The Use of Air Induction Nozzles for Application of Fertilizing Preparations Containing Beneficial Microorganisms
Abstract
:1. Introduction
2. Materials and Methods
- xśr-mean value of measurements,
- x1–10-value of individual measurements,
- cfu/mL-colony-forming units in one millilitre (pcs/mL),
- x-the number of counted microorganisms in the Neubauer chamber (pcs),
- S-total area of the half-chamber where living organisms were counted (mm2),
- h-depth of the Neubauer chamber (mm),
- -concentration of the tested preparation .
3. Results and Discussion
4. Conclusions
- The increase in pressure applied by the manifold in both sprayer variants caused a decrease in survival. Based on the example of the EŻK component, it was found that at a pressure of 0.2 MPa, the survival decreased to approx. 40.4% of the initial value; similarly, in case of the EŻKT component this value amounted to 33.8% of the initial number of microorganisms.
- The lowest survival rate was noted for the EŻKT 02 nozzle, which at a pressure of 0.5 MPa caused death of microorganisms at the level of 91.4% of the initial value.
- For all tested elements, the lowest survival occurs at a pressure of 0.4–0.5 MPa and ranges between 9–17.6%. The maximum suggested pressure for the user applying the preparation is 0.3 MPa.
- Low effectiveness of preparations containing beneficial organisms may result from their incorrect application caused by the pressure applied in the field sprayer. Consequently, it is necessary to look for other alternative methods of applying the discussed substances. Based on the conclusions drawn, it is advisable to use components with the largest possible size of nozzle outlet orifices, which do not have any obstacles that inhibit the flow of the liquid.
Author Contributions
Funding
Conflicts of Interest
References
- Higa, T.; Widdana, G.N. Concept and theories of effective microorganisms. In Proceedings of the 1st Kyusei Nature Farming; Par, J.F., Hornick, S.B., Whitman, C.E., Eds.; USDA: Washington, DC, USA, 1991; pp. 118–124. [Google Scholar]
- Ndona, R.; Spornberger, A.; Jezik, K.; Friedel, J.K.; Rinnofner, T.; Laimer, M.; Marzban, G.; Klima, H. Einfluss von Behandlungen mit EM Effektiven® Mikroorganismen auf Tomaten im Geschützten Anbau. Available online: https://www.multikraft.com/fileadmin/user_upload/Tomatenanbau_Boku_DE_kurz.pdf (accessed on 18 January 2020).
- Tomalak, M. Market for biological control agents and their legal regulation. Prog. Plant Prot. 2010, 50, 1052–1063. [Google Scholar]
- Kaleem Abbasi, M.; Shah, Z.; Adams, W.A. Effect of the nitrification inhibitor nitrapyrin on the fate of nitrogen applied to a soil incubated under laboratory conditions. J. Plant Nutr. Soil Sci. 2003, 166, 513–518. [Google Scholar] [CrossRef]
- Sigstad, E.E.; Schabes, F.I.; Tejerina, F. A calorimetric analysis of soil treated with effective microorganisms. Thermochim. Acta 2013, 569, 139–143. [Google Scholar] [CrossRef]
- Zimny, L. Polish-English Dictionary of Enviromental Science [Leksykon Przyrodniczy Polsko-Angielski]; Uniwersytet Przyrodniczy we Wrocławiu: Wrocław, Poland, 2014. [Google Scholar]
- Web Site of Substance Producer EmFarm Plus. Available online: http://www.probiotics.pl/probio-emy/dla-gleby-i-roslin/emfarma-plus.html (accessed on 21 August 2018).
- Ting, A.S.Y.; Rahman, N.H.A.; Isa, M.I.H.M.; Tan, W.S. Investigating metal removal potential by Effective Microorganisms (EM) in alginate-immobilized and free-cell forms. Bioresour. Technol. 2013, 147, 636–639. [Google Scholar] [CrossRef]
- Pankhurst, C.E.; Rogers, S.L.; Gupta, V.S.R. Microbial Parameters for Monitoring Soil Pollution. In Environmental Biomonitoring: The Biotechnology Ecotoxicology Interface; Lynch, J.M., Wiseman, A., Eds.; Cambridge University Press: Cambridge, UK, 1998; pp. 46–68. [Google Scholar]
- Kyan, T.; Shintani, M.; Kanda, S.; Sakurai, M.; Ohashi, H.; Fujisawa, A.; Pongdit, S. Kyusei Nature Farming and The Technology of Effective Microorganisms, Guidelines for Practical Use, Revised ed.; International Nature Frming Research Center: Bangkok, Thailand, 1999. [Google Scholar]
- Tomalak, M.; Sosnowska, D.; Lipa, J.J. Trends in development of biological methods for plant protection. Prog. Plant Prot. 2010, 50, 1650–1660. [Google Scholar]
- Lipa, J.J.; Pruszynski, S. Scale of use of biological methods in plant protection in Poland and in the world. Prog. Plant Prot. 2010, 50, 1033–1043. [Google Scholar]
- Hu, C.; Qi, Y. Long-term effective microorganisms application promote growth and increase yields and nutrition of wheat in China. Eur. J. Agron. 2013, 46, 63–67. [Google Scholar] [CrossRef]
- van Vliet, P.C.J.; Bloem, J.; de Goede, R.G.M. Microbial diversity, nitrogen loss and grass production after addition of Effective Micro-organisms® (EM) to slurry manure. Appl. Soil Ecol. 2006, 32, 188–198. [Google Scholar] [CrossRef]
- Szwedziak, K.; Podsędek, S.; Michalczyk, M.; Bolibrzuch, M.; Winiarski, P. Effect of Sprayer Nozzles Parameters on Effective Microorganisms (EM). Albanian J. Agric. Sci. 2018, 17, 134–142. [Google Scholar]
- Winiarski, P. Influence of the Structure of Field Sprayer Nozzles on the Survival of Microorganisms Contained in the Selected Fertilizer Preparation. Ph.D. Dissertation, Zachodniopomorski Uniwersytet Technologiczny, Szczecin, Poland, 2019. [Google Scholar]
- Abbasi, M.K.; Hussain, F.; Majid, S.A. Changes in the behaviour and physical and chemical characteristics of soil after adding populus euramericana leaves. Sci. Technol. Dev. 2002, 21, 15–19. [Google Scholar]
- Mayer, J.; Scheid, S.; Widmer, F.; Fließbach, A.; Oberholzer, H.-R. How effective are ‘Effective microorganisms® (EM)’? Results from a field study in temperate climate. Appl. Soil Ecol. 2010, 46, 230–239. [Google Scholar] [CrossRef]
- Parham, J.A.; Deng, S.P.; Da, H.N.; Sun, H.Y.; Raun, W.R. Long-term cattle manure application in soil. II. Effect on soil microbial populations and community structure. Biol. Fertil. Soils 2003, 38, 209–215. [Google Scholar] [CrossRef]
- Pięta, D.; Kęsik, T. The influence of after-crop plant mulch and onion cultivation on microrganism composition in soil. Acta Sci. Pol. Hortorum Cultus 2008, 7, 65–75. [Google Scholar]
- Soumaré, M. Effects of a municipal solid waste compost and mineral fertilization on plant growth in two tropical agricultural soils of Mali. Bioresour. Technol. 2003, 86, 15–20. [Google Scholar] [CrossRef]
- Olle, M.; Williams, I.H. Effective microorganisms and their influence on vegetable production—A review. J. Hortic. Sci. Biotechnol. 2013, 88, 380–386. [Google Scholar] [CrossRef]
- Palm, C.A.; Gachengo, C.N.; Delve, R.J.; Cadisch, G.; Giller, K.E. Organic inputs for soil fertility management in tropical agroecosystems: Application of an organic resource database. Agric. Ecosyst. Environ. 2001, 83, 27–42. [Google Scholar] [CrossRef]
- Stamatiadis, S.; Doran, J.; Kettler, T. Field and laboratory evaluation of soil quality changes resulting from injection of liquid sewage sludge. Appl. Soil Ecol. 1999, 12, 263–272. [Google Scholar] [CrossRef] [Green Version]
- Troeh, F.R.; Thompson, L.M. Soils and Soil Fertility, 6th ed.; Blackwell: Ames, IA, USA, 2005. [Google Scholar]
- Erdal Ozkan, H.; Womac, A. Best Management Practices for Boom Spraying. Available online: https://ohioline.osu.edu/factsheet/fabe-527 (accessed on 4 May 2020).
- Wolf, T. Best Management Practices for Herbicide Application Technology. Prairie Soils Crop. 2009, 2, 24–30. [Google Scholar]
- Patel, M.K.; Sahoo, H.K.; Nayak, M.K.; Kumar, A.; Ghanshyam, C.; Kumar, A. Electrostatic Nozzle: New Trends in Agricultural PesticidesSpraying. SSRG Int. J. Electr. Electron. Eng. 2015, 4, 6–11. [Google Scholar]
- Deveau, J. Six Elements of Effective Spraying in Orchards and Vineyards. Available online: http://www.omafra.gov.on.ca/english/crops/facts/09-039.htm (accessed on 4 May 2020).
- Web Site of the Producer—MGM. Available online: http://www.mgm.cz/pl/Opryskiwacz-MGM-3000 (accessed on 4 September 2018).
- Niedźwiedzka, A.; Lipiński, S. Numerical simulations of cavitation phenomenon in Venturi tube and their validation using an optoelectronic system. Mechanik 2016, 108, 776–777. [Google Scholar] [CrossRef] [Green Version]
- Chojnacki, J.; Bujaczek, R. Influence of filter in sprayer installation on the entomopathogenic nematode losses. J. Res. Appl. Agric. Eng. 2012, 57, 37–40. [Google Scholar]
- Chojnacki, J. Viability of entomopathogenic nematodes in jet agitator. J. Res. Appl. Agric. Eng. 2011, 56, 27–31. [Google Scholar]
- Barbedo, J.G.A. Method for Counting Microorganisms and Colonies in Microscopic Images. In Proceedings of the 2012 12th International Conference on Computational Science and Its Applications, Salvador de Bahia, Brazil, 18–21 June 2012; pp. 83–87. [Google Scholar]
- Bastidas, O. Cell Counting with Neubauer Chamber, Basic Hemocytometer Usage. Tech. Note Neubauer Chamber Cell Count. 2013. [Google Scholar]
- Garcia, J.; Barbedo, A. Automatic Object Counting in Neubauer Chambers. In Proceedings of the XXXI Brazilian Telecommunications Symposium, SBrT2013, Brasilia, Brazil, 13–16 September 2013. [Google Scholar]
- Santoro, G.F.; Cardoso, M.G.; Guimarães, L.G.L.; Mendonça, L.Z.; Soares, M.J. Trypanosoma cruzi: Activity of essential oils from Achillea millefolium L., Syzygium aromaticum L. and Ocimum basilicum L. on epimastigotes and trypomastigotes. Exp. Parasitol. 2007, 116, 283–290. [Google Scholar] [CrossRef]
- Khaliq, A.; Abbasi, M.; Hussain, T. Effects of integrated use of organic and inorganic nutrient sources with effective microorganisms (EM) on seed cotton yield in Pakistan. Bioresour. Technol. 2006, 97, 967–972. [Google Scholar] [CrossRef] [PubMed]
- Martyniuk, S.; Myśków, W. Control of the Take-all Fungus by Phialophora sp. (lobed hyphopodia) in Microplots Experiments with Wheat. Zentralbl. Mikrobiol. 1984, 139, 575–579. [Google Scholar] [CrossRef]
Size of the Nozzle | 02 | 025 | 03 | 04 | 05 | 06 |
---|---|---|---|---|---|---|
Value of the r2 coefficient | 0.8223 | 0.8555 | 0.9000 | 0.9258 | 0.9285 | 0.9332 |
Size of the Nozzle | 02 | 025 | 03 | 04 | 05 | 06 |
---|---|---|---|---|---|---|
Value of the r2 coefficient | 0.8723 | 0.8975 | 0.9310 | 0.9435 | 0.9662 | 0.973 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szwedziak, K.; Niedbała, G.; Grzywacz, Ż.; Winiarski, P.; Doležal, P. The Use of Air Induction Nozzles for Application of Fertilizing Preparations Containing Beneficial Microorganisms. Agriculture 2020, 10, 303. https://doi.org/10.3390/agriculture10070303
Szwedziak K, Niedbała G, Grzywacz Ż, Winiarski P, Doležal P. The Use of Air Induction Nozzles for Application of Fertilizing Preparations Containing Beneficial Microorganisms. Agriculture. 2020; 10(7):303. https://doi.org/10.3390/agriculture10070303
Chicago/Turabian StyleSzwedziak, Katarzyna, Gniewko Niedbała, Żaneta Grzywacz, Przemysław Winiarski, and Petr Doležal. 2020. "The Use of Air Induction Nozzles for Application of Fertilizing Preparations Containing Beneficial Microorganisms" Agriculture 10, no. 7: 303. https://doi.org/10.3390/agriculture10070303
APA StyleSzwedziak, K., Niedbała, G., Grzywacz, Ż., Winiarski, P., & Doležal, P. (2020). The Use of Air Induction Nozzles for Application of Fertilizing Preparations Containing Beneficial Microorganisms. Agriculture, 10(7), 303. https://doi.org/10.3390/agriculture10070303