Crop Growth Stage GPP-Driven Spectral Model for Evaluation of Cultivated Land Quality Using GA-BPNN
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Data
2.3. Methods
2.3.1. Downscaling of MODIS GPP Products Based on the EBK Interpolation
2.3.2. Selecting the Phases of GPP
2.3.3. Partial Least Squares Regression
2.3.4. Support Vector Regression
2.3.5. Genetic Algorithm-Back Propagation Neural Network
3. Results
3.1. Downscaling of MODIS GPPs by EBK Interpolation
3.2. Model Comparison for CLQ Evaluation
3.3. Mapping CLQ at the Regional Scale
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tampakis, S.; Karanikola, P.; Koutroumanidis, T.; Tsitouridou, C. Protecting the productivity of cultivated lands. The viewpoints of farmers in Northern Evros. J. Environ. Prot. Ecol. 2010, 11, 601–613. [Google Scholar]
- Xie, H.; Zou, J.; Jiang, H.; Zhang, N.; Choi, Y. Spatiotemporal pattern and driving forces of arable land-use Intensity in China: Toward sustainable land management using energy analysis. Sustainability 2014, 6, 3504–3520. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.F.; Liu, J.L.; Zhang, J.B. Evaluation method and model analysis for productivity of cultivated land. Trans. Chin. Soc. Agric. Eng. 2014, 30, 204–210. [Google Scholar]
- Liu, Y.S.; Zhang, Y.Y.; Guo, L.Y. Towards realistic assessment of cultivated land quality in an ecologically fragile environment: A satellite imagery-based approach. Appl. Geogr. 2010, 30, 271–281. [Google Scholar] [CrossRef]
- Machin, J.; Navas, A. Land evaluation and conservation of semiarid agrosystems in Zaragoza (NE Spain) using an expert evaluation system and GIS. Land Degrad. Dev. 1995, 6, 203–214. [Google Scholar] [CrossRef]
- Zhu, Q.; Liao, K.H.; Xu, Y.; Yang, G.S.; Wu, S.H.; Zhou, S.L. Monitoring and prediction of soil moisture spatial? Temporal variations from a hydropedological perspective: A review. Soil Res. 2012, 50, 625. [Google Scholar] [CrossRef]
- Kalogirou, S. Expert systems and GIS: An application of land suitability evaluation. Comput. Environ. Urban. Syst. 2002, 26, 89–112. [Google Scholar] [CrossRef]
- Qi, L.; Liu, L.; Zhao, C.; Wang, J.; Wang, J. Selection of optimum periods for extracting winter wheat based on multi-temporal remote sensing images. Remote Sens. Technol. Appl. 2008, 23, 154–160. [Google Scholar]
- Meng, J.; Xu, J.; You, X. Optimizing soybean harvest date using HJ-1 satellite imagery. Precis. Agric. 2015, 16, 164–179. [Google Scholar] [CrossRef]
- Becker-Reshef, I.; Justice, C.; Sullivan, M. Monitoring Global Croplands with Coarse Resolution Earth Observations: The Global Agriculture Monitoring (GLAM) Project. Remote Sens. 2010, 2, 1589–1609. [Google Scholar] [CrossRef] [Green Version]
- Askari, M.S.; O’Rourke, S.M.; Holden, N.M. Evaluation of soil quality for agricultural production using visible–near-infrared spectroscopy. Geoderma 2015, 243–244, 80–91. [Google Scholar] [CrossRef]
- Prasad, S.T.; Ronald, B.S.; Eddy, D.P. Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop Characteristics. Remote Sens. Environ. 2000, 71, 158–182. [Google Scholar]
- Yang, J.F.; Ma, J.C.; Wang, L.C. Evaluation factors for cultivated land grade identification based on multispectral remote sensing. Trans. Chin. Soc. Agric. Eng. 2012, 28, 230–236. [Google Scholar]
- Zhao, J.J.; Zhang, H.Y.; Wang, Y.Q.; Qiao, Z.H.; Hou, G.L. Research on the Quality Evaluation of Cultivated Land in Provincial Area Based on AHP and GIS: A Case Study in Jilin Province. Chin. J. Soil Sci. 2012, 43, 70–75. [Google Scholar]
- Fang, L.N.; Song, J.P. Cultivated Land Quality Assessment Based on SPOT Multispectral Remote Sensing Image: A Case Study in Jimo City of Shandong Province. Prog. Geogr. 2008, 27, 71–78. [Google Scholar]
- Liu, S.; Peng, Y.; Xia, Z.; Hu, Y.; Wang, G.; Zhu, A.-X.; Liu, Z. The GA-BPNN-Based Evaluation of Cultivated Land Quality in the PSR Framework Using Gaofen-1 Satellite Data. Sensors 2019, 19, 5127. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.Y.; Zheng, S.M.; Hu, Y.M.; Guo, Y.B. Study on the Method of Cultivated Land Quality Evaluation Based on Machine Learning. In Proceedings of the 2018 Fifth International Workshop on Earth Observation and Remote Sensing Applications (EORSA), Xi’an, China, 18–20 June 2018; pp. 1–5. [Google Scholar]
- Ma, J.; Zhang, C.; Yun, W.; Lv, Y.; Chen, W.; Zhu, D. The Temporal Analysis of Regional Cultivated Land Productivity with GPP Based on 2000–2018 MODIS Data. Sustainability 2020, 12, 411. [Google Scholar] [CrossRef] [Green Version]
- Xia, Z.; Peng, Y.; Liu, S.; Liu, Z.; Wang, G.; Zhu, A.-X.; Hu, Y. The Optimal Image Date Selection for Evaluating Cultivated Land Quality Based on Gaofen-1 Images. Sensors 2019, 19, 4937. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.C.; Lu, X.Y.; Zhao, Y.L.; Zeng, X.T.; Xia, L.L. Assessment Impacts of Weather and Land Use/Land Cover (LULC) Change on Urban Vegetation Net Primary Productivity (NPP): A Case Study in Guangzhou, China. Remote Sens. 2013, 5, 4125–4144. [Google Scholar] [CrossRef] [Green Version]
- Guangzhou Yearbook Compilation Committee. Administrative Division and Weather. In Guangzhou Yearbook; Guangzhou Yearbook Press: Guangzhou, China, 2010; Volume 1, pp. 4–5. (In Chinese) [Google Scholar]
- Local Chronicles Compilation Committee of Guangzhou. Natural Geography. In Annals of Guangzhou; Guangzhou Press: Guangzhou, China, 1998; Volume 2, pp. 42–49. (In Chinese) [Google Scholar]
- Chuai, X.; Guo, X.; Zhang, M.; Yuan, Y.; Li, J.; Zhao, R.; Yang, W.; Li, J. Vegetation and climate zones based carbon use efficiency variation and the main determinants analysis in China. Ecol. Indic. 2020, 111, 105967. [Google Scholar] [CrossRef]
- Steingrobe, B.; Schmid, H.; Gutser, R.; Claassen, N. Root production and root mortality of winter wheat grown on sandy and loamy soils in different farming systems. Biol. Fertil. Soils 2001, 33, 331–339. [Google Scholar] [CrossRef]
- Lobell, D.B.; Hicke, J.A.; Asner, G.P.; Field, C.B.; Tucker, C.J.; Los, S.O. Satellite estimates of productivity and light use efficiency in United States agriculture. Glob. Chang. Biol. 2002, 8, 722–735. [Google Scholar] [CrossRef]
- Hu, C.Z. Theory and Method of China’s Agricultural Land Classification and Gradation: On General Framework and Technical Scheme of the Agricultural Land Classification Rules. China Land Sci. 2012, 26, 4–13. [Google Scholar]
- The Land Processes Distributed Active Archive Center (LP DAAC/NASA). Available online: https://lpdaac.usgs.gov/ (accessed on 10 August 2019).
- CGIAR. Ricepedia. Available online: http://ricepedia.org/rice-as-a-plant/growth-phases (accessed on 10 August 2019).
- Krivoruchko, K.; Gribov, A. Pragmatic Bayesian kriging for non-stationary and moderately non-Gaussian data. In Mathematics of Planet Earth, Proceedings of the 15th Annual Conference of the International Association for Mathematical Geosciences, Madrid, Spain, 2–6 September 2013; Pardo-Igúzquiza, E., Guardiola-Albert, C., Heredia, J., Moreno-Merino, L., Durán, J.J., Vargas-Guzmán, J.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 61–64. [Google Scholar]
- Fabijańczyk, P.; Zawadzki, J.; Magiera, T. Magnetometric assessment of soil contamination in problematic area using empirical Bayesian and indicator kriging: A case study in Upper Silesia, Poland. Geoderma 2017, 308, 69–77. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, R.; Hu, Y.; Fan, S.; Feng, P. Generating high spatiotemporal resolution LAI based on MODIS/GF-1 data and combined kriging-cressman interpolation. Int. J. Agric. Biol. Eng. 2016, 9, 120–131. [Google Scholar]
- Krivoruchko, K.; Butler, K. Unequal Probability-Based Spatial Sampling; Esri: Redlands, CA, USA, 2013. [Google Scholar]
- Goovaerts, P. Kriging and Semivariogram Deconvolution in the Presence of Irregular Geographical Units. Math. Geosci. 2008, 40, 101–128. [Google Scholar] [CrossRef] [Green Version]
- Omre, H. Bayesian kriging-merging observations and qualified guesses in kriging. Math. Geol. 1987, 19, 25–39. [Google Scholar] [CrossRef]
- Song, Y.Q.; Zhao, X.; Su, H.Y.; Li, B.; Hu, Y.M.; Cui, X.S. Predicting Spatial Variations in Soil Nutrients with Hyperspectral Remote Sensing at Regional Scale. Sensors 2018, 18, 3086. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Hu, Y.M.; Zhou, W.; Liu, Z.H.; Pan, Y.C.; Shi, Z.; Wang, L.; Wang, G.X. Estimation Methods for Soil Mercury Content Using Hyperspectral Remote Sensing. Sustainability 2018, 10, 2474. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.H. Statistical Dictionary; China Statistics Press: Beijing, China, 1995. [Google Scholar]
- Liu, Z.; Lu, Y.; Peng, Y.; Zhao, L.; Wang, G.; Hu, Y. Estimation of Soil Heavy Metal Content Using Hyperspectral Data. Remote Sens. 2019, 11, 1464. [Google Scholar] [CrossRef] [Green Version]
- Wold, S.; Sjostrom, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Wold, H. Nonlinear estimation by iterative least squares procedure. In Research Papers in Statistics; David, F.N., Ed.; Wiley: Hoboken, NJ, USA, 1966; pp. 414–444. [Google Scholar]
- Vapnik, V. The Nature of Statistical Learning Theory, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Cherkassky, V.; Ma, Y. Selection of Meta-parameters for Support Vector Regression. In Proceedings of the International Conference on Artificial Neural Networks—ICANN 2002, Madrid, Spain, 28–30 August 2002; Dorronsoro, J.R., Ed.; Lecture Notes in Computer Science. Springer: Berlin/Heidelberg, Germany, 2002; Volume 2415, pp. 687–693. [Google Scholar]
- Wang, X.; Wang, Z.Q.; Jin, G.; Yang, J. Land reserve prediction using different kernel based support vector regression. Trans. Chin. Soc. Agric. Eng. 2014, 30, 204–211. [Google Scholar]
- Ye, H.; Ma, Y.; Dong, L.M. Land Ecological Security Assessment for Bai Autonomous Prefecture of Dali Based Using PSR Model--with Data in 2009 as Case. Energy Procedia 2011, 5, 2172–2177. [Google Scholar] [CrossRef] [Green Version]
- Saleh, S.M.; Ibrahim, K.H.; Magdi, E.M. Study of genetic algorithm performance through design of multi-step LC compensator for time-varying nonlinear loads. Appl. Soft Comput. 2016, 48, 535–545. [Google Scholar] [CrossRef]
- Yang, Z.; Zhou, Q.; Wu, X.; Zhao, Z.Y.; Tang, C.; Chen, W.G. Detection of Water Content in Transformer Oil Using Multi Frequency Ultrasonic with PCA-GA-BPNN. Energies 2019, 12, 1379. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–27. [Google Scholar] [CrossRef]
- Xiao, L.; Yang, X.; Cai, H.; Zhang, D. Cultivated Land Changes and Agricultural Potential Productivity in Mainland China. Sustainability 2015, 7, 11893–11908. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.G.; Lu, C.G.; Zhang, W.J.; Li, L.; Duan, Y.H. Situation of the quality of arable land in China and improvement strategy. Chin. J. Agric. Resour. Reg. Plan. 2016, 37, 8–14. [Google Scholar]
- Murilo, V.F.; Luiz, C.B.; Antonio, P.B. Width optimization of RBF kernels for binary classification of support vector machines: A density estimation-based approach. Pattern Recognit. Lett. 2019, 128, 1–7. [Google Scholar]
- Zhang, X.Y.; Liu, Y.C. A Performance Analysis of Support Vector Machines with Gauss Kernel. Comput. Eng. 2003, 29, 22–25. [Google Scholar]
- Qiu, Y.H.; Wu, C.M.; Pu, G.L. Summary of genetic algorithms research. Appl. Res. Comput. 2008, 10, 2911–2916. [Google Scholar]
Growth Stage | Tillering Stage | Jointing Stage | Heading Stage | Maturity Stage |
---|---|---|---|---|
Acquisition date (m/d/y) | 8/20/2011–8/27/2011 | 9/13/2011–9/20/2011 | 10/15/2011–10/22/2011 | 11/8/2011–11/15/2011 |
8/19/2012–8/26/2012 | 9/12/2012–9/19/2012 | 10/14/2012–10/21/2012 | 11/7/2012–11/14/2012 | |
8/20/2013–8/27/2013 | 9/13/2013–9/20/2013 | 10/15/2013–10/22/2013 | 11/8/2013–11/15/2013 | |
8/20/2014–8/27/2014 | 9/13/2014–9/20/2014 | 10/15/2014–10/22/2014 | 11/8/2014–11/15/2014 | |
8/20/2015–8/27/2015 | 9/13/2015–9/20/2015 | 10/15/2015–10/22/2015 | 11/8/2015–11/15/2015 |
Plot# | Field Observations | 30 m MODIS-GPPs | 500 m MODIS-GPPs | ||
---|---|---|---|---|---|
Estimates | Absolute Error (%) | Estimates | Absolute Error (%) | ||
1 | 514.23 | 521.95 | 1.50 | 530.31 | 3.13 |
2 | 485.68 | 496.85 | 2.30 | 485.82 | 0.03 |
3 | 519.91 | 529.79 | 1.90 | 525.33 | 1.04 |
4 | 685.27 | 688.70 | 0.50 | 731.61 | 6.76 |
5 | 538.52 | 546.06 | 1.40 | 555.16 | 3.09 |
6 | 592.24 | 599.94 | 1.30 | 609.87 | 2.98 |
7 | 639.33 | 645.08 | 0.90 | 571.20 | 10.66 |
8 | 402.12 | 411.77 | 2.40 | 407.59 | 1.36 |
9 | 437.78 | 445.66 | 1.80 | 447.50 | 2.22 |
10 | 451.55 | 460.13 | 1.90 | 490.44 | 8.61 |
11 | 555.35 | 560.35 | 0.90 | 598.75 | 7.81 |
12 | 299.14 | 307.52 | 2.80 | 352.92 | 17.98 |
13 | 317.47 | 325.09 | 2.40 | 330.34 | 4.05 |
14 | 506.90 | 515.01 | 1.60 | 520.97 | 2.78 |
15 | 408.60 | 416.77 | 2.00 | 447.72 | 9.57 |
16 | 438.98 | 446.44 | 1.70 | 415.71 | 5.30 |
17 | 457.91 | 464.78 | 1.50 | 446.98 | 2.39 |
18 | 448.84 | 456.02 | 1.60 | 450.13 | 0.29 |
19 | 393.27 | 399.95 | 1.70 | 409.76 | 4.19 |
20 | 494.46 | 501.87 | 1.50 | 459.74 | 7.02 |
21 | 394.18 | 401.67 | 1.90 | 395.16 | 0.25 |
22 | 379.54 | 386.38 | 1.80 | 389.23 | 2.55 |
23 | 425.62 | 431.58 | 1.40 | 431.13 | 1.29 |
24 | 380.76 | 387.62 | 1.80 | 383.95 | 0.84 |
25 | 567.61 | 572.15 | 0.80 | 682.55 | 20.25 |
26 | 401.86 | 410.30 | 2.10 | 370.57 | 7.79 |
27 | 539.04 | 543.35 | 0.80 | 541.45 | 0.45 |
28 | 541.05 | 546.46 | 1.00 | 509.82 | 5.77 |
29 | 364.34 | 372.00 | 2.10 | 368.16 | 1.05 |
30 | 383.00 | 390.66 | 2.00 | 392.90 | 2.59 |
Mean | 465.49 | 472.73 | 1.64 | 475.09 | 4.80 |
Stdev | 91.77 | 91.00 | 97.57 | ||
RMSE | 7.43 | 33.43 | |||
NRMSE (%) | 1.59 | 7.18 |
Growth Stages | Tillering | Jointing | Heading | Maturity | |
---|---|---|---|---|---|
Years | |||||
2011 | 1.971 | 1.981 | 4.611 | 2.874 | |
2012 | 1.407 | 2.687 | 4.130 | 3.451 | |
2013 | 1.274 | 4.092 | 7.679 | 4.468 | |
2014 | 1.421 | 1.667 | 3.257 | 3.448 | |
2015 | 2.073 | 1.699 | 2.655 | 1.026 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, M.; Liu, S.; Xia, Z.; Wang, G.; Hu, Y.; Liu, Z. Crop Growth Stage GPP-Driven Spectral Model for Evaluation of Cultivated Land Quality Using GA-BPNN. Agriculture 2020, 10, 318. https://doi.org/10.3390/agriculture10080318
Zhu M, Liu S, Xia Z, Wang G, Hu Y, Liu Z. Crop Growth Stage GPP-Driven Spectral Model for Evaluation of Cultivated Land Quality Using GA-BPNN. Agriculture. 2020; 10(8):318. https://doi.org/10.3390/agriculture10080318
Chicago/Turabian StyleZhu, Mingbang, Shanshan Liu, Ziqing Xia, Guangxing Wang, Yueming Hu, and Zhenhua Liu. 2020. "Crop Growth Stage GPP-Driven Spectral Model for Evaluation of Cultivated Land Quality Using GA-BPNN" Agriculture 10, no. 8: 318. https://doi.org/10.3390/agriculture10080318
APA StyleZhu, M., Liu, S., Xia, Z., Wang, G., Hu, Y., & Liu, Z. (2020). Crop Growth Stage GPP-Driven Spectral Model for Evaluation of Cultivated Land Quality Using GA-BPNN. Agriculture, 10(8), 318. https://doi.org/10.3390/agriculture10080318