Application of Plant Growth Regulators on Soft White Winter Wheat under Different Nitrogen Fertilizer Scenarios in Irrigated Fields
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Location
2.2. Plant Material
2.3. Planting and Management
2.4. Application of PGRs
2.5. Plant Growth, Yield Measurement, and Data Analysis
3. Results and Discussion
3.1. Plant Growth
3.2. Yield and Protein Content
3.3. Yield Components
3.4. Correlations Among Plant Growth, Yield, and Yield Components
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schillinger, F.W.; Papendick, I.R. Then and now: 125 years of dryland wheat farming in the Inland Pacific Northwest. Agron. J. 2008, 100, S-166–S-182. [Google Scholar] [CrossRef] [Green Version]
- Horneck, D.A.; Hart, J.M.; Flowers, M.D.; Lutcher, L.K.; Wysocki, D.J.; Corp, M.K.; Bohle, M. Irrigated Soft White Wheat (Eastern Oregon); EM 9015-E; Oregon State University Extension Service: Corvallis, OR, USA, 2010. [Google Scholar]
- Hart, J.M.; Flowers, M.D.; Roseburg, R.J.; Christensen, N.W.; Mellbye, M.E. Nutrient Management Guide for Soft White Winter Wheat (Western Oregon); EM 8963-E; Oregon State University Extension Service: Corvallis, OR, USA, 2009. [Google Scholar]
- Hart, J.M.; Christensen, N.W.; Jackson, T.L.; Karow, R.; Kronstad, W.E. Fertilizer Guide. Winter Wheat (Western Oregon—West of Cascades); FG 9. OR; Oregon State University Extension Service: Corvallis, OR, USA, 2000. [Google Scholar]
- Pinthus, M.J. Lodging in wheat, barley and oats: The phenomenon, its causes and preventative measures. Adv. Agron. 1973, 25, 210–263. [Google Scholar]
- Ma, B.L.; Biswas, D.K.; Zhou, Q.P.; Ren, C.Z. Comparisons between cultivars of wheat, covered and hulless oats: Effects of N fertilization on growth and yield. Can. J. Plant Sci. 2012, 92, 1213–1222. [Google Scholar] [CrossRef]
- Berry, P.M.; Sterling, M.; Spink, J.H.; Baker, C.J.; Sylvester-Bradley, R.; Mooney, S.J.; Tams, A.R.; Ennos, A.R. Understanding and reducing lodging in cereals. Adv. Agron. 2004, 84, 217–271. [Google Scholar]
- Shah, L.; Yahya, M.; Shah, S.; Nadeem, M.; Ali, A.; Wang, J.; Riaz, M.W.; Rehman, S.; Wu, W.; Khan, R.M.; et al. Improving lodging resistance: Using wheat and rice as classical examples. Int. J. Mol. Sci. 2019, 20, 4211. [Google Scholar] [CrossRef] [Green Version]
- Foulkes, M.; John, G.A.; Slafer, W.J.; Davies, P.; Berry, M.; Sylvester-Bradley, R.; Martre, P.; Calderini, D.F.; Griffiths, S.; Reynolds, M.P. Raising yield potential of wheat. III. Optimizing partitioning to grain while maintaining lodging resistance. J. Exp. Botany 2011, 62, 469–486. [Google Scholar] [CrossRef] [Green Version]
- Berry, P.M.; Spink, J.H.; Gay, A.P.; Craigon, J. A comparison of root and stem lodging risks among winter wheat cultivars. J. Agric. Sci. Camb. 2003, 141, 191–202. [Google Scholar] [CrossRef]
- Berry, P.M.; Sylvester-Bradley, R.; Berry, S. Ideotype for lodging resistant wheat. Euphytica 2007, 154, 165–179. [Google Scholar] [CrossRef]
- Berry, P.; Spink, J. Predicting yield losses caused by lodging in wheat. Field Crop. Res. 2012, 137, 19–26. [Google Scholar] [CrossRef]
- Acreche, M.; Slafer, G. Lodging yield penalties as affected by breeding in Mediterranean wheats. Field Crop. Res. 2011, 122, 40. [Google Scholar] [CrossRef]
- Kashiwagi, T.; Ishimaru, K. Identification and functional analysis of a locus for improvement of lodging resistance in rice. Plant Physiol. 2004, 134, 676–683. [Google Scholar] [CrossRef] [Green Version]
- Pham, Q.D.; Akira, A.; Hirano, M.; Sagawa, S.; Kuroda, E. Analysis of lodging resistant characteristic of different rice genotypes grown under the standard and nitrogen–free basal dressing accompanied with sparse planting density practices. Plant Prod. Sci. 2004, 7, 243–251. [Google Scholar]
- Zhang, W.-J.; Wu, L.-M.; Ding, Y.-F.; Weng, F.; Wu, X.-R.; Li, G.-H.; Liu, Z.-H.; Tang, S.; Ding, C.-Q.; Wang, S.-H. Top–dressing nitrogen fertilizer rate contributes to reduce culm physical strength through decreasing in structural carbohydrates contents in japonica rice. J. Integr. Agr. 2016, 15, 992–1004. [Google Scholar] [CrossRef] [Green Version]
- Meier, U. Growth Stages of Mono- and Dicotyledonous Plants. BBCH Monogr. 2001. [Google Scholar] [CrossRef]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Feekes, W. De tarwe en haar milieu; Hoitsema: Groningen, The Newtherlands, 1941; Volume 17, pp. 523–888. [Google Scholar]
- Van Der Zanden, A.M. How Hormones and Growth Regulators Affect Your Plants. OSU Extension Service. 2012. Available online: https://extension.oregonstate.edu/gardening/techniques/how-hormones-growth-regulators-affect-your-plants (accessed on 7 May 2020).
- Anderson, N.P.; Monks, D.P.; Chastain, T.G.; Rolston, M.P.; Garbacik, C.J.; Ma, C.-H.; Bell, C.W. Trinexapac-ethyl effects on red clover seed crops in diverse production environments. Agron. J. 2015, 107, 951–956. [Google Scholar] [CrossRef]
- Rademacher, W. Growth retardants: Effects of gibberellin biosynthesis and other metabolic pathways. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2000, 51, 501–531. [Google Scholar] [CrossRef] [Green Version]
- Tolbert, N.E. (2-Chloroethyl) trimethylammonium chloride and related compounds as plant growth substances.1. Chemical structure and bioassay. J. Biol. Chem. 1960, 235, 475–479. [Google Scholar]
- Hedden, P.; Sponsel, V. A century of gibberellin research. J. Plant Growth Regul. 2015, 34, 740–760. [Google Scholar] [CrossRef] [Green Version]
- King, R.W.; Junttila, O.; Mander, L.N.; Beck, E.J. Gibberellin structure and function: Biological activity and competitive inhibition of gibberellin 2- and 3-oxidases. Physiol. Plant. 2004, 120, 287–297. [Google Scholar] [CrossRef]
- Climate Hermiston—OR. U.S. Climate Data. 2020. Available online: https://www.usclimatedata.com/climate/hermiston/oregon/united-states/usor0159 (accessed on 7 May 2020).
- Flowers, M.; Peterson, J.; Hulting, A.; Burns, J.; Kuehner, J. ORCF-I02 CLEARFIELD * Soft White Winter Wheat. 2008. Available online: http://washingtoncrop.com/documents/Wheat/Winter/Soft%20White/ORCF-102.pdf (accessed on 18 May 2020).
- Washington State Crop Improvement Association. SY Ovation (03PN108-21). 2015. Available online: http://washingtoncrop.com/wp-content/uploads/2015/10/SY-Ovation-SWW.pdf (accessed on 7 May 2020).
- Spolidorio, F.; Lollato, R. Plant growth regulators to decrease wheat height in high fertility scenarios. Kans. Agric. Exp. Stn. Res. Rep. 2019, 5. [Google Scholar] [CrossRef] [Green Version]
- Webster, J.R.; Jackson, L.F. Management practices to reduce lodging and maximize grain yield and protein content of fall-sown irrigated hard red spring wheat. Field Crop. Res. 1993, 33, 249–259. [Google Scholar] [CrossRef]
- Wiersma, D.W.; Oplinger, E.S.; Guy, S.O. Environment and cultivar effects on winter wheat response to Ethephon plant growth regulator. Agron. J. 1986, 78, 761–764. [Google Scholar] [CrossRef]
- Zhang, Y.; Su, S.; Tabori, M.; Yu, J.; Chabot, D.; Baninasab, B.; Wang, X.; Ma, B.; Li, C.; Khanizadeh, S. Effect of selected plant growth regulators on yield and stem height of spring wheat in Ontario. J. Agric. Sci. 2017, 9. [Google Scholar] [CrossRef] [Green Version]
- McMillan, T.; Tidemann, B.D.; O’Donovan, J.T.; Izydorczyk, M.S. Effects of plant growth regulator application on the malting quality of barley. J. Sci. Food Agric. 2019. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Liang, X.; Torrion, J.A.; Walsh, O.S.; Brien, K.O.; Liu, Q. The Influence of water and nitrogen availability on the expression of end-use quality parameters of spring wheat. Agronomy 2018, 8, 257. [Google Scholar] [CrossRef] [Green Version]
- Klikocka, H.; Cybulska, M.; Barczak, B.; Narolski, B.; Szostak, B.; Kobiałka, A.; Nowak, A.; Wójcik, E. The effect of sulphur and nitrogen on grain yield and technological quality of spring wheat. Plant Soil Environ. 2016, 62, 230–236. [Google Scholar] [CrossRef] [Green Version]
- Peake, A.S.; Bell, K.L.; Fischer, R.A.; Gardner, M.; Das, B.T.; Poole, N.; Mumford, M. Cultivar × management interaction to reduce lodging and improve grain yield of irrigated spring wheat: Optimising plant growth regulator use, N application timing, row spacing and sowing date. Front. Plant Sci. 2020. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Chen, J.; Bull, D.A. The effects of timing of N application and plant growth regulators on morphogenesis and yield formation in wheat. Plant Growth Regul. 2001, 35, 239–245. [Google Scholar]
- Sadras, V.O.; Slafer, G.A. Environmental modulation of yield components in cereals: Heritabilities reveal a hierarchy of phenotypic plasticities. Field Crop. Res. 2012, 127, 215–224. [Google Scholar] [CrossRef]
- Liang, X.; Liu, Y.; Chen, J.; Adams, C. Late-season photosynthetic rate and senescence were associated with grain yield in winter wheat of diverse origins. J. Agron. Crop Sci. 2017, 204, 1–12. [Google Scholar] [CrossRef]
Growth Season | NO3-N (ppm) | NH4-N (ppm) | P (ppm) | K (ppm) | SO4-S (ppm) | Zn (ppm) | pH1:1 | Organic Matter (%) |
---|---|---|---|---|---|---|---|---|
2017–2018 | 19.6 | 1.7 | 28.1 | 196 | 13.2 | 3.6 | 6.1 | 0.9 |
2018–2019 | 7.5 | 3.2 | 30.0 | 297 | 8.5 | 3.6 | 6.3 | 1.2 |
Treatment Number * | Treatment Coding | Seasonal N Application | PGR Application (L ha−1 a.i.) at Different Growing Stages | ||
---|---|---|---|---|---|
GS21-26 (Tillering) | GS30-32 (Onset of Stem Elongation) | GS37-39 (Emergence of Flag Leaf) | |||
1 | N0 | No N applied | 0 | 0 | 0 |
2 | N1 | Normal N rate | 0 | 0 | 0 |
3 | N2 | High N rate | 0 | 0 | 0 |
4 | CC-A | High N rate | 0 | 1.004 (Adjust) | 0 |
5 | CC-B | High N rate | 0 | 0 | 1.004 (Adjust) |
6 | CC-AB | High N rate | 0 | 0.562 (Adjust) | 0.442 (Adjust) |
7 | CC-C | High N rate | 1.004 (Adjust) | 0 | 0 |
8 | TE | High N rate | 0 | 0.126 (Palisade) | 0 |
9 | TE/CC1 | High N rate | 0 | 0.126 (Palisade) | 0.442 (Adjust) |
10 | TE/CC2 | High N rate | 0 | 0.126 (Palisade) | 1.004 (Adjust) |
Parameters | Protein | Test Weight | Plant Height | Stem Thickness | Spike Density | Seeds Per Spike | Grain Weight |
---|---|---|---|---|---|---|---|
Yield | 0.59 ** | 0.39 ** | 0.53 ** | 0.00 | 0.30 * | 0.00 | −0.45 ** |
Protein | 0.06 | 0.27 * | −0.05 | −0.02 | −0.02 | −0.50 ** | |
Test weight | 0.05 | 0.16 | 0.04 | −0.06 | −0.12 | ||
Plant height | 0.31 ** | 0.51 ** | 0.24 * | −0.04 | |||
Stem thickness | 0.45 ** | 0.23 | 0.06 | ||||
Spike density | 0.24 | 0.16 | |||||
Seeds per spike | 0.11 |
Parameters | Protein | Test Weight | Plant Height | Stem Thickness | Spike Density | Seeds Per Spike | Grain Weight |
---|---|---|---|---|---|---|---|
Yield | 0.54 ** | 0.29 * | 0.48 ** | 0.031 | 0.42 ** | 0.11 | −0.22 |
Protein content | 0.04 | 0.28 | −0.16 | 0.11 | −0.15 | −0.57 ** | |
Test weight | −0.00 | −0.02 | 0.06 | 0.04 | −0.04 | ||
Plant height | −0.10 | 0.18 | −0.05 | 0.03 | |||
Stem thickness | 0.47 ** | 0.32 ** | 0.40 ** | ||||
Spike density | 0.18 | 0.23 | |||||
Seeds per spike | 0.21 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, R.; Noulas, C.; Wysocki, D.; Liang, X.; Wang, G.; Lukas, S. Application of Plant Growth Regulators on Soft White Winter Wheat under Different Nitrogen Fertilizer Scenarios in Irrigated Fields. Agriculture 2020, 10, 305. https://doi.org/10.3390/agriculture10070305
Qin R, Noulas C, Wysocki D, Liang X, Wang G, Lukas S. Application of Plant Growth Regulators on Soft White Winter Wheat under Different Nitrogen Fertilizer Scenarios in Irrigated Fields. Agriculture. 2020; 10(7):305. https://doi.org/10.3390/agriculture10070305
Chicago/Turabian StyleQin, Ruijun, Christos Noulas, Don Wysocki, Xi Liang, Guojie Wang, and Scott Lukas. 2020. "Application of Plant Growth Regulators on Soft White Winter Wheat under Different Nitrogen Fertilizer Scenarios in Irrigated Fields" Agriculture 10, no. 7: 305. https://doi.org/10.3390/agriculture10070305
APA StyleQin, R., Noulas, C., Wysocki, D., Liang, X., Wang, G., & Lukas, S. (2020). Application of Plant Growth Regulators on Soft White Winter Wheat under Different Nitrogen Fertilizer Scenarios in Irrigated Fields. Agriculture, 10(7), 305. https://doi.org/10.3390/agriculture10070305