Effect of Zilpaterol Hydrochloride on Performance and Meat Quality in Finishing Lambs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location
2.2. Ethics
2.3. Animals
2.4. Feed Samples Collection
2.5. Finishing-Period Data Collection
2.6. Carcass Data and Meat Samples
2.7. Color Determination and Lowry Protein
2.8. Cathepsin Activities, Myoglobin Content, and Texture Measurements
2.9. Statistical Analysis
3. Results
3.1. Feedlot Performance
3.2. Carcass Characteristics
3.3. Commercial Cuts
3.4. Percentages of Non-Carcass Components
3.5. Meat Physicochemical Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Avendano-Reyes, L.; Macias-Cruz, U.; Alvarez-Valenzuela, F.D.; Aguila-Tepato, E.; Torrentera-Olivera, N.G.; Soto-Navarro, S.A. Effects of zilpaterol hydrochloride on growth performance, carcass characteristics, and wholesale cut yield of hair-breed ewe lambs consuming feedlot diets under moderate environmental conditions. J. Anim. Sci. 2011, 89, 4188–4194. [Google Scholar] [CrossRef] [PubMed]
- Notter, D.R. Potential for Hair Sheep in the United States. J. Anim. Sci. 2000, 1, 77. [Google Scholar] [CrossRef]
- O’Mara, F.P. The role of grasslands in food security and climate change. Ann. Bot. 2012, 110, 1263–1270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortiz-Rodea, A.; Barbosa-Amezcua, M.; Partida-de-la-Peña, J.A.; González-Ronquillo, M. Effect of zilpaterol hydrochloride on animal performance and carcass characteristics in sheep: A meta-analysis. J. Appl. Anim. Res. 2016, 44, 104–112. [Google Scholar] [CrossRef]
- Johnson, B.J.; Smith, S.B.; Chung, K.Y. Historical Overview of the Effect of β-Adrenergic Agonists on Beef Cattle Production. Asian-Australas. J. Anim. Sci. 2014, 27, 757–766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elam, N.A.; Vasconcelos, J.T.; Hilton, G.; VanOverbeke, D.L.; Lawrence, T.E.; Montgomery, T.H. Effect of zilpaterol hydrochloride duration of feeding on performance and carcass characteristics of feedlot cattle. J. Anim. Sci 2009, 87, 2133–2141. [Google Scholar] [CrossRef] [Green Version]
- Rivera-Villegas, A.; Estrada-Angulo, A.; Castro-Pérez, B.I.; Urías-Estrada, J.D.; Ríos-Rincón, F.G.; Rodríguez-Cordero, D.; Zinn, R. Comparative evaluation of supplemental zilpaterol hydrochloride sources on growth performance, dietary energetics and carcass characteristics of finishing lambs. Asian-Australas. J. Anim. Sci. 2019, 32, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Davis, H.E.; Belk, K.E. Managing meat exports considering production technology challenges. Anim. Front. 2018, 8, 23–29. [Google Scholar] [CrossRef]
- Centner, T.J.; Alvey, J.C.; Stelzleni, A.M. Beta agonists in livestock feed: Status, health concerns, and international trade. J. Anim. Sci. 2014, 92, 4234–4240. [Google Scholar] [CrossRef]
- Bories, G.; Brantom, P.; Brufau de Barberà, J.; Chesson, A.; Cocconcelli, P.; Debski, B.; Dierick, N.; Gropp, J.; Halle, I.; Hogstrand, C. Scientific Opinion of the Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) on a request from the European Commission on the safety evaluation of ractopamine. EFSA J. 2009, 1041, 1–52. [Google Scholar]
- AOAC International. Official Methods of Analysis of AOAC International; AOAC International: Arlington, VA, USA, 1995. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Davila-Ramirez, J.L.; Macias-Cruz, U.; Torrentera-Olivera, N.G.; Gonzalez-Rios, H.; Soto-Navarro, S.A.; Rojo-Rubio, R. Effects of zilpaterol hydrochloride and soybean oil supplementation on feedlot performance and carcass characteristics of hair-breed ram lambs under heat stress conditions. J. Anim. Sci. 2014, 92, 1184–1192. [Google Scholar] [CrossRef] [PubMed]
- Sultana, N.; Hossain, S.M.J.; Chowdhury, S.A.; Hassan, M.R.; Ershaduzzaman, M. Effects of age on intake, growth, nutrient utilization and carcass characteristics of castrated native sheep. Bangladesh Vet. 1970, 27. [Google Scholar] [CrossRef] [Green Version]
- Lowery, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar]
- Etherington, D.J.; Wardale, R.J. The mononuclear cell population in rat leg muscle: Its contribution to the lysosomal enzyme activities of whole muscle extracts. J. Cell Sci. 1982, 58, 139–148. [Google Scholar]
- Negrete, L.O.; Pinos-Rodriguez, J.M.; Grajales-Lagunes, A.; Morales, J.A.; Garcia-Lopez, J.C.; Lee-Rangel, H.A. Effects of increasing amount of dietary Prosopis laevigata pods on performance, meat quality and fatty acid profile in growing lambs. J. Anim. Physiol. Anim. Nutr. 2017, 101, e303–e311. [Google Scholar] [CrossRef]
- Lawrance, S.; Meyers, G.G.; Guarino, A.J. Data Analysis Using SAS Enterprise Guide, 1st ed.; Cambdrige University Press: Cambdrige, UK, 2009. [Google Scholar]
- Steel, R.G.D.; Torrie, J.H.; Dickey, D.A. Principles and Procedures of Statistics: A Biometrical Approach; McGraw-Hill: New York, NY, USA, 1997. [Google Scholar]
- Wallukat, G. The beta-adrenergic receptors. Herz 2002, 27, 683–690. [Google Scholar] [CrossRef]
- Maurya, R.; Srivastava, A.; Shah, P.; Siddiqi, M.I.; Rajendran, S.M.; Puri, A. beta-Amyrin acetate and beta-amyrin palmitate as antidyslipidemic agents from Wrightia tomentosa leaves. Phytomedicine 2012, 19, 682–685. [Google Scholar] [CrossRef]
- Aguilera-Soto, J.I.; Ramirez, R.G.; Arechiga, C.F.; Mendez-Llorente, F.; Lopez-Carlos, M.A.; Silva-Ramos, J.M. Zilpaterol Hydrochloride on Performance and Sperm Quality of Lambs Fed Wet Brewers Grains. J. Appl. Anim. Res. 2008, 34, 17–21. [Google Scholar] [CrossRef]
- Pringle, T.D.; Calkins, C.R.; Koohmaraie, M.; Jones, S.J. Effects over time of feeding a beta-adrenergic agonist to wether lambs on animal performance, muscle growth, endogenous muscle proteinase activities, and meat tenderness. J. Anim. Sci. 1993, 71, 636–644. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.S.; Lee, Y.B.; Dalrymple, R.H. Effect of the repartitioning agent cimaterol on growth, carcass and skeletal muscle characteristics in lambs. J. Anim. Sci. 1987, 65, 1392–1399. [Google Scholar] [CrossRef] [PubMed]
- Abney, C.S.; Vasconcelos, J.T.; McMeniman, J.P.; Keyser, S.A.; Wilson, K.R.; Vogel, G.J. Effects of ractopamine hydrochloride on performance, rate and variation in feed intake, and acid-base balance in feedlot cattle. J. Anim. Sci. 2007, 85, 3090–3098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calnan, H.B.; Jacob, R.H.; Pethick, D.W.; Gardner, G.E. Factors affecting the colour of lamb meat from the longissimus muscle during display: The influence of muscle weight and muscle oxidative capacity. Meat Sci. 2014, 96, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Salinas-Chavira, J.; Ramirez, R.G.; Domínguez-Muñoz, M.; Palomo-Cruz, R.; López-Acuña, V.H. Influence of Zilpaterol Hydrochloride on Growth and Carcass Characteristics of Pelibuey Lambs. J. Appl. Anim. Res. 2004, 26, 13–16. [Google Scholar] [CrossRef]
- Moody, D.E.; Hancock, D.L. Phenethanolamine Repartitioning Agents; CABI Publishing: New York, NY, USA, 2000. [Google Scholar]
- Estrada-Angulo, A.; Barreras-Serrano, A.; Contreras, G.; Obregon, J.F.; Robles-Estrada, J.C.; Plascencia, A.; Zinn, R. Influence of level of zilpaterol chlorhydrate supplementation on growth performance and carcass characteristics of feedlot lambs. Small Rumin. Res. 2008, 80, 107–110. [Google Scholar] [CrossRef]
- Vahedi, V.; Towhidi, A.; Hedayat-Evrigh, N.; Vaseghi-Dodaran, H.; Khodaei-Motlagh, M.; Ponnampalam, E.N. The effects of supplementation methods and length of feeding of zilpaterol hydrochloride on meat characteristics of fattening lambs. Small Rumin. Res. 2015, 131, 107–112. [Google Scholar] [CrossRef]
- Mondragón, J.; Domínguez-Vara, I.A.; Pinos-Rodríguez, J.M.; González, M.; Bórquez, J.L.; Domínguez, A. Effects of feed supplementation of zilpaterol hydrochloride on growth performance and carcass traits of finishing lambs. Acta Agric. Scand Sect. A Anim. Sci. 2010, 60, 47–52. [Google Scholar] [CrossRef]
- Lopez-Carlos, M.A.; Ramirez, R.G.; Aguilera-Soto, J.I.; Plascencia, A.; Rodriguez, H.; Arechiga, C.F. Effect of two beta adrenergic agonists and feeding duration on feedlot performance and carcass characteristics of finishing lambs. Livest. Sci. 2011, 138, 251–258. [Google Scholar] [CrossRef]
- Dávila-Ramírez, J.L.; Macías-Cruz, U.; Torrentera-Olivera, N.G.; González-Ríos, H.; Peña-Ramos, E.A.; Soto-Navarro, S.A.; Avendaño-Reyes, L. Feedlot performance and carcass traits of hairbreed ewe lambs in response to zilpaterol hydrochloride and soybean oil supplementation. J. Anim. Sci. 2015, 93, 3189–3196. [Google Scholar] [CrossRef]
- Hilton, G.G.; Montgomery, J.L.; Krehbiel, C.R.; Yates, D.A.; Hutcheson, J.P.; Nichols, W.T. Effects of feeding zilpaterol hydrochloride with and without monensin and tylosin on carcass cutability and meat palatability of beef steers. J. Anim. Sci. 2009, 87, 1394–1406. [Google Scholar] [CrossRef] [Green Version]
- Macías-Cruz, U.; Álvarez-Valenzuela, F.D.; Torrentera-Olivera, N.G.; Velázquez-Morales, J.V.; Correa-Calderón, A.; Robinson, P.H. Effect of zilpaterol hydrochloride on feedlot performance and carcass characteristics of ewe lambs during heat-stress conditions. Anim. Prod. Sci. 2010, 50, 983–989. [Google Scholar] [CrossRef]
- Ríos-Rincón, F.G.; Barreras-Serrano, A.; Estrada-Angulo, A.; Obregón, J.F.; Plascencia-Jorquera, A.; Portillo-Loera, J.J. Effect of Level of Dietary Zilpaterol Hydrochloride (β2-agonist) on Performance, Carcass Characteristics and Visceral Organ Mass in Hairy Lambs Fed All-concentrate Diets. J. Appl. Anim. Res. 2010, 38, 33–38. [Google Scholar] [CrossRef]
- Ferrell, C.L.; Jenkins, T.G. Cow type and the nutritional environment: Nutritional aspects. J. Anim. Sci. 1985, 61, 725–741. [Google Scholar] [CrossRef] [PubMed]
- Partida, J.A.; Casaya, T.A.; Rubio, M.S. Effect of zilpaterol hydrochloride on the carcass characteristics of Katahdin Lamb terminal crosses. Vet. Mex. OA 2015, 2. [Google Scholar] [CrossRef]
- Hughes, J.M.; Clarke, F.M.; Purslow, P.P.; Warner, R.D. Meat color is determined not only by chromatic heme pigments but also by the physical structure and achromatic light scattering properties of the muscle. Compr. Rev. Food Sci. Food Saf. 2020, 19, 44–63. [Google Scholar] [CrossRef] [Green Version]
- Robinson, D.L.; Café, L.M.; Greenwood, P.L. Meat Science and Muscle Biology Symposium: Developmental programming in cattle: Consequences for growth, efficiency, carcass, muscle, and beef quality characteristics. J. Anim. Sci. 2013, 91, 1428–1442. [Google Scholar] [CrossRef]
- Caballero, B.; Sierra, V.; Oliván, M.; Vega-Naredo, I.; Tomás-Zapico, C.; Alvarez-García, Ó.; Tolivia, D.; Hardeland, R.; Rodríguez-Colunga, M.J.; Coto-Montes, A. Activity of cathepsins during beef aging related to mutations in the myostatin gene. J. Sci. Food Agric. 2007, 87, 192–199. [Google Scholar] [CrossRef]
- Wheeler, T.L.; Koohmaraie, M. Effects of the beta-adrenergic agonist L-644,969 on muscle protein turnover, endogenous proteinase activities and meat tenderness in steers. J. Anim. Sci. 1992, 70, 3035–3043. [Google Scholar] [CrossRef] [Green Version]
Item | Treatments (mg ZH kg−1 Body Weight) | |||
---|---|---|---|---|
0.0 | 0.1 | 0.2 | 0.3 | |
Ingredients (%, DMI) | ||||
Corn | 20 | 20 | 20 | 20 |
Cob with leaf | 14 | 14 | 14 | 14 |
Soybean meal | 8 | 8 | 8 | 8 |
Sorghum | 18 | 18 | 18 | 18 |
Alfalfa | 11 | 11 | 11 | 11 |
Wheat bran | 17 | 17 | 17 | 17 |
Molasses | 9 | 9 | 9 | 9 |
Mineral premix a | 3 | 3 | 3 | 3 |
Urea | 1 | 1 | 1 | 1 |
Zilpaterol hydrochloride dose, mg kg−1 BW | 0.0 | 0.1 | 0.2 | 0.3 |
Chemical composition, % | ||||
Dry matter | 87.0 | 87.0 | 87.0 | 87.0 |
Moisture | 13.0 | 13.0 | 13.0 | 13.0 |
Crude protein | 15.48 | 15.48 | 15.48 | 15.48 |
Crude fat | 2.20 | 2.20 | 2.20 | 2.20 |
Ash | 5.61 | 5.61 | 5.61 | 5.61 |
aNDF | 37.85 | 37.85 | 37.85 | 37.85 |
ADF | 14.62 | 14.62 | 14.62 | 14.62 |
Item | ZH (mg kg−1 Body Weight) | SEM | p≤ | ||||
---|---|---|---|---|---|---|---|
0.0 | 0.1 | 0.2 | 0.3 | l 1 | q 2 | ||
Initial BW, kg | 33.02 | 31.64 | 31.65 | 32.45 | 0.30 | 0.20 | 0.01 |
Final BW, kg | 38.55 | 36.97 | 38.38 | 38.77 | 0.44 | 0.28 | 0.02 |
Total gain, kg | 5.52 | 5.33 | 6.72 | 6.32 | 0.40 | 0.04 | 0.79 |
ADG, kg/d | 0.27 | 0.26 | 0.33 | 0.31 | 0.02 | 0.08 | 0.82 |
DMI, kg/d | 1.52 | 1.33 | 1.33 | 1.46 | 0.04 | 0.43 | 0.01 |
ADG:DMI ratio | 0.17 | 0.20 | 0.25 | 0.21 | 0.01 | 0.01 | 0.11 |
Item | ZH (mg kg−1 Body Weight) | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
0.0 | 0.1 | 0.2 | 0.3 | l 1 | q 2 | ||
Hot carcass weight, kg | 19.11 | 19.03 | 19.76 | 20.58 | 0.57 | 0.06 | 0.44 |
Cold carcass weight, kg | 18.51 | 18.46 | 19.23 | 19.81 | 0.55 | 0.08 | 0.58 |
Dressing, % | 48.87 | 49.69 | 52.56 | 51.81 | 1.41 | 0.08 | 0.58 |
Cooling loss, % | 3.13 | 3.06 | 2.63 | 3.74 | 0.39 | 0.44 | 0.15 |
pH of LTL | |||||||
45 min | 6.75 | 6.68 | 6.78 | 7.03 | 0.09 | 0.04 | 0.09 |
24 h | 6.21 | 6.14 | 6.24 | 6.72 | 0.13 | 0.02 | 0.07 |
Temperature of LTL | |||||||
45 min, °C | 21.03 | 20.08 | 20.35 | 21.25 | 0.28 | 0.49 | 0.01 |
24 h, °C | 9.40 | 9.27 | 9.48 | 9.40 | 0.14 | 0.75 | 0.88 |
Carcass length, cm | 61.33 | 63.00 | 61.83 | 61.33 | 1.27 | 0.84 | 0.41 |
Leg length, cm | 36.66 | 34.33 | 35.33 | 35.16 | 1.02 | 0.46 | 0.31 |
Perimeter leg, cm | 40.16 | 39.83 | 41.50 | 41.83 | 0.97 | 0.15 | 0.74 |
Leg width, cm | 16.66 | 16.50 | 15.50 | 16.83 | 0.53 | 0.84 | 0.18 |
Thorax depth, cm | 22.50 | 22.33 | 22.66 | 22.50 | 0.79 | 0.93 | 1.00 |
Thorax width, cm | 21.50 | 22.66 | 21.91 | 22.00 | 0.44 | 0.71 | 0.24 |
Rump perimeter, cm | 61.41 | 61.41 | 62.08 | 63.50 | 0.75 | 0.05 | 0.36 |
Rump depth, cm | 20.58 | 20.58 | 20.41 | 20.83 | 0.68 | 0.85 | 0.76 |
Fat thickness, cm | 0.316 | 0.283 | 0.350 | 0.316 | 0.08 | 0.86 | 1.00 |
LTL area, cm2 | 13.83 | 14.04 | 13.44 | 15.71 | 0.60 | 0.08 | 0.11 |
KPH fat, kg | 0.471 | 0.351 | 0.390 | 0.413 | 0.04 | 0.52 | 0.15 |
Item (% of Whole Cold Carcass) | ZH (mg kg−1 Body Weight) | SEM | p Value | ||||
---|---|---|---|---|---|---|---|
0 | 0.10 | 0.20 | 0.30 | l 1 | q 2 | ||
Neck (%) | 4.50 | 4.50 | 4.43 | 4.41 | 0.23 | 0.76 | 0.97 |
Legs (%) | 32.61 | 33.21 | 32.48 | 33.40 | 0.67 | 0.60 | 0.82 |
Rack and flap (%) | 17.85 | 15.30 | 15.45 | 15.73 | 1.08 | 0.22 | 0.21 |
Loin (%) | 15.21 | 15.28 | 14.60 | 15.63 | 0.51 | 0.81 | 0.36 |
Forequarter and shoulder (%) | 26.23 | 27.91 | 26.28 | 27.56 | 0.88 | 0.56 | 0.82 |
Item | ZH (mg kg−1 Body Weight) | SEM | p Value | ||||
---|---|---|---|---|---|---|---|
0.0 | 0.1 | 0.2 | 0.3 | l 1 | q 2 | ||
Expressed as % of final BW | |||||||
Head (%) | 4.57 | 5.10 | 5.21 | 4.99 | 0.20 | 0.16 | 0.09 |
Blood (%) | 3.94 | 3.65 | 3.44 | 3.50 | 0.16 | 0.06 | 0.31 |
Skin (%) | 7.94 | 7.01 | 7.75 | 7.48 | 0.35 | 0.69 | 0.37 |
Heart (%) | 0.44 | 0.45 | 0.44 | 0.40 | 0.02 | 0.17 | 0.27 |
Lungs (%) | 2.44 | 2.51 | 2.19 | 2.21 | 0.15 | 0.17 | 0.88 |
Liver (%) | 2.19 | 1.98 | 1.92 | 1.77 | 0.09 | 0.01 | 0.77 |
Kidney (%) | 0.30 | 0.34 | 0.28 | 0.28 | 0.02 | 0.46 | 0.43 |
Full rumen (%) | 12.74 | 13.95 | 13.05 | 12.53 | 0.51 | 0.52 | 0.11 |
Empty rumen (%) | 4.77 | 4.87 | 4.75 | 4.46 | 0.41 | 0.58 | 0.65 |
Full small intestine (%) | 2.93 | 3.20 | 2.80 | 3.47 | 0.34 | 0.44 | 0.58 |
Empty small intestine (%) | 1.95 | 2.16 | 1.87 | 1.85 | 0.13 | 0.32 | 0.40 |
Full large intestine (%) | 4.21 | 4.40 | 4.26 | 4.01 | 0.17 | 0.37 | 0.24 |
Empty large intestine (%) | 3.17 | 3.33 | 3.16 | 2.64 | 0.18 | 0.05 | 0.09 |
Testicles (%) | 1.62 | 1.52 | 1.55 | 1.32 | 0.10 | 0.09 | 0.54 |
Foot (%) | 2.67 | 2.46 | 2.58 | 2.48 | 0.07 | 0.18 | 0.45 |
Item | ZH (mg kg−1 Body Weight) | SEM | p Value | ||||
---|---|---|---|---|---|---|---|
0 | 0.1 | 0.2 | 0.3 | l 1 | q 2 | ||
Color 24 h | |||||||
L* | 35.34 | 33.21 | 33.05 | 29.77 | 1.58 | 0.03 | 0.72 |
a* | 15.17 | 13.61 | 14.43 | 10.95 | 0.98 | 0.02 | 0.34 |
b* | 4.41 | 3.93 | 4.07 | 2.46 | 0.62 | 0.06 | 0.37 |
C | 15.82 | 14.20 | 15.04 | 11.23 | 1.10 | 0.02 | 0.33 |
H | 15.84 | 15.37 | 15.01 | 12.48 | 1.50 | 0.14 | 0.50 |
5 days postmortem | |||||||
Myoglobin, mg/g | 4.23 | 4.49 | 4.04 | 4.63 | 0.30 | 0.59 | 0.59 |
Texture, N/cm2 ‡ | 8.23 | 13.38 | 18.54 | 11.16 | 2.34 | 0.20 | 0.02 |
L* | 36.41 | 33.82 | 33.86 | 30.93 | 1.64 | 0.04 | 0.92 |
a* | 9.19 | 9.88 | 9.99 | 8.62 | 0.69 | 0.62 | 0.16 |
b* | 10.76 | 10.18 | 9.97 | 8.04 | 0.83 | 0.04 | 0.43 |
C | 14.25 | 14.22 | 14.14 | 11.80 | 0.95 | 0.10 | 0.24 |
H | 48.97 | 45.10 | 44.72 | 43.06 | 2.16 | 0.07 | 0.76 |
Protein Lowry, mg/mL | 7.80 | 8.30 | 8.99 | 9.55 | 0.59 | 0.04 | 0.96 |
Cathepsin B ¥ | 0.11 | 0.08 | 0.07 | 0.07 | 0.01 | 0.07 | 0.45 |
Cathepsins B + L ¥ | 0.19 | 0.16 | 0.13 | 0.14 | 0.03 | 0.17 | 0.41 |
10 days postmortem | |||||||
Myoglobin, mg/g | 4.65 | 4.16 | 4.35 | 4.57 | 0.30 | 0.97 | 0.25 |
Texture, N/cm2 ‡ | 10.35 | 12.04 | 11.61 | 7.76 | 0.96 | 0.08 | 0.01 |
L* | 35.92 | 35.10 | 32.26 | 31.71 | 1.81 | 0.08 | 0.94 |
a* | 10.23 | 8.27 | 8.46 | 7.90 | 0.74 | 0.06 | 0.36 |
b* | 11.79 | 10.28 | 9.63 | 8.12 | 1.18 | 0.04 | 0.99 |
C | 15.72 | 13.36 | 12.99 | 11.34 | 1.09 | 0.01 | 0.75 |
H | 48.64 | 49.80 | 47.61 | 46.01 | 3.57 | 0.54 | 0.70 |
Protein Lowry, mg/mL | 8.00 | 8.25 | 8.34 | 9.49 | 0.63 | 0.13 | 0.49 |
Cathepsin B ¥ | 0.10 | 0.06 | 0.05 | 0.07 | 0.01 | 0.09 | 0.71 |
Cathepsins B + L ¥ | 0.13 | 0.13 | 0.11 | 0.09 | 0.01 | 0.05 | 0.41 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cayetano-De-Jesus, J.A.; Rojo-Rubio, R.; Grajales-Lagunes, A.; Avendaño-Reyes, L.; Macias-Cruz, U.; Gonzalez-del-Prado, V.; Olmedo-Juárez, A.; Chay-Canul, A.; Roque-Jiménez, J.A.; Lee-Rangel, H.A. Effect of Zilpaterol Hydrochloride on Performance and Meat Quality in Finishing Lambs. Agriculture 2020, 10, 241. https://doi.org/10.3390/agriculture10060241
Cayetano-De-Jesus JA, Rojo-Rubio R, Grajales-Lagunes A, Avendaño-Reyes L, Macias-Cruz U, Gonzalez-del-Prado V, Olmedo-Juárez A, Chay-Canul A, Roque-Jiménez JA, Lee-Rangel HA. Effect of Zilpaterol Hydrochloride on Performance and Meat Quality in Finishing Lambs. Agriculture. 2020; 10(6):241. https://doi.org/10.3390/agriculture10060241
Chicago/Turabian StyleCayetano-De-Jesus, Jorge Adalberto, Rolando Rojo-Rubio, Alicia Grajales-Lagunes, Leonel Avendaño-Reyes, Ulises Macias-Cruz, Veronica Gonzalez-del-Prado, Agustin Olmedo-Juárez, Alfonso Chay-Canul, José Alejandro Roque-Jiménez, and Héctor Aarón Lee-Rangel. 2020. "Effect of Zilpaterol Hydrochloride on Performance and Meat Quality in Finishing Lambs" Agriculture 10, no. 6: 241. https://doi.org/10.3390/agriculture10060241
APA StyleCayetano-De-Jesus, J. A., Rojo-Rubio, R., Grajales-Lagunes, A., Avendaño-Reyes, L., Macias-Cruz, U., Gonzalez-del-Prado, V., Olmedo-Juárez, A., Chay-Canul, A., Roque-Jiménez, J. A., & Lee-Rangel, H. A. (2020). Effect of Zilpaterol Hydrochloride on Performance and Meat Quality in Finishing Lambs. Agriculture, 10(6), 241. https://doi.org/10.3390/agriculture10060241