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Abstract: In this paper, the classification capabilities of perceptron and radial neural networks are
compared using the identification of selected pests feeding in apple tree orchards in Poland as an
example. The goal of the study was the neural separation of five selected apple tree orchard pests.
The classification was based on graphical information coded as selected characteristic features of
the pests, presented in digital images. In the paper, MLP (MultiLayer Perceptrons), RBF (Radial
Basis Function) and DNN (Deep Neural Networks) neural classification models are compared,
generated using learning files acquired on the basis of information contained in digital photographs
of five selected pests. In order to classify the pests, neural modeling methods were used, including
digital image analysis techniques. The qualitative analysis of the neural models enabled the
selection of optimal neuron topology that was characterized by the highest classification capability.
As representative graphic features were selected five selected coefficients of shape and two defined
graphical features of the classified objects. The created neuron model is dedicated as a core for
computer systems supporting the decision processes occurring during apple production, particularly
in the context of apple tree orchard pest protection automation.

Keywords: artificial neural networks; identification of apple pests; deep learning

1. Introduction

The observed progress in the broadly defined applied information technology results in the
capability to successfully simulate complex identification processes using increasingly more effective
computers. Methods that include computer analysis techniques and modern neural modeling methods
are utilized for this purpose. As a result, this enables the identification process to be automated and
certain problems arising out of human nature, such as subjectivism of the expert performing the
analysis, to be alleviated. In scientific papers, one can often observe problems appearing difficult and
non-linear which can relatively easily be solved using broadly defined linear methods and techniques.
It is a fact that the popularity of Artificial Neural Networks (ANN) mainly stems from the ability to
fairly easily model not only linear but also non-linear problems, and practical studying of matters
described using curvilinear models.

Until recently, neural networks working as classificators represent basic classic ANN topologies:
Multilayer Perceptrons (MLP)and Radial Basis Function networks (RBF). Recently, Deep Neural
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Networks (DNN) have become increasingly important [1,2]. Despite the significant differences between
them, both in terms of their generation and operation, they constitute neural networks defined as
complementary classification models.

It is considered that MLP networks were first suggested by [2–4]. In reality, they had been used by
numerous researchers already much earlier (the name "perceptron" was introduced by Frank Rosenblatt
in the 1960s). One-way multilayer networks of the multilayer perceptron type are among the most
studied and most commonly used network topologies. Multilayer perceptrons represent the so-called
parametric neural model class. For example, they are characterized by the fact that the number of
neurons forming their structure is markedly lower than the learning file size.

The manner of information processing by RBF networks is different. ANN with radial basis
functions belong—as do MLP—to the parametric neural model class. The topology of radial networks
was proposed by Dave Broomhead and David Lowe [5,6], as well as John Moody and Christian
Darkin [7]. RBF networks represent a different—when compared to sigmoid networks—method
of mapping the input set into the output file [8,9]. This transformation consists of matching the
multivariate approximation function to the required values, i.e., "spreading" a multidimensional
hypersurface adapting to the required values over the learning file. RBF networks usually require for
construction more neurons than one-way networks with the sigmoid activation function.

In 2006, Hinton’s team [10] presented a new method of teaching artificial neural network—a
method of deep learning. Deep learning is a class of machine learning methods for hierarchical (deep)
models with non-linear layers. The idea of deep learning is to pre-train the network (pretraining), and
then to train the network in a supervised manner. Deep learning is a machine learning department
that develops around algorithms modeling high-level abstractions in the available data using multiple
layers of nonlinear transformations. By design, subsequent levels form a hierarchy of features from
the least to the most abstract. Deep Neural Networks are the most popular group of deep learning
algorithms. The depth of the neural network architecture is defined as the length of the longest path
between the input and output neuron. In forward networks, this translates directly into the number of
layers. It is important to emphasize that there is no limit on the number of layers that can be called a
deep network. It has been assumed that a network with more than two hidden layers is already a
deep network, but with the development of increasingly larger networks, this boundary can be shifted.
From 2010, a significant increase in interest in deep learning techniques can be seen, and from 2012, a
significant reduction in the inaccuracy of learning networks using new methods. According to trade
journals, the DNN (Deep Neural Network) error pattern recognition is about 5%, which is at the level
of human error. Another important feature of this technology is the ability to react quickly and operate
the learned model in real time [11,12].

The aim of the study was to compare the possibilities of using MLP, RBF and DNN artificial neural
networks as classification tools, with the process of identifying selected apple tree orchard pests as an
example. To this end, a set of adequate neural classification models was created and subsequently
verified, indicating the optimum neural classifier [13–19].

2. Materials and Methods

By way of example, classification capabilities of MLP, RBF and DNN networks as neural information
systems supporting the process of identifying selected apple tree orchard pests were compared [20,21].
The study presents classification neural models optimized using teaching sets acquired on the basis
of information coded as digital images of selected pests. A particular focus was placed on finding a
solution to the problem of identifying 5 selected apple tree pests most common in orchards in Poland,
presented in graphical form. In order to classify the pests, neural modeling methods were used,
including digital image analysis techniques.

Apple trees may be invaded by many species of pests, but only a few of them may occur in
production orchards in numbers. The research material that was used to solve the scientific problem



Agriculture 2020, 10, 218 3 of 9

was a group of 5 pests most commonly feeding in apple tree orchards and posing the highest threat to
apple trees [6]:

1. Apple blossom weevil—Anthonomus pomorum L.
2. Apple sawfly—Hoplocampa testudinea Klug
3. Apple ermine moth—Yponomeuta malinellus Zeller
4. Codling moth—Cydia pomonella L.
5. Apple clearwing—Synanthedon myopaeformis (Borkhausen)

Figure 1 presents the pests whose images were subjected to the neural classification process.
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Figure 1. Selected 5 pests of apple tree orchards [6].

For the purposes of creating the neural models, the neural network simulator implemented in the
STATISTICA v.12 and DNN simulator H2O suite was used. The most important step of generating
ANN is the creation of teaching files which include the selected characteristic features [22–26]. To this
end, 7 numerical input variables and a nominal output variable, which arose out of the nature of
the scientific, were specified [27–29]. The first group of assumed characteristic input parameters was
a file of 7 selected, standard coefficients of shape, constituting selected geometrical features of the
objects. Taking into account the fact that these parameters must provide a clear distinction between the
identified objects, the 5 following standard shape coefficients were proposed:

- shape coefficient Rs (cohesion), which is a measure of description of shape, independent from
linear transformations (scale, rotation or translation)—it has no unit:

Rs =
L2

4πS
(1)

where:

L—circumference of the object,
S—surface area of the object.

- coefficient W8, which provides the ration of maximum dimension to the circumference of the
object. For objects (insects) with varied, irregular shape, it assumes low values:

W8 =
Lmax

L
(2)

where:

Lmax—maximum dimension of the object,
L—circumference of the object.

- Feret coefficient RF, which characterizes the elongation of the object (it assumes low values for
elongated objects and is characterized by high variability):

RF =
Lh
Lv

(3)
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where:

Lh—maximum dimension of the object (horizontal),
Lv—maximum dimension of the object (vertical).

- regularity coefficient RE:

RE =
S
ab

(4)

where:

S—surface area of the object,
a—length of the object,
b—width of the object.

- Malinowska coefficient RM:

RM =
L

2
√
πS
− 1 (5)

where:

L—circumference of the object,
S—surface area of the object.

The second group of assumed characteristic input parameters had 2 object features:

- object surface area S, which is a sum of pixels of the object
- object circumference L, which is a sum of pixels forming the contour of the object

For each of the 5 pests the 7 above-listed shape coefficients were assumed. As the 7 input variables,
the following were assumed:

(1): measureless shape coefficient RS,
(2): coefficient characterising the intermediate features of the object W8,
(3): Feret coefficient RF,
(4): regularity coefficient RE,
(5): Malinowska coefficient RM,
(6): pest circumference L,
(7): surface area of the pest image S.
As the 1 output variable, the following were assumed:
5-state variable with the following nominal values: 1, 2, 3, 4, 5 (Figure 1).
Basing on the obtained digital images of pests, 1000 cases forming the learning file were generated.

There were 200 cases of each pest in this group. The measurements were taken manually in the ImageJ
application. This file was divided randomly in a standard manner, as follows:

- learning file, containing 500 cases,
- validation file, containing 250 cases,
- test file, containing 250 cases.

The structure of the learning file comprised 7 input variables and 1 nominal output value.
A fragment of an example learning file is presented in Table 1.
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Table 1. Structure of the learning file.

No. RS
(1)

W8
(2)

RF
(3)

RE
(4)

RM
(5)

L
(6)

S
(7)

Pest
(1, 2, 3, 4, 5)
(Figure 1)

1 17.359 0.79 244.066 1016.879 3.166 46,761 3193 apple moth

2 1.964 0.423 293.177 410.828 0.401 67,473 1290 apple clearwing

3 3.685 0.301 261.12 501.274 0.92 53,524 1574 apple moth

4 1.538 0.709 378.825 469.745 0.24 112,654 1475 apple clearwing

. . . . . . . . . . . . . . . . . . . . . . . . . . .

1000 1.157 0.606 350.848 377.389 0.076 96,629 1185 apple moth

3. Results and Discussion

Structures of the generated Artificial Neural Networks (RBF, Multilayer perceptrons (MLP and
Deep Neural Networks (DNN) are presented in Figure 2.

Agriculture 2020, 10, x FOR PEER REVIEW 5 of 9 

 

3. Results and Discussion 

Structures of the generated Artificial Neural Networks (RBF, Multilayer perceptrons (MLP and 
Deep Neural Networks (DNN) are presented in Figure 2. 

 

Figure 2. Structures of the generated RBF, MLP and DNN networks. 

The standard measure of classification correctness of a generated Artificial Neural Network 
(ANN) is the RMS (Root Mean Square) error. This measure is defined as the total error made by the 
network on the (training, test and validation) data file. It is calculated as per formula 6: 

ܵܯܴ = ඨ∑ ݕ) − )ଶୀଵݖ ݊  (6) 

where: 
n—number of cases, 
yi—real values, 
zi—values determined using the network. 

The RMS error is a numerical value convenient for interpretation, describing the total error that 
the ANN makes during its operation. For the created MLP models: 7:7-27-5:1, RBF: 7:7-8-5:1 and 
DNN: hidden matrix: 200 × 200, RMS errors for the: training, validation and test files were adequate. 
These are presented in Table 2. 

Table 2. Root mean square (RMS) errors for the RBF, MLP and DNN. 

 RBF MLP DNN 
Training file 0.165004 0.0001034 0.014921 

Validation file 0.183463 0.0001093 0.014921 
Test file 0.174319 0.0001063 0.014921 

For all neural networks, the low values of the RMS errors for the training, validation and test 
files, respectively, proves good generalization capabilities of the generated ANN. This means that the 
generated MLP, RBF and DNN networks did not learn "by heart" and they present good classification 
capabilities. The MLP network displayed a significantly better classification capability, compared to 
the DNN and RBF networks, which may mean that the studied identification problem is linear in 
nature.  

The optimum classic neural network was the MLP structure with the 7:7-27-5:1 structure. The 
input layer comprised seven neurons with a linear postsynaptic function, as well as an activation 

Figure 2. Structures of the generated RBF, MLP and DNN networks.

The standard measure of classification correctness of a generated Artificial Neural Network (ANN)
is the RMS (Root Mean Square) error. This measure is defined as the total error made by the network
on the (training, test and validation) data file. It is calculated as per formula 6:

RMS =

√∑n
i=1(yi − zi)

2

n
(6)

where:

n—number of cases,
yi—real values,
zi—values determined using the network.

The RMS error is a numerical value convenient for interpretation, describing the total error that
the ANN makes during its operation. For the created MLP models: 7:7-27-5:1, RBF: 7:7-8-5:1 and DNN:
hidden matrix: 200 × 200, RMS errors for the: training, validation and test files were adequate. These
are presented in Table 2.
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Table 2. Root mean square (RMS) errors for the RBF, MLP and DNN.

RBF MLP DNN

Training file 0.165004 0.0001034 0.014921
Validation file 0.183463 0.0001093 0.014921

Test file 0.174319 0.0001063 0.014921

For all neural networks, the low values of the RMS errors for the training, validation and test
files, respectively, proves good generalization capabilities of the generated ANN. This means that the
generated MLP, RBF and DNN networks did not learn “by heart” and they present good classification
capabilities. The MLP network displayed a significantly better classification capability, compared to the
DNN and RBF networks, which may mean that the studied identification problem is linear in nature.

The optimum classic neural network was the MLP structure with the 7:7-27-5:1 structure. The input
layer comprised seven neurons with a linear postsynaptic function, as well as an activation function.
The only hidden layer of the set was composed of 27 sigmoidal neurons, i.e., those with a linear PSP
(Post Synaptic Potential) function and a logistic activation function. The network output comprised
one sigmoidal neuron representing a five-state nominal variable. The generated neural model was
taught by way of the BP (Back Propagation) method in five cycles, 1200 epochs each, and optimized
using the CG (Conjugate Gradients) algorithm for 1500 epochs. In the supplementary network training
process, the LM (Levenberg-Marquardt) algorithm was employed, adjusting the network for 50 epochs.
In the teaching process utilizing the error backward propagation algorithm, the following parameters
were assumed:

− decreasing learning coefficient: η = 0.3 to η = 0.1,
−momentum coefficient: α = 0.5.

The best RBF network was the topology with the 7:7-8-5:1 structure. The input layer comprised
seven neurons with a linear PSP function, as well as a linear activation function. The hidden layer of
the set was composed of eight radial neurons, i.e., those with a radial PSP function and an exponential
activation function. The network output comprised one neuron with a linear PSP function and a linear
saturated activation function, representing a five-state nominal variable. The created neural model was
taught using optimization algorithms implemented in the STATISTICA v.12 suite. The centers were
determined using the k-means method, while deviations were determined by way of the k-neighbors
method. The output layer was optimized in a standard manner, using the pseudoinverse technique.
The conducted sensitivity analysis showed that all seven variables are important for the operation of
all the generated models. For the RBF neural model, these were in order of importance from the most
important to the least important: RS, S, L, RE RF, W8, RM. For MLP: RS, S, L, W8, RE RF, RM.

The DNN model was generated in the first interaction. The model had seven inputs and one
output. The hidden neuron matrix had a span of 200 × 200. Network sampling was carried out at
a speed of 3347 samples per second (Figure 3). The model was generated and optimized after 800
epochs out of 10,000. The entire deep modeling process was carried out in the free H2O application
on a computer with an 8th Gen Intel Core i7 processor, type 8565U, 16 GB RAM, HP ProBook 450
G6. The RMS error for the manufactured network was 0.014921. The match ratio was 0.999889.
The conducted sensitivity analysis showed that all variables are important for the operation of the
model. These were in order of importance from the most important to the least important: RE, S, L, Rs,
RF, RM, W8. Dominant descriptors for presented networks are: RS (shape coefficient), S (surface area),
L (circumference) and RE (regularity coefficient).



Agriculture 2020, 10, 218 7 of 9

Agriculture 2020, 10, x FOR PEER REVIEW 6 of 9 

 

function. The only hidden layer of the set was composed of 27 sigmoidal neurons, i.e., those with a 
linear PSP (Post Synaptic Potential) function and a logistic activation function. The network output 
comprised one sigmoidal neuron representing a five-state nominal variable. The generated neural 
model was taught by way of the BP (Back Propagation) method in five cycles, 1200 epochs each, and 
optimized using the CG (Conjugate Gradients) algorithm for 1500 epochs. In the supplementary 
network training process, the LM (Levenberg-Marquardt) algorithm was employed, adjusting the 
network for 50 epochs. In the teaching process utilizing the error backward propagation algorithm, 
the following parameters were assumed: 

− decreasing learning coefficient: η = 0.3 to η = 0.1, 
− momentum coefficient: α = 0.5. 
The best RBF network was the topology with the 7:7-8-5:1 structure. The input layer comprised 

seven neurons with a linear PSP function, as well as a linear activation function. The hidden layer of 
the set was composed of eight radial neurons, i.e., those with a radial PSP function and an exponential 
activation function. The network output comprised one neuron with a linear PSP function and a 
linear saturated activation function, representing a five-state nominal variable. The created neural 
model was taught using optimization algorithms implemented in the STATISTICA v.12 suite. The 
centers were determined using the k-means method, while deviations were determined by way of 
the k-neighbors method. The output layer was optimized in a standard manner, using the 
pseudoinverse technique. The conducted sensitivity analysis showed that all seven variables are 
important for the operation of all the generated models. For the RBF neural model, these were in 
order of importance from the most important to the least important: RS, S, L, RE RF, W8, RM. For MLP: 
RS, S, L, W8, RE RF, RM. 

The DNN model was generated in the first interaction. The model had seven inputs and one 
output. The hidden neuron matrix had a span of 200 × 200. Network sampling was carried out at a 
speed of 3347 samples per second (Figure 3). The model was generated and optimized after 800 
epochs out of 10,000. The entire deep modeling process was carried out in the free H2O application 
on a computer with an 8th Gen Intel Core i7 processor, type 8565U, 16 GB RAM, HP ProBook 450 G6. 
The RMS error for the manufactured network was 0.014921. The match ratio was 0.999889. The 
conducted sensitivity analysis showed that all variables are important for the operation of the model. 
These were in order of importance from the most important to the least important: RE, S, L, Rs, RF, RM, 
W8. Dominant descriptors for presented networks are: RS (shape coefficient), S (surface area), L 
(circumference) and RE (regularity coefficient). 

 

Figure 3. Screenshot from H2O application during model generation. 

4. Conclusions 

The use of neural modeling and image analysis methods for the purpose of identifying apple 
tree pests proved to be a correct method that can effectively support decision processes occurring 

Figure 3. Screenshot from H2O application during model generation.

4. Conclusions

The use of neural modeling and image analysis methods for the purpose of identifying apple tree
pests proved to be a correct method that can effectively support decision processes occurring during
apple production. Graphical identification of the five selected apple tree pests, performed on the basis
of images, was best executed by a multilayer perceptron neural network (MLP). The analysis enabled a
conclusion that seven variables containing information on a pest’s characteristic colors and the seven
suggested shape coefficients are sufficient for correct identification. The study enabled the following
conclusions to be formulated:

- The acquired test results demonstrated that ANN are an effective tool supporting the process of
identifying chosen pests feeding in apple tree orchards.

- Qualitative analysis of the generated neural models demonstrated that the highest classification
capability was reached by a neural topology of the multilayer perceptron type, with the structure:
7:7-27-5:1.

- The MLP network demonstrated a markedly higher classification capability in comparison to the
DNN and RBF models. This may mean that the identification problem is linear in nature.

- The study indicates a utilitarian aspect of the created neural model. Potential applications of the
generated ANN can be specified as a dedicated information tool that may form the core of an
expert system effectively supporting decision processes occurring in the broadly defined apple
production process.
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