Assessing the Productivity of Common Bean in Intercrop with Maize across Agro-Ecological Zones of Smallholder Farms in the Northern Highlands of Tanzania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study
2.2. Experimental Design and Treatments
2.3. Sowing, Spacing, and Harvesting
2.4. Data Collection
2.5. Statistical Analysis
3. Results
3.1. Effects of Cropping Seasons, Agro-Ecological Zones, and Cropping Systems on Bean Performance
3.2. Land Utilization Advantages of Intercropping Common Bean with Maize
4. Discussion
4.1. Performance of Common Bean
4.2. Land Utilization Advantage of Common Bean Intercrop with Maize
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Raimi, A.; Adeleke, R.; Roopnarain, A. Soil fertility challenges and biofertiliser as a viable alternative for increasing smallholder farmer crop productivity in sub-Saharan Africa. Cogent Food Agric. 2017, 3, 1400933. [Google Scholar] [CrossRef]
- Loboguerrero, A.M.; Campbell, B.M.; Cooper, P.J.M.; Hansen, J.W.; Rosenstock, T.; Wollenberg, E. Food and earth systems, priorities for climate change adaptation and mitigation for agriculture and food systems. Sustainability 2019, 11, 1372. [Google Scholar] [CrossRef] [Green Version]
- Pretty, J.; Toulmin, C.; Williams, S. Sustainable intensification in African agriculture. Int. J. Agric. Sustain. 2011, 9, 5–24. [Google Scholar] [CrossRef]
- Stagnari, F.; Maggio, A.; Galieni, A.; Pisante, M. Multiple benefits of legumes for agriculture sustainability, an overview. Chem. Biol. Technol. Agric. 2017, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- FAO (Food and Agriculture Organization). How to Feed the World in 2050; FAO: Rome, Italy, 2009. [Google Scholar]
- FAO (Food and Agricultural Organization). The State of the World’s Land and Water Resources for Food and Agriculture, Managing Systems at Risk; FAO: Rome, Italy; Earthscan: London, UK, 2011. [Google Scholar]
- Christou, P.; Savin, R.; Costa-Pierce, B.; Misztal, I.; Whitelaw, B. Sustainable Food Production; Springer: New York, NY, USA, 2013; ISBN 978-1-4614-5796-1. [Google Scholar]
- Foresight. The Future of Food and Farming, Challenges and Choices for Global Sustainability. Final Project Report; Government Office for Science: London, UK, 2011.
- Food Chain Evaluation Consortium. Scoping Study. Delivering on EU Food Safety and Nutrition in 2050—Scenarios of Future Change and Policy Responses; European Commission: Brussels, Belgium, 2014. [Google Scholar]
- FAO (Food and Agriculture Organization). Building a Common Vision for Sustainable Food and Agriculture, Principles and Approaches; FAO: Rome, Italy, 2014. [Google Scholar]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Zaks, D.P.M. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanlauwe, B.; Bationo, A.; Chianu, J.; Giller, K.E.; Merckx, R.; Mokwunye, U.; Ohiokpehai, O.; Pypers, P.; Tabo, R.; Shepherd, K.; et al. Integrated soil fertility management, Operational definition and consequences for implementation and dissemination. Outlook Agric. 2011, 39, 17–24. [Google Scholar] [CrossRef] [Green Version]
- FAO (Food and Agricultural Organization). Introduction to Sustainable Food Systems and Value Chains. 2016. Available online: http://www.fao.org/sustainable-food-value-chain/www.fao.org/about/what-we-do/so4 (accessed on 13 October 2019).
- Abera, T.; Tana, T.; Pant, L.M. Grain and LER of maize bean intercropping as affected by inorganic and organic fertilizers and population density in western Oromia, Ethiopia. Asian J. Plant Sci. 2005, 4, 458–465. [Google Scholar]
- Hillocks, R.J.; Madata, C.S.; Chirwa, R.; Minja, E.M.; Msolla, S. Phaseolus bean improvement in Tanzania, 1959–2005. Euphytica 2006, 150, 215–231. [Google Scholar] [CrossRef]
- Funakawa, S.; Yoshida, H.; Watanabe, T.; Sugihara, S.; Kosaki, T. Soil Fertility Status and Its Determining Factors in Tanzania. In Soil Health Land Use Management; InTech – Open Access Publisher: Rijeka, Croatia, 2012; pp. 1–16. [Google Scholar]
- Ronner, E.; Descheemaeker, K.; Almekinders, C.J.M.; Ebanyat, P.; Giller, K.E. Farmers’ use and adaptation of improved climbing bean production practices in the highlands of Uganda. Agric. Ecosyst. Environ. 2018, 261, 186–200. [Google Scholar] [CrossRef]
- Nassary, E.K.; Baijukya, F.; Ndakidemi, P.A. Sustainable intensification of grain legumes optimizes food security on smallholder farms in sub-Saharan Africa—A review. Intl. J. Agric. Biol. 2020, 23, 25–41. [Google Scholar]
- Keba, H.A. Adaptability evaluation of common bean (Phaseolus vulgaris L.) genotypes at western Ethiopia. Adv. Crop Sci. Technol. 2018, 6, 360. [Google Scholar] [CrossRef]
- Tittonell, P.; Shepherd, K.D.; Vanlauwe, B.; Giller, K.E. Unravelling the effects of soil and crop management on maize productivity in smallholder agricultural systems of western Kenya—An application of classification and regression tree analysis. Agric. Ecosys. Environ. 2008, 123, 137–150. [Google Scholar] [CrossRef] [Green Version]
- FAOSTAT. FAO Statistics Online Database. Production/Crops—‘Beans, Dry’, Year 2014. Food and Agriculture Organization. 2014. Available online: http://faostat3.fao.org/home/E (accessed on 10 February 2016).
- Nassary, E.K.; Baijukya, F.; Ndakidemi, P.A. Productivity of intercropping with maize and common bean over five cropping seasons on smallholder farms of Tanzania. Europ. J. Agron. 2020, 113, 125964. [Google Scholar] [CrossRef]
- Venance, S.K.; Mshenga, P.; Birachi, E.A. Factors influencing on-farm common bean profitability, the case of smallholder bean farmers in Babati District, Tanzania. J. Econ. Sustain. Dev. 2016, 7, 196–201. [Google Scholar]
- Ndakidemi, P.A.; Dakora, F.D.; Nkonya, E.M.; Ringo, D.; Mansoor, H. Yield and economic benefits of common bean (Phaseolus vulgaris) and soybean (Glycine max) inoculation in northern Tanzania. Australian J. Exp. Agric. 2006, 46, 571–577. [Google Scholar] [CrossRef]
- Xavery, P.; Kalyebara, R.; Kasambala, S.; Ngulu, F. The Impact of Improved Bean Production Technologies in Northern and North Western Tanzania; Occasional Publication Series No. 43; Pan African Bean Research Alliance, CIAT Africa Region: Kampala, Uganda; Selian Agricultural Research Institute: Arusha, Tanzania, 2006. [Google Scholar]
- Baijukya, F.; Wairegi, L.; Giller, K.E.; Zingore, S.; Chikowo, R.; Mapfumo, P. Maize-Legume Cropping Guide; Africa Soil Health Consortium: Nairobi, Kenya, © CAB International; 2016; Available online: http//africasoilhealth.cabi.org/wpcms/wp-content/uploads/2017/05/ASHC-English-Maize-A5-colour-lowres.pdf (accessed on 12 September 2018).
- Ronner, E.; Giller, K.E. Background Information on Agronomy, Farming Systems and Ongoing Projects on Grain Legumes in Tanzania; Wageningen, the Netherlands. 2013, p. 3. Available online: http//www.N2Africa.org (accessed on 18 July 2017).
- Mutungamiri, A.; Mariga, I.K.; Chivhinge, A.O. Evaluation of maize (Zea mays L.) cultivars and density for dryland maize-bean intercropping. Trop. Agric. 2001, 78, 8–12. [Google Scholar]
- Chipomho, J.; Mapope, N.; Masuka, B.; Ngezimana, W.; Chipomho, C. The influence of cropping systems and maize-bean intercrop spatial patterns on companion crop yield, weed density and biomass. Intl. J. Agric. Crop Sci. 2015, 8, 697–705. [Google Scholar]
- Franke, A.C.; Baijukya, F.; Kantengwa, S.; Reckling, M.; Vanlauwe, B.; Giller, K.E. Poor farmers—Poor yields, socio-economic, soil fertility and crop management indicators affecting climbing bean productivity in northern Rwanda. Exp. Agric. 2016. [Google Scholar] [CrossRef] [Green Version]
- Hardarson, G.; Bliss, F.A.; Cigales-Rivero, M.R.; Henson, R.A.; Kipe-Nolt, J.A.; Longeri, L.; Manrique, A.; Pena-Cabriales, J.J.; Pereira, P.A.A.; Sanabria, C.A.; et al. Genotypic variation in biological nitrogen fixation by common bean. Plant Soil 1993, 152, 59–70. [Google Scholar] [CrossRef]
- Graham, P.H.; Vance, C.P. Legumes, Importance and constraints to greater use. Plant Physiol. 2003, 131, 872–877. [Google Scholar] [CrossRef] [Green Version]
- Kermah, M.; Franke, A.C.; Adjei-Nsiah, S.; Ahiabor, B.D.K.; Abaidoo, R.C.; Giller, K.E. Legume–maize rotation or relay? Options for ecological intensification of smallholder farms in the Guinea savanna of northern Ghana. Cambridge University Press 2018. Exp. Agric. 2018, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Mowo, J.G.; Janssen, B.H.; Oenema, O.; German, L.A.; Mrema, J.P.; Shemdoe, R.S. Soil fertility evaluation and management by smallholder farmer communities in northern Tanzania. Agric. Ecosys. Environ. 2006, 116, 47–59. [Google Scholar] [CrossRef]
- Iannetta, P.P.M.; Begg, G.; James, E.K.; Smith, B.; Davies, C.; Karley, A.; Lopez Del Egido, L.; Hawes, C.; Young, M.; Ramsay, G.; et al. Sustainable intensification, a pivotal role for legume supported crop systems. Asp. Appl. Biol. 2013, 121, 73–82. [Google Scholar]
- Vanlauwe, B.; Coyne, D.; Gockowski, J.; Hauser, S.; Huising, J.; Masso, C.; Nziguheba, G.; Schut, M.; van Asten, P. Sustainable intensification and the African smallholder farmer. Curr. Opin. Environ. Sustain. 2014, 8, 15–22. [Google Scholar] [CrossRef]
- Rusinamhodzi, L.; Corbeels, M.; Nyamangara, J.; Giller, K.E. Maize-grain legume intercropping as an attractive option for ecological intensification that reduces climatic risk for smallholder farmers in central Mozambique. Field Crops Res. 2012, 136, 12–22. [Google Scholar] [CrossRef] [Green Version]
- Kermah, M.; Franke, A.C.; Adjei-Nsiah, S.; Ahiabor, B.D.K.; Abaidoo, R.C.; Giller, K.E. Maize-grain legume intercropping for enhanced resource use efficiency and crop productivity in the Guinea savanna of northern Ghana. Field Crops Res. 2017, 213, 38–50. [Google Scholar] [CrossRef]
- Lithourgidis, A.S.; Dordas, C.A.; Damalas, C.A.; Vlachostergios, D.N. Annual intercrops, an alternative pathway for sustainable agriculture. Aust. J. Crop Sci. 2011, 5, 396–410. [Google Scholar]
- Hauggaard-Nielsen, H.; Jørnsgaard, B.; Kinane, J.; Jensen, E.S. Grain legume-cereal intercropping, The practical application of diversity, competition and facilitation in arable and organic cropping systems. Renew. Agric. Food Syst. 2001, 23, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Brooker, R.W.; Bennett, A.E.; Cong, W.-F.; Daniell, T.J.; George, T.S.; Hallett, P.D.; Hawes, C.; Iannetta, P.P.M.; Jones, H.G.; Karley, A.J.; et al. Improving intercropping, a synthesis of research in agronomy, plant physiology and ecology. New Phytol. 2015, 206, 107–117. [Google Scholar] [CrossRef]
- Hai District Profile; Hai District Socio-Economic Profile. A Joint Publication by Hai District and Kilimanjaro Region; Hai District Report; Hai District Profile, Hai District Socio-Economic Profile: Moshi, Tanzania, 2011; p. 53. [Google Scholar]
- Mowo, J.G.; Floor, J.; Kaihura, F.B.S.; Magoggo, J.P. Review of Fertilizer Recommendations in Tanzania, Part 2. National Soil Services Report F9; National Service Soil Fertility Report F9; ARI-Mlingano: Tanga, Tanzania, 1993; p. 116. Available online: http://library.wur.nl/WebQuery/file/isric/fulltext/isricu_i13556_001.pdf (accessed on 12 January 2015).
- Willey, R.W. Intercropping: Its importance and research needs. Competition and yield advantage. Field Crops Res. 1979, 32, 1–10. [Google Scholar]
- O’Leary, N.; Smith, E. Uncovering corn adaptation to intercrop with bean by selecting for system yield in the intercrop environment. J. Sustain. Agric. 2004, 24, 109–121. [Google Scholar] [CrossRef]
- Matusso, J.M.M.; Mugwe, J.N.; Mucheru-Muna, M. Effects of different maize (Zea mays L.)—Soybean (Glycine max (L.) Merill) intercropping patterns on yields, light interception and leaf area index in Embu West and Tigania East sub counties, Kenya. Academic Res. J. Agric. Sci. Res. 2014, 2, 6–21. [Google Scholar]
- Mucheru-Muna, M.; Mugendi, D.N.; Pypers, P.; Mugwe, J.; Vanlauwe, B.; Merckx, R.; Kungu, J.B. Increasing productivity through maize-legume intercropping in Central Kenya. In Innovations as Key to the Green Revolution in Africa, Exploring the Scientific Facts; Bationo, A., Waswa, B., Okeyo, J.M., Maina, F., Kihara, J., Eds.; Springer Science & Business Media B.V., Springer Dordrecht Heidelberg: London, UK, 2011; pp. 843–858. [Google Scholar]
- Karuma, A.N.; Gachene, C.K.K.; Gicheru, P.T.; Mtakwa, P.W.; Amuri, N. Effects of tillage and cropping systems on maize and beans yield and selected yield components in a semi-arid area of Kenya. Trop. Subtrop. Agroecosys. 2016, 19, 167–179. [Google Scholar]
- Mekbib, F. Yield stability in common bean (Phaseolus vulgaris L.) genotypes. Euphytica 2003, 130, 147–153. [Google Scholar] [CrossRef]
- Zhang, F.; Shen, J.; Zhang, J.; Zuo, Y.; Li, L.; Chen, X. Rhizosphere processes and management for improving nutrient use efficiency and crop productivity, implications for China. Adv. Agron. 2010, 107, 1–32. [Google Scholar]
- Dotaniya, M.L.; Prasad, D.; Meena, H.M.; Jajoria, D.K.; Narolia, G.P.; Pingoliya, K.K.; Meena, O.P.; Kumar, K.; Meena, B.P.; Ram, A.; et al. Influence of phytosiderophore on iron and zinc uptake and rhizospheric microbial activity. Afr. J. Microbiol. Res. 2013, 51, 5781–5788. [Google Scholar]
- Atuahene-Amankwa, G.; Falk, D.E.; Beattie, A.D.; Michaels, T.E. Early generation testing of common bean (Phaseolus vulgaris L.) populations in sole crop and in maize/bean intercrop. Can. J. Plant Sci. 1998, 78, 583–588. [Google Scholar] [CrossRef]
- Mebrahtu, T.; Andebrhan, T.; Mohamed, A. Environmental effects on yield and agronomic traits of common bean (Phaseolus vulgaris L.). Va. J. Sci. 2001, 52, 1. [Google Scholar]
- Woolley, J.N.; Rodriguez, W. Cultivar × cropping system interactions in relay and row intercropping of bush beans with different maize plant types. Exp. Agric. 1987, 23, 181–192. [Google Scholar] [CrossRef]
- Vendelbo, N.M.; Thomma, B.; Baijukya, F.; Giller, K.E. Effect of cropping system design on severity of biotic stresses in common bean (Phaseolus vulgaris L.) and maize (Zea mays L.) in Northern Tanzania. In Master Internship Plant Sciences; Wageningen University and Research: Wageningen, The Netherlands, 2017; p. 38. [Google Scholar]
- Alemayehu, D.; Shumi, D.; Afeta, T. Effect of variety and time of intercropping of common bean (Phaseolus vulgaris L.) with maize (Zea mays L.) on yield components and yields of associated crops and productivity of the system at mid-land of Guji, Southern Ethiopia. Adv. Crop Sci. Tech. 2018, 6, 324. [Google Scholar] [CrossRef] [Green Version]
- Saban, Y.; Mehmt, A.; Mustafa, E. Identification of advantages of maize legume intercropping over solitary cropping through competition indices in the east mediterranean region. Turk. J. Agric. 2007, 32, 111–119. [Google Scholar]
Crop | Cropping | Sowing Space (cm) | Plants/Hole | Plants/Row | No. Rows/Plot | Plants/Plot | Plants/ha equiv. |
---|---|---|---|---|---|---|---|
Maize | Sole | 80 × 30 | 1 | 17 | 5 | 85 | 41,666 |
Maize | Intercrop | 80 × 30 | 1 | 17 | 5 | 85 | 41,666 |
Bean | Sole | 40 × 10 | 1 | 51 | 9 | 459 | 286,875 |
Bean | Intercrop | 80 × 10 | 1 | 51 | 4 | 204 | 127,500 |
Factors | Sub-Factors | Measured Variables in Common Bean | ||||
---|---|---|---|---|---|---|
Grain Yield (t ha−1) | Biomass (t ha−1) | Pods per plant | Seeds per pod | 100-seed wt (g) | ||
Seasons/years (S) | 2015 | 2.45 | 5.52 | 12a | 3 | 37.31 |
2016 | 2.54 | 5.63 | 9b | 2 | 33.28 | |
Agro-ecological zones (A) | Lower agro-zone | 2.22 | 4.82 | 6b | 3ab | 33.01 |
Middle agro-zone | 2.64 | 6.27 | 7b | 3ab | 37.78 | |
Upper agro-zone | 2.63 | 5.63 | 12a | 2b | 35.09 | |
Cropping systems (C) | Monoculture local bean | 2.97a | 7.44a | 13a | 3a | 25.83c |
Monoculture improved bean | 2.94a | 5.54ab | 5c | 2b | 49.66a | |
Intercropped local bean | 2.13b | 4.98b | 10b | 3a | 23.52c | |
Intercropped improved bean | 1.94b | 4.34b | 5c | 2b | 42.16b | |
3-WAY ANOVA (F-stat.) | ||||||
S | 0.16 (P = 0.717) | 0.04 (P = 0.858) | 126.14 (P = 0.002) | 0.001 (P = 0.976) | 7.65 (P = 0.070) | |
A | 1.73 (P = 0.219) | 1.00 (P = 0.395) | 22.75 (P < 001) | 3.90 (P = 0.050) | 2.45 (P = 0.128) | |
C | 12.19 (P < 001) | 5.77 (P = 0.002) | 31.23 (P < 001) | 5.00 (P = 0.004) | 70.14 (P < 001) | |
S×A | 11.12 (P = 0.002) | 10.97 (P = 0.002) | 37.15 (P < 001) | 0.87 (P = 0.443) | 6.96 (P = 0.010) | |
S×C | 3.64 (P = 0.018) | 1.80 (P = 0.159) | 6.02 (P = 0.001) | 0.96 (P = 0.417) | 3.17 (P = 0.031) | |
A×C | 1.33 (P = 0.261) | 0.93 (P = 0.481) | 3.97 (P = 0.002) | 1.91 (P = 0.095) | 2.98 (P = 0.014) | |
S×A×C | 4.11 (P = 0.002) | 2.58 (P = 0.028) | 5.51 (P = 0.002) | 2.49 (P = 0.034) | 3.61 (P = 0.004) |
Factors | Treatments | Measured Variables in Common Bean | |||
---|---|---|---|---|---|
PLER-bean | PLER-m | LER-Total | |||
Agro-ecological zones (A) | Lower zone | 0.67a | 0.72a | 1.38a | |
Middle zone | 0.80ab | 0.78a | 1.58a | ||
Upper zone | 0.84b | 0.76a | 1.61a | ||
S.E.D. | 0.054 | 0.09 | 0.12 | ||
p-value | 0.040 | 0.793 | 0.21 | ||
CV (%) | 9.9 | 17.4 | 11.1 | ||
Bean varieties (V) | Improved bean | 0.73a | 0.75a | 1.48a | |
Local bean | 0.81b | 0.76a | 1.57a | ||
S.E.D. | 0.0368 | 0.08 | 0.08 | ||
p-value | 0.039 | 0.998 | 0.297 | ||
CV (%) | 5.6 | 14.5 | 5.8 | ||
2 -WAY ANOVA (F-stat.) | |||||
A | 5.77* | 0.24ns | 2.05ns | ||
V | 5.86* | 0.001ns | 1.23ns | ||
A×V | 0.44ns | 2.05ns | 2.6ns |
Factors | Treatments and Yield Values | Statistical Parameters | ||||||
---|---|---|---|---|---|---|---|---|
A: | Lower | Middle | Upper | S.E.D. | F. Stat. | p-value | ||
1.4c | 1.8b | 2.5a | 0.11 | 54.63 *** | < 0.001 | |||
S: | ||||||||
2015 | 2016 | S.E.D. | F. Stat. | p-value | ||||
2.1 | 1.8 | 0.13 | 3.77ns | 0.084 | ||||
C: | ||||||||
m + L90 | m + Lb | Sole | S.E.D. | F. Stat. | p-value | |||
1.7 | 1.9 | 2.2 | 0.21 | 2.57ns | 0.09 | |||
A × S: | ||||||||
Lower | Middle | Upper | S.E.D. | F. Stat. | p-value | |||
2015 | 1.4b | 2.4a | 2.3a | 0.19 | 13.06** | 0.002 | ||
2016 | 1.4b | 1.2b | 2.7a | |||||
A × C: | ||||||||
Lower | Middle | Upper | S.E.D. | F. Stat. | p-value | |||
Sole | 1.6bc | 2.1a-c | 2.9a | 0.32 | 0.42ns | 0.793 | ||
m + Lb | 1.6bc | 1.7bc | 2.3ab | |||||
m + L90 | 1.1c | 1.7bc | 2.4ab | |||||
S × C: | ||||||||
Sole | m+Lb | m + L90 | S.E.D. | F. Stat. | p-value | |||
2015 | 2.1ab | 2.0ab | 2.1ab | 0.2747 | 2.51ns | 0.095 | ||
2016 | 2.3a | 1.7ab | 1.4b | |||||
A × S × C: | ||||||||
Zone | 2015 | 2016 | ||||||
m + L90 | m + Lb | Sole | m + L90 | m + Lb | Sole | |||
Lower | 1.1c | 1.6bc | 1.6bc | 1.1c | 1.6bc | 1.6bc | ||
Middle | 2.4a-c | 2.3a-c | 2.6a-c | 1.0c | 1.2bc | 1.5bc | ||
Upper | 2.8ab | 2.1a-c | 2.1a-c | 2.0bc | 2.5a-c | 3.7a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nassary, E.K.; Baijukya, F.; Ndakidemi, P.A. Assessing the Productivity of Common Bean in Intercrop with Maize across Agro-Ecological Zones of Smallholder Farms in the Northern Highlands of Tanzania. Agriculture 2020, 10, 117. https://doi.org/10.3390/agriculture10040117
Nassary EK, Baijukya F, Ndakidemi PA. Assessing the Productivity of Common Bean in Intercrop with Maize across Agro-Ecological Zones of Smallholder Farms in the Northern Highlands of Tanzania. Agriculture. 2020; 10(4):117. https://doi.org/10.3390/agriculture10040117
Chicago/Turabian StyleNassary, Eliakira Kisetu, Frederick Baijukya, and Patrick Alois Ndakidemi. 2020. "Assessing the Productivity of Common Bean in Intercrop with Maize across Agro-Ecological Zones of Smallholder Farms in the Northern Highlands of Tanzania" Agriculture 10, no. 4: 117. https://doi.org/10.3390/agriculture10040117
APA StyleNassary, E. K., Baijukya, F., & Ndakidemi, P. A. (2020). Assessing the Productivity of Common Bean in Intercrop with Maize across Agro-Ecological Zones of Smallholder Farms in the Northern Highlands of Tanzania. Agriculture, 10(4), 117. https://doi.org/10.3390/agriculture10040117