ Ln-Labor < 7 | 9.818 (0.845) | 6.565 (0.238) | 1.738 (0.827) | 6.022 (0.378) | 85.875 (5.651) | 26 |
7 ≤ Ln-Labor < 8 | 10.016 (1.003) | 7.588 (0.260) | 1.635 (0.942) | 6.113 (0.268) | 75.774 (11.782) | 41 |
8 ≤ Ln-Labor < 9 | 10.588 (0.746) | 8.463 (0.264) | 2.242 (0.756) | 6.105 (0.213) | 70.453 (11.921) | 35 |
≥9 | 11.266 (0.448) | 9.431 (0.283) | 2.892 (0.481) | 6.182 (0.150) | 74.826 (8.995) | 17 |
Ln-Land Classifications | ||||||
<0 | 7.819 (0.010) | 6.862 (0.091) | −0.327 (0.147) | 6.240 (0.053) | 76.424 (14.205) | 2 |
0 ≤ Ln-Land < 1 | 8.940 (0.476) | 7.079 (0.695) | 0.648 (0.227) | 6.183 (0.267) | 79.398 (11.057) | 16 |
1 ≤ Ln-Land < 2 | 9.862 (0.413) | 7.642 (0.873) | 1.529 (0.307) | 6.064 (0.298) | 75.305 (11.682) | 49 |
2 ≤ Ln-Land < 3 | 10.763 (0.469) | 7.842 (1.183) | 2.475 (0.281) | 6.161 (0.239) | 77.380 (11.792) | 39 |
≥3 | 11.643 (0.412) | 8.651 (0.853) | 3.380 (0.342) | 6.002 (0.192) | 76.987 (11.913) | 19 |
Variables | Bias-Corrected Estimates | 90% Confidence Interval | 95% Confidence Interval | 99% Confidence Interval | |||
---|---|---|---|---|---|---|---|
Lower CI | Upper CI | Lower CI | Upper CI | Lower CI | Upper CI | ||
INTERCEPT | −8.3126 *** | −11.3140 | −6.7506 | −11.6417 | −6.2699 | −12.4395 | −5.1379 |
EXPERN2 | −0.1077 | −0.2451 | 0.0156 | −0.2673 | 0.0410 | −0.3196 | 0.0886 |
EXPERN3 | −0.0870 | −0.2309 | 0.0492 | −0.2593 | 0.0779 | −0.3048 | 0.1308 |
EXPERN4 | 0.0019 | −0.1574 | 0.1685 | −0.1837 | 0.1980 | −0.2580 | 0.2558 |
SSCHOOL | −0.0657 | −0.2064 | 0.0816 | −0.2363 | 0.1129 | −0.2821 | 0.1811 |
HCSCHOOL | 0.0083 | −0.1110 | 0.1300 | −0.1333 | 0.1553 | −0.1813 | 0.2076 |
HSIZE2 | 0.1992 *** | 0.0772 | 0.3431 | 0.0459 | 0.3702 | −0.0138 | 0.4082 |
HSIZE3 | 0.2937 *** | 0.1653 | 0.4603 | 0.1297 | 0.4850 | 0.0711 | 0.5237 |
OFF-FARM | −0.0709 | −0.1844 | 0.0391 | −0.2086 | 0.0619 | −0.2491 | 0.1028 |
FSIZE2 | −0.0575 | −0.1786 | 0.0601 | −0.2033 | 0.0851 | −0.2455 | 0.1359 |
FSIZE3 | −0.1539 * | −0.3166 | -0.0135 | −0.3463 | 0.0114 | −0.4049 | 0.0759 |
FSIZE4 | −0.2068 | −0.4394 | 0.0162 | −0.4813 | 0.0656 | −0.5663 | 0.1647 |
LNDOWNR | 0.1459 ** | 0.0123 | 0.3076 | −0.0147 | 0.3277 | −0.0817 | 0.3906 |
LOCNACKL | −0.0339 | −0.1691 | 0.0960 | −0.1914 | 0.1234 | −0.2425 | 0.1760 |
LOCNHRRN | 0.0139 | −0.1031 | 0.1296 | −0.1249 | 0.1534 | −0.1670 | 0.2010 |
HRDLBOR | 0.1873 * | 0.0303 | 0.3879 | −0.0065 | 0.4209 | −0.0851 | 0.5002 |
FMLYLBRT | 0.2804 ** | 0.1025 | 0.5133 | 0.0640 | 0.5586 | −0.0278 | 0.6218 |
TRACTDMY | 0.0122 | −0.1252 | 0.1468 | −0.1482 | 0.1746 | −0.2040 | 0.2192 |
TMACHNRY | 0.0046 | −0.0088 | 0.0181 | −0.0115 | 0.0212 | −0.0170 | 0.0257 |
PRCLNMBR | 0.0753 *** | 0.0458 | 0.1188 | 0.0386 | 0.1250 | 0.0253 | 0.1380 |
IRRGNMBR | −0.0259 | −0.0612 | 0.0084 | −0.0685 | 0.0156 | −0.0850 | 0.0301 |
CAPLABRT | 1.0188 *** | 0.8338 | 1.3413 | 0.7790 | 1.3848 | 0.6580 | 1.4729 |
LNDLABRT | −1.1403 *** | −1.4835 | -0.9559 | −1.5246 | −0.9043 | −1.6105 | −0.7841 |
SUBSIDY | 0.0243 | −0.0028 | 0.0538 | −0.0085 | 0.0607 | −0.0184 | 0.0727 |
SIGMA | 0.2202 *** | 0.2198 | 0.2805 | 0.2126 | 0.2860 | 0.1982 | 0.2968 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Işgın, T.; Özel, R.; Bilgiç, A.; Florkowski, W.J.; Sevinç, M.R. DEA Performance Measurements in Cotton Production of Harran Plain, Turkey: A Single and Double Bootstrap Truncated Regression Approaches. Agriculture 2020, 10, 108. https://doi.org/10.3390/agriculture10040108
Işgın T, Özel R, Bilgiç A, Florkowski WJ, Sevinç MR. DEA Performance Measurements in Cotton Production of Harran Plain, Turkey: A Single and Double Bootstrap Truncated Regression Approaches. Agriculture. 2020; 10(4):108. https://doi.org/10.3390/agriculture10040108
Chicago/Turabian StyleIşgın, Tamer, Remziye Özel, Abdulbaki Bilgiç, Wojciech J. Florkowski, and Mehmet Reşit Sevinç. 2020. "DEA Performance Measurements in Cotton Production of Harran Plain, Turkey: A Single and Double Bootstrap Truncated Regression Approaches" Agriculture 10, no. 4: 108. https://doi.org/10.3390/agriculture10040108
APA StyleIşgın, T., Özel, R., Bilgiç, A., Florkowski, W. J., & Sevinç, M. R. (2020). DEA Performance Measurements in Cotton Production of Harran Plain, Turkey: A Single and Double Bootstrap Truncated Regression Approaches. Agriculture, 10(4), 108. https://doi.org/10.3390/agriculture10040108