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Abstract: Non-linear systems, such as biological systems, can be simulated by artificial neural network
(ANN) techniques. This research aims to use ANN to simulate the accumulated aerial dry matter (leaf,
stem, and fruit) and fresh fruit yield of a tomato crop. Two feed-forward backpropagation ANNs,
with three hidden layers, were trained and validated by the Levenberg–Marquardt algorithm for
weights and bias adjusted. The input layer consisted of the leaf area, plant height, fruit number, dry
matter of leaves, stems and fruits, and the growth degree-days at 136 days after transplanting (DAT);
these were obtained from a tomato crop, a hybrid, EL CID F1, with indeterminate growth habits,
grown with a mixture of peat moss and perlite 1:1 (v/v) (substrate) and calcareous soil (soil). Based on
the experimentation of the ANNs with one, two and three hidden layers, with MSE values less than
1.55, 0.94 and 0.49, respectively, the ANN with three hidden layers was chosen. The 7-10-7-5-2 and
7-10-8-5-2 topologies showed the best performance for the substrate (R = 0.97, MSE = 0.107, error
= 12.06%) and soil (R = 0.94, MSE = 0.049, error = 13.65%), respectively. These topologies correctly
simulated the aerial dry matter and the fresh fruit yield of the studied tomato crop.

Keywords: soft computing; simulation model; tomato yield; dry weight; training; validation

1. Introduction

Quantitative interpretations of plant growth through descriptive models have been developed via
two mathematical approaches known as classical and functional analysis [1]. ANNs are a nonlinear
mapping structure based on the function of the human brain [2], offering learning capabilities. ANNs
have been developed to build mathematical models that mimic the computing power of the human
brain, with powerful processing capabilities that have been demonstrated in various real-world
applications [3]. Agriculture offers many wide applications for ANNs [4–8].

The neuron is the basic working unit of an ANN. This neuron does not have a predefined meaning
and evolves during the learning process in a manner that can characterize the target’s function [3].

ANNs allow us to develop models based on the intrinsic relations among the variables, without
prior knowledge of their functional relationships [9]. Soft computing for ANN techniques has been
widely used to develop models to predict different crop indicators, such as growth, yield, and other
biophysical processes, and also because of the commercial importance of tomato [10–23] and other
vegetables, such as lettuce [24–30], pepper [31–34], cucumber [35–38], wheat [39–45], rice [46–48],
oat [49], maize [50,51], corn [52–54], corn and soybean [55], soybean [56], green peas [57], basil [58],
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cabbage [59], onion [60], potato [61,62], melon [63], fodder [64], sugar cane [65,66], banana [67,68],
orange [69], yacon tuber [70], and jack fruit [71].

Neural networks are models based on emulating human reasoning, which have great advantages
in applying mathematical reasoning to situations with unknown relationships between the dependent
and independent variables [72]. This research aimed to build two ANNs in order to simulate the aerial
dry matter (leaf, stem, and fruit) and fresh fruit yield in a tomato crop grown into two culture systems.

2. Materials and Methods

2.1. Establishment and Growth of Tomato Crop

Seeds of a saladette tomato (Solanum lycopersicum L.) hybrid “EL CID F1” with undetermined
growth habits were seeded in polystyrene trays. After 35 days, the seedlings were transplanted
equidistantly, with 3 plants per square meter, into 8 L black polyethylene containers. Two culture
systems were used: substrate and the soil. Tomato plants were grown in a multi-tunnel greenhouse
with a polyethylene cover located in the Horticulture Department at the Agricultural University
“Antonio Narro” in Saltillo, Mexico (25◦21′ N, 101◦01′ W, altitude 1743 m). The crop cycle extended
from May 20th to November 11th, 2017, with average values of temperature at 21 ◦C, photosynthetic
active radiation of 565 µmol m−2 s−1, and relative humidity of 51%. The tomato plants were maintained
on a single stem by removing the axillary buds. Fertilization consisted of a Steiner nutrient solution [73]
applied three times a day by watering to concentrations of 25%, 50%, 75%, and 100% at the transplanting
date and 15, 28, and 35 DAT. The irrigation water was gradually increased during the crop cycle from
0.5 to 3 L per plant per day from the transplanting date to harvesting by using an irrigation system.

2.2. Measuring of ANN Input Values

The input variables consisted of six crop variables: leaf area (LA), plant height (PH), fruit number
(FN), dry matter of leaves (LDM), stems (SDM), and fruits (FDM), and the accumulated air temperature
(growth degree days) at 136 DAT. Four tomato plants were randomly chosen for the substrate and soil
culture systems. The leaf areas of the tomato plants were measured with a portable LI-3100C device
(LI-COR®, Inc. Nebraska, USA) as the square centimeters per plant (cm2 plant−1). The plant heights
or stem lengths of the tomato plants were measured with a flex meter from the substrate surface
through the apical bud in centimeters (cm). The fruit number was registered for each plant. The fresh
matter (leaves, stems, and fruits) was measured separately with a digital balance, and the leaves, stems,
and fruits were dehydrated separately in a drying oven at 70 ◦C until obtaining a constant weight,
expressed in grams per plant (g plant−1). The greenhouse air temperature in Celsius degree (◦C) was
measured with a WhatchDog 1650 datalogger (Spectrum Technologies Inc., St. Joseph, IN, USA) at
a time interval of 15 min. The growth degree-days (GDD) were computed according to the residual
method [74] in Excel with Equation (1):

GDD =
n∑

i=1

(Ti − Tb), Ti =
Tmin + Tmax

2
(1)

where GDD is the growth degree-day on the ith day from the transplanting date to 136 DAT (◦D), Ti
is the mean greenhouse air temperature on the ith day (◦C), Tb is the base temperature at which the
growth ceased (for the tomato grown under greenhouse conditions Tb = 10 ◦C [75]), and Tmin and Tmax

are, respectively, the minimum and maximum daily temperatures (◦C).
The plant development rate is proportional to Ti − Tb, which implies that the development stage

will be proportional to the integrated temperature
∫

(Ti − Tb)dt, where the plant development rate
ceases when Ti − Tb < Tb [76].
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2.3. Artificial Neural Networks

Two feed-forward backpropagation ANNs with an input layer, three hidden layers, and two
output layers were trained and validated by the Levenberg–Marquardt algorithm for adjusted weights
and bias [77–79]. The input layer consisted of seven neurons with the average values of five replications
of the leaf area (LA), plant height (PH), fruit number (FN), dry matter of leaves (LDM), stems (SDM)
and fruits (FDM), and growth degree days (GDD) from the accumulated greenhouse air temperature
over the crop cycle. The output layers consisted of the fresh fruit yield and aerial dry matter. Different
ANN topology arrays, varying the neuron number in the three hidden layers, were evaluated in
order to determine the appropriated network topology to be used in each cropping system. The
10-7-5 and 10-8-5 topologies were used at the hidden layers for the substrate and soil, respectively,
according to their data and learning rates. The input and output data were normalized by the Min–Max
method [80,81] in the RStudio software [82], where the data were randomly divided into three sets:
training 70%, validation 15%, and testing 15%, according to the literature, where these percentages
were used for the data [64,83].

2.4. Neuron Topologies in the Hidden Layers

Neuron numbers between 5 to 10, 4 to 10, and 1 to 5 were randomly chosen in the three hidden
layers in order to build different topology arrays [64] (Table 1). In most applications, the neuron number
is determined by trial and error [84]. The different topology arrays resulting from these combinations
were evaluated in the MATLAB neural network toolbox [85], and the following transfer functions were
used: tangent sigmoidal hyperbolic (tansig), logarithmic sigmoidal hyperbolic (logsig), and pure lineal
(purelin) [85,86], with a learning rate of 0.5 [63], 1000 epochs [64], minimum performance gradient
of 1e−07 and adaptation value of 0.001. The tangent sigmoidal hyperbolic (tansig) transfer function
presented the best performance in the hidden layers, and the pure lineal (purelin) transfer function
presented the best performance in the output layers, defined by its lower mean square error (MSE)
values for the substrate and soil (Table 1).

Table 1. Mean square error (MSE) of the evaluated hidden layers topologies for the substrate and soil.

Hidden Culture Hidden Layer Transfer Functions
Layers System 1st 2nd 3rd Hidden Layers Output Layer Epochs MSE

1

Substrate

10 - - Logsig Logsig 12 0.238
10 - - Logsig Purelin 8 0.136
10 - - Logsig Tansig 13 0.257
10 - - Purelin Purelin 4 1.25
10 - - Purelin Logsig 9 0.204
10 - - Purelin Tansig 9 0.221
10 - - Tansig Tansig 11 0.15
10 - - Tansig Logsig 8 0.572
10 - - Tansig Purelin 8 0.341

Soil

10 - - Logsig Logsig 10 0.141
10 - - Logsig Purelin 10 0.253
10 - - Logsig Tansig 19 0.54
10 - - Purelin Purelin 4 1.55
10 - - Purelin Logsig 10 0.413
10 - - Purelin Tansig 9 0.154
10 - - Tansig Tansig 18 0.261
10 - - Tansig Logsig 63 0.119
10 - - Tansig Purelin 7 0.382
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Table 1. Cont.

Hidden Culture Hidden Layer Transfer Functions
Layers System 1st 2nd 3rd Hidden Layers Output Layer Epochs MSE

2

Substrate

10 5 - Logsig Logsig 8 0.128
10 6 - Logsig Logsig 9 0.372
10 7 - Logsig Logsig 7 0.114
10 8 - Logsig Logsig 6 0.253
10 9 - Logsig Logsig 7 0.217
10 5 - Logsig Purelin 6 0.382
10 6 - Logsig Purelin 7 0.781
10 7 - Logsig Purelin 6 0.715
10 8 - Logsig Purelin 7 0.566
10 9 - Logsig Purelin 8 0.938
10 5 - Logsig Tansig 6 0.226
10 6 - Logsig Tansig 7 0.217
10 7 - Logsig Tansig 6 0.288
10 8 - Logsig Tansig 6 0.274
10 9 - Logsig Tansig 6 0.2

Soil

10 5 - Logsig Logsig 11 0.262
10 6 - Logsig Logsig 53 0.148
10 7 - Logsig Logsig 7 0.463
10 8 - Logsig Logsig 6 0.186
10 9 - Logsig Logsig 9 0.0986
10 5 - Logsig Purelin 7 0.229
10 6 - Logsig Purelin 6 0.0935
10 7 - Logsig Purelin 7 0.0825
10 8 - Logsig Purelin 7 0.381
10 9 - Logsig Purelin 6 0.0864
10 5 - Logsig Tansig 6 0.234
10 6 - Logsig Tansig 7 0.499
10 7 - Logsig Tansig 16 0.0854
10 8 - Logsig Tansig 6 0.265
10 9 - Logsig Tansig 9 0.199

3

Substrate

5 4 0 Tansig Tansig 12 0.194
5 8 8 Tansig Tansig 11 0.153
6 7 8 Tansig Tansig 10 0.164
10 7 5 Tansig Purelin 8 0.107
10 10 5 Tansig Tansig 11 0.130
10 8 6 Purelin Logsig 6 0.311
10 7 9 Purelin Tansig 10 0.322
10 6 5 Purelin Purelin 4 0.381
6 9 4 Purelin Logsig 10 0.232
9 11 5 Purelin Tansig 19 0.376
8 5 7 Logsig Tansig 15 0.289
9 10 4 Logsig Purelin 17 0.379
9 8 7 Logsig Purelin 21 0.275
5 9 6 Logsig Logsig 9 0.297
7 8 5 Logsig Tansig 15 0.327

Soil

5 4 0 Tansig Tansig 12 0.323
8 5 3 Tansig Purelin 12 0.370
10 10 5 Tansig Tansig 13 0.375
5 7 5 Tansig Tansig 17 0.260
10 8 5 Tansig Purelin 6 0.049
10 8 7 Purelin tansig 17 0.276
6 7 5 Purelin logsig 4 0.388
9 6 4 Purelin Purelin 6 0.391
7 8 6 Purelin Logsig 9 0.321
6 9 8 Purelin Tansig 7 0.286
10 7 8 Logsig Purelin 10 0.389
8 9 7 Logsig Tansig 12 0.275
7 9 8 Logsig Logsig 16 0.432
9 8 6 Logsig Purelin 22 0.488
6 10 5 Logsig Tansig 11 0.322
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For the hidden layers, the sigmoid hyperbolic tangent (tansig) transfer function (Equation (2))
was used [87]:

Y j =
eX j − e−X j

eX j + e−X j
(2)

For the output layer, the linear (purelin) transfer function (Equation (3)) was used [87]:

Y j = X j, X j =
m∑

i=1

Wi jYi + b j (3)

where m is the number of neurons in the output layer, Wij is the weight of connections between layers i
and j, Yi is the output of the neurons in layer i, and bj is the bias of the neurons in layer j.

Correlation and dependence are statistical relationships between two or more random variables
or observed data values. Correlation refers to any departure of two or more random variables from
independence and indicates a relationship between the mean values, thereby offering predictive
relationship that can be used in practice. Dependence indicates if the random variables satisfy a
mathematical condition of probabilistic independence [88]. The MSE and correlation coefficient (R)
were used in this research.

ANN validation was performed in the Matlab 2017a software through the MSE computing
(Equation (4)), according to [89]:

MSE =

∑P
j=0

∑N
i=0

(
di j − yi j

)2

NP
(4)

where P is the number of output neurons, N is the number of exemplars in the dataset, and yij and dij
are the network output and desired output for exemplar i at processing element j.

Although the MSE values indicate the difference between the predicted and experimental values,
the MSE criterion does not determine their direction, so the R was also calculated with Equation (5),
according to [87,89]:

R =

∑
i

(
Xi −X

)(
di − d

)
N

/√√√∑
i

(
di − d

)2

N

√∑
i

(
Xi −X

)2

N
(5)

where Xi is the network output, X is the mean of the network outputs, di is the desired output, d is the
mean of the desired outputs, and N is the number of exemplars in the dataset.

The performance indicators for building the ANN model included the higher R [90] and the lower
MSE [66,70].

3. Results

3.1. ANN Topologies

Two feed-forward backpropagation ANNs with an input layer, three hidden layers, and two
output layers, were trained and validated by the Levenberg–Marquardt algorithm for adjusted weights
and bias. The ANN array with three hidden layers was chosen from the minimum MSE values obtained
in the experimentation, which increased until 1.55, 0.94 and 0.49 in the ANN with 1, 2 and 3 hidden
layers, respectively (Table 1).

Based on the evaluation of the transfer functions, an ANN with a 10-7-5 topology in the hidden
layers was built for the substrate culture system (Figure 1a). This ANN showed the best performance
(R = 0.97 and MSE = 0.107), with tansig and purelin transfer functions in the hidden layers and output
layer, respectively (Table 1), while the ANN with a 10-8-5 topology in the hidden layers was built for
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the soil culture system (Figure 1b), which showed better performance (R = 0.95 and MSE = 0.049) with
tansig and purelin transfer functions in the hidden layers and output layer, respectively (Table 1).

Figure 1. ANN schemes with (a) a 7-10-7-5-2 topology for the substrate, and (b) a 7-10-8-5-2 topology
for the soil.

3.2. Training, Validation, and Test Processes of the ANNs

The training, validation, and test processes were performed with the observed and simulated
data for the aerial dry matter and fresh fruit yield of the tomato grown in the substrate (Figure 2a) and
soil (Figure 2b) culture systems. All evaluation processes showed R values higher than 0.96 for the
substrate and higher than 0.94 for the soil.

Figure 2. Training, validation, and test processes for the ANNs of the (a) substrate, and (b) soil.

3.3. Aerial Dry Matter

The observed and simulated data of aerial dry matter over the crop cycle showed R values higher
than 0.96 in the substrate (Figure 3a) and higher than 0.98 in the soil (Figure 3b) culture systems.
At 136 DAT, the simulated data were underestimated with respect to the observed data because the
regression line (black line) was located below the 1–1 line (gray line) for both the substrate and the soil
culture systems.
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Figure 3. Aerial dry matter of the tomato plants grown in the (a) substrate and (b) soil.

3.4. Fresh Fruit Yield

The observed and simulated data for the fresh fruit yield over the crop cycle showed R values
higher than 0.98 in the substrate (Figure 4a) and higher than 0.97 in the soil (Figure 4b) culture systems.
At 136 DAT, the simulated data were overestimated with respect to the observed data because the
regression line (black line) was located above the 1–1 line (gray line) for both the substrate and the soil
culture systems.

Figure 4. Fresh fruit yield of tomato plants grown in the (a) substrate and (b) soil.

4. Discussion

According to the evaluation, two neural network architectures were obtained, one for the substrate
(7-10-7-5-2) and the other for the soil culture systems (7-10-8-5-2). These architectures showed the best
performance and were appropriate according to Gutiérrez [90], who mentioned that the correlation
coefficient measures the intensity of the relationship between two variables (X and Y), to justify the
inclusion of the comparison criterion and a low value of the MSE. The MSE is calculated by dividing
the sum of the squares of the difference of the target value with the value calculated by the neural
network, by the total number of data. The MSE value and the training algorithm will allow one to
perform an acceptable training to adjust the weights and bias according to the real data [23]. The MSE
was used to measure the efficiency of the training process, as mentioned in [66,70].

4.1. ANN Topologies

Two feed-forward backpropagation ANNs were trained and validated by the
Levenberg–Marquardt algorithm for weights and bias adjusted, one for substrate and other for
soil culture systems. The tansig–purelin transfer functions in the hidden and output layers, respectively,
for the two ANNs were used. The ANN outputs were the aerial dry matter and the fresh fruit yield of
the tomato grown for the two culture systems.

The ANN with three hidden layers showed a better fit, corresponding to lower MSE values in
the two culture systems, with substrate topologies of 10, 7, and 5 neurons in the first, second, and
third hidden layers, respectively, and soil topologies of 10, 8, and 5 neurons in the first, second, and
third hidden layers, respectively. The topologies of the two culture systems were different only in the
second hidden layer, with the soil data higher in one neuron compared to the substrate data. In this
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research the tansig, logsig and pureline transfer functions were used, both in the hidden layers and in
the output layer, while [91] only used the tansig transfer function in the hidden layers and the pureline
transfer function in the output layer.

According to [92], if sigmoidal neurons are used in the output layer, the network output is limited
to a very small range; on the other hand, when using a linear neuron, the output can take any value.

The study in [93] used the multilayer perceptron model with the hyperbolic tangent activation
function (tansig) for the hidden layers; this study also used the linear function (purelin) in the
construction of its topology for the output layer, which was used for the functions of the two networks
to simulate the fruit yield and aerial partial biomass in the substrate and soil. The work in [94] used
a backpropagation ANN to simulate the photosynthesis rate of tomato plants, a tangent sigmoidal
hyperbolic (tansig–logsig) transfer function for the hidden layers, and a linear (purelin) transfer function
for the output layer, with the same transfer functions used for the two models in the present study.

4.2. Training, Validation, and Test Processes of the ANNs

Figure 2 shows the correlation between the observed and simulated values for the training,
validation, and test data with better performance—that is, the data with R > 0.96 (MSE = 0.107) for the
substrate and R > 0.94 (MSE = 0.049) for the soil culture systems. The objective of this validation is to
establish the credibility of a model for a specific purpose, which is usually done through a comparative
analysis [95].

The learning rate of 0.5 used in this research for the substrate and the soil culture systems is similar
to the learning rate (0.6) used in [63] and is in the range of the recommended values (0.05 to 0.5 [96], 0.1
to 0.7 [97], and 0.05 to 0.75 [98]), where the learning rate value has no influence on the ANN error [97].

The ANN frames with the Levenberg–Marquardt algorithm applied to the multilayer perceptron
topology without connections across layers feature topologies that are far from optimal [77], similar
to those used in this research. The obtained R used to measure the performance of the network for
validation and testing of the data from the tomato crop grown in the substrate were higher than those
obtained in [18], which used a dynamic neural network to predict the tomato yield in a semi-closed
greenhouse. In the soil data validation, the R (0.99) was similar to that reported in [64], which used an
ANN to predict the yield indexes and quality of the three grasses.

During the training, validation, and test processes of the ANNs, the 1–1 line (dashed line) was
used to represent a perfect fit if the network output was the same as the desired output. A continuous
line represents the best linear fit regression between the observed output data and the simulated output
data from the network. It was also observed that increasing the layers did not decrease the MSE,
which began to remain constant at 10, 7, and 5 neurons in the hidden layers, with eight epochs for the
substrate and 10, 8, and 5 neurons in the hidden layers, with six epochs for the soil. The study in [63]
evaluated a three-layer ANN with different neurons in the hidden layer and determined different
changes in the mean prediction error as the topology increased—that is, a reduction from 3.34% to
2.21% (9-1-1 to 9-5-1), and an increment from 2.21% to 2.56% (9-5-1 to 9-9-1).

The authors in [99] concluded that the number of hidden layers and the number of neurons
must be chosen by the designer and that there is no rule that can determine the optimal number of
hidden neurons to solve a given problem. In most applications, determination of the epoch and neuron
number is determined by trial and error [84].

4.3. Aerial Dry Matter and Fresh Fruit Yield

This research aimed to use soft computing techniques to model tomato growth. However, the
ANN topologies for the substrate and soil culture systems were trained, validated, and tested using the
neuron values of the input layers containing the scalar values of the data corresponding to 136 DAT,
not with the vectors across the entire crop cycle. The simulated data were well fitted to the observed
data in both the substrate and the soil culture systems, with R higher than 0.96 for the aerial dry matter
and higher than 0.97 for the fresh fruit yield.
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5. Conclusions

The employed feed-forward backpropagation ANNs with 7-10-7-5-2 and 7-10-8-5-2 topologies
for the substrate and soil culture systems, respectively, and trained and validated by the
Levenberg–Marquardt algorithm for weights and bias adjusted, satisfactory simulated the aerial
dry matter and the fresh fruit yield compared to the observed values.

As mentioned earlier, in recent years, soft computing techniques, such as ANNs, have been
used to analyze, model, predict, and execute real processes. In real processes, there is variability
and uncertainty that, in some situations, cannot be evaluated with traditional mathematical models.
Therefore, this paper was focused on the use of different ANN feedforward topologies capable of
learning and simulating the cumulative aerial dry matter and yield of the fresh fruit from a tomato
crop grown under greenhouse conditions in substrate and soil culture systems.

Based on the data obtained from the tomato crop grown in the substrate and soil, the two
designed ANN structures represent a reliable and precise alternative for modelling and simulating the
cumulative yield of tomato crops cultivated under different greenhouse conditions, giving average
relative errors of 12.06% and 13.65% for the substrate and soil conditions and a R greater than 94% in
both cases. The training process for the ANN structures ended before 10 iterations, reaching a MSE of
0.107 for the substrate and a MSE of 0.049 for the soil. These results show the ability to generalize the
designed networks. The results indicate that using databases containing 280 data from four plants
(four replicates), 10 samples, and seven input variables allowed the networks, during training, to learn
the relationships between the studied inputs and outputs. Likewise, these results indicate that soft
computing techniques are suitable for the analysis of data with variability, uncertainty, and various
correlations, as shown by the tomato crop data.
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