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Abstract: The decrease in water resources is a serious threat to food security world-wide. In this
regard, a genome-wide association study (GWAS) was conducted to identify grain yield and
quality-related genes/loci under normal and water-deficit conditions. Highly significant differences
were exhibited among genotypes under both conditions for all studied traits. Water-deficit stress
caused a reduction in grains yield and an increase in grains protein contents (GPC) and gluten contents
(GLC). Population structure divided the 96 genotypes into four sub-populations. Out of 72 significant
marker-trait associations (MTAs), 28 and 44 were observed under normal and water-deficit
stress conditions, respectively. Pleiotropic loci (RAC875_s117925_244, BobWhite_c23828_341 and
wsnp_CAP8_c334_304253) for yield and quality traits were identified on chromosomes 5A, 6B and
7B, respectively, under normal conditions. Under a water-deficit condition, the pleiotropic loci
(Excalibur_c48047_90, Tdurum_contig100702_265 and BobWhite_c19429_95) for grain yield per plant
(GYP), GPC and GLC were identified on chromosomes 3A, 4A and 7B, respectively. The pleiotropic loci
(BS00063551_51 and RAC875_c28721_290) for GPC and GLC on chromosome 1B and 3A, respectively,
were found under both conditions. Besides the validation of previously reported MTAs, some new
MTAs were identified for flag leaf area (FLA), thousand grain weight (TGW), GYP, GPC and GLC
under normal and water-deficit conditions. Twenty SNPs associated with the traits were mapped
in the coding DNA sequence (CDS) of the respective candidate genes. The protein functions of
the identified candidate genes were predicted and discussed. Isolation and characterization of
the candidate genes, wherein, SNPs were mapped in CDS will result in discovering novel genes
underpinning water-deficit tolerance in bread wheat.

Keywords: yield; quality; wheat; MTAs; GWAS; SNP; drought; MAS; QTL; population structure

1. Introduction

Wheat is considered worldwide as one of the most important crops. Ensuring sustainable wheat
production to fulfill the needs of an increasing population is a serious challenge for wheat scientists and
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farmers under continuing variability in environmental circumstances [1]. According to Dixon et al. [2],
wheat demand will reach up to 40% in 2030. The main causes of lower wheat production and poor
grain quality are sowing methods, late cultivation, bad soil, uneven fertilizer doses, unsuitable weed
eradicating, disease and less supply of water and heat [3]. Furthermore, increasing human and livestock
population and the modern lifestyle has directed new challenges for wheat breeders to develop wheat
genotypes with specific seed quality, yield and resistance to drought, heat and diseases [4,5]. Generally,
wheat grain comprises protein range from 8 to 17% and gluten-forming proteins range from 75 to 85%
of the total protein in bread wheat. Moreover, there is a need for improvement strategies aimed to
reduce the environmental impacts related to wheat cultivation, which represents the most-impacting
phase in bread, pasta, and other bakery products production [6].

Wheat grain has distinct physical and chemical parameters of seed protein. Understanding the
inheritance mechanism of wheat grain yield and quality traits is necessary for breeding high yielding
cultivars with better grain quality [6]. Flag leaf area (FLA), which has a key role in photosynthesis
and has directly contributed to yield and transpiration, is associated with leaf area under water-deficit
conditions. Therefore, the greater flag leaf area played an important role in the yield increase under
normal and water stress conditions [7]. Water-deficit stress is one of the major causes of yield loss in
wheat. Its effect on translocation of photosynthates to grains which reduces grain weight and grain
yield per plant [8]. It completely inhibits the metabolic activities, production of photosynthates and
their translocation [9]. Grain protein and gluten contents are very important quality parameters [10].
Wheat scientists evaluated the effect of water-deficit stress on the grain protein and gluten contents of
wheat and their findings showed that there is a significant positive relationship between protein and
gluten contents in wheat grains but a negative relationship with grain weight and grain yield [11].

Crop productivity is faced with many challenges including water-deficit, which is mainly due to
changes in precipitation patterns and inadequate rainfall [12]. The occurrence of water-deficit stress
increased considerably, mainly in wheat-producing zones globally, due to fluctuations in heat and
rainfall patterns. Developmental phases and yield of wheat plants showed negative effects under
water-deficit stress. Wheat yield reduced to 50 to 90% of their irrigated potential in developing
countries by water-deficit [13]. Wheat suffers a severe response of water-deficit stress at tillering
jointing, booting, anthesis and filling stage. Tillering is a critical stage at which a plant develops tillers,
primodia of spike and spikelets and flowers. Water-deficit stress at this stage can cause a 46% decrease
in final grain yield [14]. Although breeding progress for improved grain yield per plant (GYP) has
been obtained for irrigated cultivated areas however, much less gain has occurred in rainfed and
water-stressed areas. The problem is more severe in water-deficit stress conditions, and the yield gaps
between maximum productive areas and dryland farming are very large [15]. Strategies to reduce this
gap include the genetic improvements for water-deficit stress environments by identifying sources of
traits associated with water-deficit tolerance and subsequent introgression of genes underlying the
target traits to locally cultivated varieties. The challenge for implementing such strategies in breeding
programs is mainly related to the identification of the most suitable target traits, in a time-efficient and
cost-effective way, for different water-deficit scenarios [11]. The development of high yielding and
drought-resistant wheat varieties is hindered by many problems due to the complex and polygenic
nature of yield and drought-tolerant related genes. Therefore, further studies to understand the genetic
architecture sustaining underpinning water-deficit tolerance are needed and justified [10].

Genome-wide association study (GWAS) combines phenotypic with genotypic data to identify
genomic locations associated with variation in a given trait [16]. Its advantage over the conventional
bi-parental mapping approach lies mainly in the greater extent of allelic variation which can be
surveyed, while also avoiding the need to establish a customized mapping population [17]. GWAS has
been extensively used in bread wheat to detect the significant markers which are located on A, B and D
genomes individually [4]. Bayesian analysis using an unlinked set of markers has been effectively used
to determine population structure by assigning individuals to subpopulations (Q matrix). Clustering
and scaling of populations can be used as alternative approaches to determine population structure [18].
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GWAS also explores the genetic mechanisms of attributes and their responsible genes. It is a useful
technique with more accurate results because of having more genetic diversity and historically
recombination of alleles between associated panels [17].

A plethora of studies has been conducted to detect quantitative trait loci (QTL) for yield and quality
traits under normal and water-deficit conditions in different association panels. Modern wheat breeding
depends upon exploring genetic and molecular mechanisms of high temperature and water-deficit
tolerance through corresponding techniques of association and QTL mapping. Nowdays, the use of
high-density single nucleotide polymorphism (SNP) markers to detect the genomic regions which
associated with target traits through genome-wide association studies GWAS in wheat crop [19,20].
About 800 quantitative trait loci (QTLs) and marker-trait associations (MTAs) have been reported for
water-deficit tolerant traits (quality and yield-related traits) using bi-parental mapping (691 QTLs) and
genome-wide association studies (GWASs; 109 MTAs) in wheat. However, only 68 QTLs are major
QTLs that exhibit more than 19% of phenotypic variation [21]. QTL analysis for wheat quality was
reported mainly on grain protein traits [22], e.g., grain protein content [23] and gluten contents [24].
Herein, we performed a GWAS to identify loci/genes underpinning the major grain yield and quality
traits using the 90k SNP assay and two years field data on a selected panel of 96 spring wheat genotypes
grown under normal and water-deficit conditions. The candidate genes for the identified significant
MTAs were identified and their protein functions were predicted and discussed.

2. Materials and Methods

2.1. Germplasm Collection and Experimental Layout

Seeds of the association panel of 96 bread wheat accessions were obtained from the Department
of Plant Breeding and Genetics, University of Agriculture, Faisalabad (PBG-UAF). The genotype code,
name, pedigree record and their origin is mentioned in the Table S1. Out of 96 accessions, 22 were
developed at PBG-UAF Pakistan, 24 were introduced from CIMMYT and 50 were from historical
Pakistani approved varieties. The association panel was grown under normal and water-deficit
conditions in a randomized complete block design (RCBD) with three replications during two crop
seasons 2016–17 and 2017–18. Normal experiment irrigation was applied at three critical stages
i.e., (1) tillering (35 Days after sowing (DAS)), (2) the booting stage (85 DAS) and (3) the milking stage
(112 DAS) [14]. In this experiment water-deficit stress was applied at the tillering stage by upholding
the irrigation treatment. Each genotype was sown in one-meter long row with three replications,
maintaining a plant-to-plant distance of 15 cm. Row-to-row distance was 30 cm. Two seeds of each
genotype were dibbled per hole and one healthy wheat seedling was reserved after germination by
thinning. One set of genotypes was irrigated at all the three-critical stages, while the other set of the
same wheat genotypes was kept under water-deficit stress, missing the irrigation at first (tillering)
critical stage 35 days after sowing. [14]. All regular agronomic applications like fertilizer, hoeing,
weeding, etc. were implemented equivalently to lessen the experimental fault in both conditions
during both seasons.

2.2. Data Recording and Statistical Analysis

At maturity, when wheat plants were fully established, data were collected of 10 plants
from each replication for thousand-grain weight (TGW) and grain yield/plant (GYP) in normal
and water-deficient environment. Flag leaf area (FLA) was measured in cm2 using the equation
FLA = Flag lea f length (cm) × f lag lea f width (cm) × 0.74 [25]. After cleaning the wheat samples of
foreign matter, the determination of protein and gluten contents in the whole grain was performed,
using an Omeg Analyzer G Device [26]. The device is a computer-controlled dual-beam near
infrared-analyzer for the analysis of whole grain for the determination of protein and gluten contents
in wheat. The device key features are: near-infrared wavelength range: 730 nm–1100 nm; increment:
0.5 nm; variable path length: 8–30 nm; data increment: <1 nm and analyzing time: 50 s [26,27]. Scored
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data of all studied attributes were exposed to the analysis of variance (ANOVA) technique using the
GenStat® version 17, VSN, International [28]. Pooled analysis of variance was implemented in studied
germplasm. Broad-sense heritability (H2) was calculated for both seasons under combined average
data of normal and water-deficit conditions using the model given by Bhatta and their colleagues
in wheat crop [22]. Pearson’s correlation coefficients (r) were performed to conclude the association
among yield and some quality traits in normal and water-deficit conditions using SPSS version 23 [29].

2.3. Genotyping of the Studied Germplasm

Three seeds of each genotype were planted. Fresh leaf samples for DNA extraction were collected
from 15-day old seedlings. DNA was extracted following the CIMMYT Molecular Genetics Manual [30].
The DNA samples (50–100 ng/µL per sample) in a 96-well plate format were sent to the CapitalBio®

genotyping facility in Beijing for genotyping with high-density illumina 90K infinium SNP array [31].
The genome-wide positions of SNPs in terms of genetic distance (cM) located on chromosomes were
used in this study based on a consensus genetic map of wheat 2015 [31]. Monomorphic markers,
missing values <20% and showed unclear SNPs or (minor alleles) demonstrated the allelic frequencies
of less than <5%, were excluded from the analysis.

2.4. Population Structure and GWAS Analysis

Bayesian clustering technique was applied with unlinked SNPs to classify groups of genotypically
same individuals applying the statistical software STRUCTURE v.2.3 [32]. Burn-in iterations of
104 cycles, followed by a simulation run of 106 cycles and the admixture model selection were used.
Web-based analysis “Structure Harvester v0.6.93” was applied to obtain maximum value or peak of
“K” for validation to understand the STRUCTURE results which were based on ad-hoc techniques [33].
We selected the K values ranged 1–10 and 6 independent runs to attain reliable effects.

GAPIT (genome association and prediction integrated tool) was also applied with the model
selection preference to test the reliability of the results [34]. It was advanced in an R package which offers
maximum likelihood precision and run in a computationally effective method. (GAPIT) implements
unconventional statistical approaches containing the compressed mixed linear model (CMLM) and
CMLM-based genomic prediction and selection. The threshold level for significant marker-trait
associations (MTA) was 10−3 (log10p) or above [4] after applying the false discovery rate (FDR) <0.05
correction [35]. A mixed linear model (MLM) was estimated from newly developed GWAS. To define
the spurious associations derived from population structure, covariates from either STRUCTURE [32] or
principal components (PCs) were considered as fixed effects. The relationships among individuals were
calculated using a kinship matrix and incorporated MLM [36]. Overall, 35,320 of the 81,000 functional
iSelect bead chip analyzes visually showed polymorphism; to locate them on the published genetic
map [31] in the studied genotypes.

2.5. Mapping SNPs and Identification of Candidate Genes

The bread wheat reference genome (IWGSC RefSeq v1.0) and gene annotations in GFF3 format
were retrieved from the Ensembl database release 44 [37]. The SNP marker sequences were aligned to
the Wheat genome using blastn program with a stringent E-value of 0.0001. For each SNP only the
best scoring hit was retained. Each aligned genomic position was annotated into 5′-UTR, 3′-UTR, CDS,
intron, intergenic regions according to the genomic regions provided in the GFF3 file. The intergenic
region was defined as the genomic region with no annotated genes. The annotated genes within
±250 Kb of the mapped SNP were considered candidate genes as described by scientists. The protein
functions for the candidate genes were predicted using the Uniprot Protein database [38].
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3. Results

3.1. Phenotypic Evaluation

Significant genotypic variations (p < 0.01) were observed for all measured yield and quality traits
among genotypes in Table 1. Significant G × E (genotype by environment) interactions for all the
traits were observed under normal and water-deficit conditions (Table 1). The highest heritability
was observed for GYP with the values of H2 = 0.95 and H2 = 0.92 under normal and water-deficit
conditions respectively (Table 2). Summaries of average data for quality and yield-related attributes
over the two years are shown in Table 2. Flag leaf area mean values ranged from 28.50 cm2 to 44.83 cm2

and 19.02 cm2 to 35.02 cm2 under normal and water-deficit conditions, respectively. Thousand-grain
weight (TGW) had mean values ranging from 42.3 g to 58.2 g and 33.7 g to 47.5 g under normal and
water-deficit conditions, respectively. The average grain yield per plant values were ranged from
21.30 g to 38.11 g and 15.21 g to 32.02 g under well-watered and water-deficit conditions, respectively.
Under normal conditions, a minimum value of protein and gluten contents 13.01% and 22.51%,
respectively, while under the water-deficit condition, the minimum values were 12.92% and 24.23%,
respectively. The maximum values for protein contents were 13.64% (normal) and 15.13% (water-deficit)
while gluten contents had maximum mean values 30.06% (normal) and 31.78% (water-deficit). In Table 3
results showed a correlation of studied attributes based on data averaged over the years 2016–2017
and 2017–18 under normal and water-deficit conditions. Flag leaf area was positively associated with
TGW and GYP under normal and water-deficit stress conditions (Table 3). Thousand-grain weight was
strongly correlated with GYP and FLA under both conditions. Quality traits like protein contents and
gluten contents were significant and positively associated with each other’s and negatively associated
with all studied yield and yield-related traits including FLA, TGW and GYP under both conditions.

Table 1. Pooled analysis of variances (ANOVA) of 96 wheat genotypes for studied attributes under
both seasons.

Traits DF FLA TGW GYP GPC GLC

Source N D N D N D N D N D
REP 2 679.72 0.9 1237.2 2.5 631.7 65.15 177.48 16.51 262.93 19.24
GET 95 50.97 * 62.30 * 231.70 * 211.60 * 231.26 * 265.80 * 6.40 * 6.38 * 38.17 * 40.24 *
Env. 1 8720.5 * 22,681.9 * 25,651.6 * 37,542.9 * 4263.4 * 9777.2 * 688.5 * 170.4 * 556.9 * 55.9 *

GET × Env 95 13.45 ** 26.00 ** 44.30 ** 50.60 ** 47.61 ** 12.27 ** 0.71 ** 1.06 ** 2.02 ** 3.28 **
Error 382 1.91 4.2 7.1 12.6 3.38 7.22 0.55 2.58 1.41 4.76
Total 575 29.44 56.81 99.25 116.98 57.93 67.97 3.36 3.3 9.46 10.52

FLA = flag leaf area, TGW = thousand grain weight, GYP = grain yield per plant, GPC = grains protein contents,
GLC = gluten contents, N (2016-17 average data of normal and water-deficit), D (2017–18 average data of normal and
water-deficit), REP = Replication, GET = genotypes, Env = Normal and water-deficit environments. * = Significant,
** = Highly significant.

Table 2. Summary statistics of studied attributes under normal and water-deficit conditions based on
data averaged over years the 2016–2017 and 2017–2018.

Traits FLA TGW GYP GPC GLC

Environment N D N D N D N D N D
Minimum 28.50 19.02 42.25 33.66 21.30 15.21 13.01 12.92 22.51 24.23
Maximum 44.83 35.02 58.19 47.47 38.11 32.02 15.43 16.92 30.06 31.78

Mean 36.16 26.11 49.05 37.55 28.23 21.10 13.64 15.13 26.24 27.96
SE Mean 0.35 0.32 0.69 0.72 0.70 0.72 0.12 0.12 0.25 0.25

C.V% 9.58 11.90 16.00 25.66 32.42 46.75 8.35 7.53 9.31 8.74
Heritability 0.90 0.83 0.92 0.85 0.96 0.92 0.80 0.45 0.90 0.74

N = Normal conditions average data of two years 2016–17 and 2017–18, D = water-deficit conditions average data of
two years 2016–17 and 2017–18, FLA = flag leaf area, TGW = thousand-grain weight, GYP = grain yield per plant,
GPC = grains protein contents, GLC = gluten contents, standard deviation.
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Table 3. Pearson’s correlation coefficient of studied attributes based on data averaged over years
2016–2017 and 2017–2018 under normal and water-deficit conditions.

Traits/Environments FLA TGW GYP GPC

TGW
N 0.73 **
D 0.94 **

GYP
N 0.75 ** 0.94 **
D 0.92 ** 0.93 **

GPC
N −0.40 * −0.55 ** −0.55 **
D −0.57 ** −0.56 ** −0.56 **

GLC
N −0.30ns −0.51 ** −0.53 ** 0.66 **
D −0.53 ** −0.52 ** −0.52 ** 0.66 **

FLA = flag leaf area, TGW = thousand grain weight, GYP = grain yield per plant, GPC = grains protein contents,
GLC = gluten contents N = Normal conditions average data of two years 2016–17 and 2017–18, D = water-deficit
conditions average data of two years 2016–17 and 2017–18. ** = Highly significant (0.01); * = significant (0.05);
ns = non-significant.

3.2. Population Structure

A Bayesian approach performed in statistical software package STRUCTURE version 2.3.3 was
used to assess the genetic structure of 96 bread wheat accessions. The results showed that the highest
peak number of K = 4 based on the rate of change in the log probability of data between successive
K-values (Figure 1). This designated that the genotypes could be divided into four sub-groups.
Each color in Figure 2 demonstrates a single group and studied germplasm of 96 bread wheat
genotypes divided into 4 sub-populations. Moreover, evaluation of each group exposed that genotypes
from G-1 to G-10 and from G-27 to G-28 were placed into the first group in this group total 12 genotypes
appeared. In the second group, a total of 14 genotypes were present G-11 to G-22 and from G-29 to
G-30. The third group included 39 genotypes which were from G-34 to G-72. The fourth group from
G-23 to G-26 was developed by a combination of various genotypes from first and second groups.
Three genotypes from G-31 to G-33 showed mixed genetic material with genotypes from the second
and the third groups. The fourth group consisted of 17 genotypes from G-73 to G-89. Six genotypes
from G-90 to G-96 exhibited the shared genetic material from the third and the fourth groups.
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3.3. Markers–Traits Associations for Yield and Quality Attributes

Marker-trait associations for studied parameters in normal and water-deficit stress conditions
were observed in this experiment. Manhattan plots as Figure 3A–J showing the location of significant
SNPs and −log10(p) associated with quality and yield-related traits under both conditions. The blue
horizontal line on the Manhattan Plot designates the threshold (p ≤ 10−3) of significance. In this study,
a total of 72 significant SNPs were associated with studied traits, out of them 28 and 44 significant MTAs
were observed under normal and water-deficit stress conditions respectively, at −log 10 (p ≤ 10−3)
threshold using a mixed linear model (MLM) after applying the false discovery rate (FDR) ≤ 0.05
correction for studied quality and yield-related traits in bread wheat genotypes.
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horizontal line designates the threshold of significance.

3.4. Flag Leaf Area (FLA)

In GWAS analysis, four markers were found to be highly associated with FLA located on
chromosomes 7A, 5A and 1A under normal conditions (Figure 3A). Phenotypic variation explained
(PVE) by the FLA associated loci was 17.06% to 21.21% of the total phenotypic variation of FLA.
The marker (RAC875_s117925_244) explained the maximum value of trait variability (21.21%) on
chromosome 5A at 15.57 cM while the marker (Tdurum_contig42590_755) from chromosome 7A
at 35.31 cM explained the minimum value (17.06%) of trait variability under normal conditions
(Table 4). Under a water-deficit condition, three markers were strongly associated with FLA on
chromosomes 1B and 5D (Figure 3B). Total PVE by these markers ranged from 14.9%to 17.60% (Table 5).
Under a water-deficit conditions, the marker (Tdurum_contig9144_222) had maximum PVE (17.60%) on
chromosome 1B at 171.31 cM while the marker (wsnp_Ex_c955_1827719) on the same chromosome
explained the least proportion 14.95% of the trait PVE at the same position.
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Table 4. Significant MTAs at FDR < 0.05 threshold under normal conditions.

Trait SNP Chromosome Position cm p Value FDR R% Effect Size

FLA

RAC875_s117925_244 5A 15.53 0.000152 0.046088722 21.21 18.97880225
wsnp_BE591290B_Ta_2_7 1A 133.3 0.000481 0.046088722 18.62 18.97880225

RAC875_c701_88 7A 42.08 0.000966 0.046669785 17.09 14.48017373
Tdurum_contig42590_755 7A 35.31 0.000982 0.028842356 17.06 36.71816409

TGW

BobWhite_c23828_341 6B 43.94 0.00028 0.028842356 18.22 36.71816409
wsnp_Ra_c3176_5975986 7B 77.13 0.00045 0.028842356 17.15 36.71816409

IAAV8743 1A 100.83 0.000467 0.042546247 17.06 32.83662834
RAC875_s117925_244 5A 15.53 0.000608 0.042546247 16.46 29.78675617

wsnp_CAP8_c334_304253 7B 29.49 0.000717 0.042546247 16.1 29.78675617
Excalibur_rep_c71254_415 5A 84.58 0.000932 0.042546247 15.52 28.95796276

GYP

BobWhite_c23828_341 6B 43.94 0.000235 0.042546247 19.04 32.77703136
RAC875_s117925_244 5A 15.53 0.000251 0.042546247 18.89 32.77703136

Ra_c58279_684 2A 78.03 0.000386 0.042546247 17.91 32.77703136
wsnp_Ex_c5412_9564046 2A 78.03 0.00039 0.042546247 17.89 32.77703136
wsnp_Ex_c5412_9564478 2A 76.9 0.000542 0.042546247 17.15 32.77703136
Tdurum_contig5352_556 7B 10.06 0.000595 0.042546247 16.94 32.77703136

IAAV3414 7B 72.74 0.000918 0.01871545 15.98 22.25384173
Kukri_c55051_414 5A 13.62 0.00093 0.01871545 15.95 22.25384173

GPC

wsnp_Ex_rep_c107564_91144523 4D 70.59 0.000232 0.01871545 17.52 22.25384173
BS00026471_51 3B 5.79 0.000248 0.020393963 17.37 22.72232384

GENE-0129_123 1B 130.9 0.000574 0.020393963 15.42 22.72232384
Excalibur_c63563_370 1B 57.6 0.000712 0.020393963 14.94 25.76814422

RAC875_rep_c111494_195 1B 130.9 0.000855 0.020393963 14.52 25.76814422

GLC

Excalibur_c19658_127 3D 4.56 0.0001368 0.020393963 12.25 25.76814422
Kukri_c51540_490 2B 116.91 0.0001502 0.020393963 12.04 25.76814422

wsnp_CAP8_c334_304253 7B 29.49 0.0001509 0.020393963 12.03 25.76814422
BobWhite_c28971_184 1A 101.19 0.0001558 0.020393963 11.96 25.76814422
Excalibur_c10307_254 2A 25.97 0.0001674 0.01527337 11.8 13.17481197

FLA = flag leaf area, TGW = thousand grain weight, GYP = grain yield per plant, GPC = grains protein contents,
GLC = gluten contents, FDR = false discovery rate.

Table 5. Significant MTAs at FDR < 0.05 threshold under water-deficit conditions.

Trait SNP Chromosome Position cm p Value FDR R% Effect Size

FLA
Tdurum_contig9144_222 1B 171.31 0.000269 0.0112867 17.6 36.459737

Tdurum_contig43552_666 5D 193.91 0.000825 0.0112867 15.05 36.459737
wsnp_Ex_c955_1827719 1B 171.31 0.000865 0.0112867 14.95 36.459737

TGW

Excalibur_c53131_187 3A 86.66 4.05 × 10−5 0.0112867 20.62 36.459737
BS00073011_51 3B 71.34 0.000249 0.0112867 16.22 36.459737

wsnp_Ex_c5547_9774195 3B 71.34 0.000249 0.0112867 16.22 36.459737
RAC875_c24515_602 4B 89.44 0.000255 0.0225076 16.15 29.384517

Tdurum_contig29286_319 5A 94.1 0.000288 0.0225076 15.87 29.384517
BS00063801_51 6B 67.24 0.000336 0.026592 15.51 31.431627
BS00011065_51 7D 190.77 0.000394 0.0067095 15.14 7.696908
BS00066248_51 4B 105.67 0.000444 0.0067095 14.86 7.696908

BobWhite_c47495_403 5B 1.36 0.000488 0.0067095 14.63 7.696908
GENE-4937_537 2D 111.11 0.000504 0.0067095 14.56 7.696908

RAC875_c53296_378 3B 71.34 0.000515 0.0067095 14.51 7.696908
D_F1BEJMU01A6MWB_163 3B 137.84 0.000522 0.0067095 14.48 7.696908

Kukri_c25194_153 6B 49.47 0.000573 0.0196389 14.26 6.266148
Tdurum_contig98215_420 5B 153.6 0.000662 0.0208676 13.93 6.6649624
Tdurum_contig35470_227 5B 143.55 0.000673 0.0208676 13.89 6.5076334
wsnp_BG263358A_Ta_2_3 1A 101.19 0.000697 0.0238768 13.81 5.8854602
Tdurum_contig62286_271 4B 89.4 0.000713 0.0238768 13.76 5.8854602

GYP

Tdurum_contig100702_265 4A 138.76 2.78 × 10−5 0.0252037 23.88 6.3615376
BobWhite_c19429_95 7B 133.59 0.000153 0.0252037 19.82 6.3615376

Kukri_rep_c115898_504 1B 80.58 0.000204 0.0238352 19.15 8.7950553

BS00063551_51 1B 158.59 0.000218 0.0238352 19 8.7950553
Excalibur_c48047_90 3A 101 0.000294 0.0238352 18.31 8.7950553

Tdurum_contig62744_393 4A 154.3 0.00054 0.0250971 16.93 8.3549964
wsnp_Ex_c20495_29571203 1A 95.55 0.000627 0.0250971 16.6 8.0903174

IAAV6265 5D 87.06 0.000799 0.0369636 16.06 8.9178498
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Table 5. Cont.

Trait SNP Chromosome Position cm p Value FDR R% Effect Size

GPC

Tdurum_contig100702_265 4A 138.76 1.37 × 10−5 0.0429996 25.47 7.5071168
BobWhite_c19429_95 7B 133.59 0.000162 0.0429996 19.52 7.5071168
Excalibur_c48047_90 3A 101 0.000209 0.0364488 18.93 7.1299914

RFL_Contig1445_1192 2B 107.03 0.000584 0.0368977 16.59 7.1299914
Kukri_c7658_229 3D 143.01 0.00069 0.0386242 16.21 7.1299914

RAC875_c28721_290 3A 177.24 0.000763 0.0386242 15.99 6.3093446
BS00063551_51 1B 158.59 0.000913 0.0386242 15.59 6.3093446

GLC

Tdurum_contig100702_265 4A 138.76 9.49 × 10−6 0.0117506 27.55 21.615353
BobWhite_c19429_95 7B 133.59 0.000178 0.0117506 20.58 21.615353
Excalibur_c48047_90 3A 101 0.000217 0.0117506 20.13 20.121538
RAC875_c28721_290 3A 177.24 0.000656 0.0117506 17.65 20.121538

Kukri_c7658_229 3D 143.01 0.000768 0.0117506 17.31 20.121538
wsnp_Ex_c750_1474184 1B 173.62 0.000779 0.0117506 17.27 19.291381

Kukri_c46740_226 3D 0.000814 0.0339177 17.18 19.291381
IAAV6265 5D 87.06 0.000925 0.0424613 16.9 17.962338

Tdurum_contig1631_240 1B 171.31 0.000989 0.0424613 16.75 13.614016

FLA = flag leaf area, TGW = thousand grain weight, GYP = grain yield per plant, GPC = grains protein contents,
GLC = gluten contents, FDR = false discovery rate.

3.5. Thousand Grain Weight (TGW)

Under normal conditions, TGW was highly associated with six markers. Two TGW associated
marker loci were located on chromosomes 5A, two on 7B, one on each 6B and 1A (Figure 3C). The six
TGW related markers explained 15.52% to 18.22% of the variation in TGW (Table 4). The marker
(BobWhite_c23828_341) explained maximum phenotypic trait variability (18.22%) on chromosome 6B
at 34.94 cM while the marker (Excalibur_rep_c71254_415) on chromosome 5A at 84.58 cM explained
minimum value (15.52%). MTA for TGW was distributed across 6 chromosomes, including, 3 SNPs
at A-genome and 3 at B-genome under normal condition. Under water-deficit conditions, seventeen
significant SNP markers were strongly linked with TGW including 4 markers located on chromosomes
3B, 3 on 4B, 3 on 5B, 2 on 6B and the other on 1A, 3A, 5A, 2D and 7D (Figure 3D). These markers
explained 13.76% to 20.62% of the phenotypic variation in TGW under water-deficit conditions.
The marker (Excalibur_c53131_187) on chromosome 3A at 86.66 cM explained a maximum variation
20.62%) while the marker (Tdurum_contig62286_271) on 4B at 89.40 cM explained (Table 5) minimum
variation (13.76%) in TGW under water-deficit conditions.

3.6. Grain Yield per Plant (GYP)

Under normal conditions, GYP was highly associated with eight SNP markers out of which
three SNPs were located on chromosome 2A, two on 5A, one on 6B and two on 7B (Figure 3E).
These SNPs explained 15.95% to 19.04% of the phenotypic variation in GYP. MTA for GYP was
distributed across 8 chromosomes, including, 5 SNPs on A-genome and 3 on B-genome. The marker
(BobWhite_c23828_341) explained maximum variation (19.04%) on chromosome 6B at 43.94 cM while
the marker (Kukri_c55051_414) on chromosome 5A at 13.62 cM explained minimum variation (15.95%)
under normal conditions (Table 4). Under a water-deficit stress condition, eight significant SNPs were
found associated. Two SNPs were located on chromosome 1B, two on 4A and other on 1A, 3A, 7B
and 5D (Figure 3F). Under a water-deficit condition, eight significant SNPs explained phenotypic
variation ranging from 16.06% to 23.88% in GYP. MTA for GYP was distributed across 8 chromosomes,
including, 4 SNPs on A-genome, 3 on B-genome and 1 on D-genome (Table 5). The marker
(Tdurum_contig100702_265) on chromosome 4A at 138.76 cM explained maximum phenotypic variation
(23.88%) while the marker (IAAV6265) on 5D at 87.06 cM explained minimum variation (16.06%) under
the water-deficit stress condition.
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3.7. Grain Protein Contents (GPC)

A total of five significant SNP markers were observed for GPC under normal conditions. Three SNP
markers were found on chromosome 1B, one 3B and one 4D (Figure 3G). The total phenotypic
variation explained by these SNP markers ranged from 14.52% to 17.52% for GPC. The marker
(wsnp_Ex_rep_c107564_91144523) on chromosome 4D at 70.59cM explained maximum variation
(17.52%) while the marker (RAC875_rep_c111494_195) on chromosome 1B (130.90 cM) explained
minimum variation (14.52%) for GPC under normal condition (Table 4). MTA for GPC were distributed
across 5 chromosomes including 4 on B-genome and 1 on D-genome. Under water-deficit conditions,
seven significant SNP markers were highly associated with GPC. Two were located on chromosome
3A and the other on 1A, 5B, 6B, 7B, 1D and 3D (Figure 3H). These SNPs had 15.59% to 25.47%
variation in GPC under water-deficit conditions. MTA for GPC were distributed across seven
chromosomes including three SNPs on A-genome, three on B-genome and one D-genome. The marker
(Tdurum_contig100702_265) on chromosome 4A (138.76 cM) explained maximum variation (25.47%)
while the marker (BS00063551_51) on chromosome 1B (158.59 cM) described minimum variation
(15.59%) for GPC under water-deficit stress condition (Table 5).

3.8. Gluten Contents (GLC)

Five markers were highly associated with GLC under normal conditions that were located
on chromosomes 5A, 1B, 4B, 5B, 6B and 2D (Figure 3I). These significantly associated markers
explained11.80% to 12.25% of the variability in gluten contents under normal conditions. MTA for
GLC were distributed across 5 chromosomes, including, two SNPs on A-genome, two on B-genome
and one D-genome. The marker (Excalibur_c19658_127) on chromosome 3D at 4.56 cM expounded
maximum (12.25%) and the marker (Excalibur_c10307_254) on chromosome 2A at 25.97 cM expounded
minimum variation (11.80%) for GLC under normal condition (Table 4). Nine markers were detected
for GLC under water-deficit stress. Two markers were on chromosome 3A, two on 3D, two on 1B,
one on 4A, one on 7B and one on 5D (Figure 3J) explaining 16.75% to 27.55% variation for GLC
under water-deficit condition. The marker (Tdurum_contig100702_265) on chromosome 4A at 138.76cM
explained maximum (27.55%) and the marker (Tdurum_contig1631_240) on chromosome 1B at 171.31 cM
expounded (Table 5) minimum variation (16.75%) for GLC under water-deficit stressed conditions.

3.9. Genome-Wide MTAs

The highest numbers of markers-traits associations (MTAs) were identified for GYP (8) followed by
TGW (6), GPC (5), GLC (5) and FLA (4) under normal condition. Under a water-deficit stress condition,
maximum numbers of MTAs were detected for TGW (17) followed by GLC (9), GYP (8), GPC (7) and
FLA (3) in the present study. The highest numbers of MTAs were identified on chromosomes 5A (5),
7B (5), 2A (4) followed by 1A (3), 1B (3), 6B (2) and 7A (2) under normal condition. The D genome
showed a minimum number of MTAs (2), however the A genome comprised a maximum number (14),
and B genome (12) under normal condition in this experiment. The maximum number of MTAs were
observed on chromosomes 1B (7), 3A (6), 3B (4) and 4A (4) followed by 3D (3), 4B (3), 5B (3), 5D (3)
and 7B (3) under water-deficit stress conditions. The D genome comprised a minimum number of
MTAs (8), while B genome had a maximum number (23) and A genome (13) a under water-deficit
stress condition in this study.

In genome A, the markers (Excalibur_c10307_254 and wsnp_BG263358A_Ta_2_3) had the lowest
phenotypic variation 11.80% and 13.81% on chromosomes 2A and 1A at 25.97 cM and 101.19 cM
were significantly associated with GLC and TGW under normal and water-deficit stress conditions,
respectively. The maximum phenotypic variation 21.21% and 27.55% existed in A genome depicted
by the markers (RAC875_s117925_244 and Tdurum_contig100702_265) on chromosomes 5A and 4A
at 15.53 cM and 138.76 cM were associated with FLA and GLC under normal and water-deficit
conditions, respectively.
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The SNP markers (wsnp_CAP8_c334_304253 and Tdurum_contig62286_271) were associated with
TGW in B genome on chromosome 7B (29.49 cM) and 4B (89.40 cM) explained 12.03% and 13.76%
variation for TGW under normal and water-deficit-stress, respectively. In genome B the markers
(BobWhite_c23828_341 and BobWhite_c19429_95) observed the maximum trait variation of 19.04% and
20.58% on chromosomes 6B and 7B at 43.94 cM and 133.59 cM were significantly associated with GYP
and GLC under normal and water-deficit-stress, respectively.

The markers (wsnp_Ex_rep_c107564_91144523 and Kukri_c7658_229) located on chromosomes 4D
(70.59cM) and 3D (143.01cM) associated with GPC in D genome had the maximum phenotypic
variation 17.52% and 19.71% under normal and water-deficit-stress conditions respectively.
The lowest phenotypic variation 12.25% and 14.56% existed in genome D depicted by the markers
(Excalibur_c19658_127 and GENE-4937_537) on chromosomes 3D and 2D at 4.56cM and 111.11 cM were
associated with GLC and TGW under normal and water-deficit stress, respectively.

3.10. Pleiotropic Locus

In the current study, multi-trait-loci (pleiotropic effect) were perceived on chromosome 1A
(FLA, TGW, GLC), 2A (GYP and GLC), 5A (FLA, TGW and GYP), 6B (TGW and GYP) and 7B (TGW, GYP
and GLC) under normal condition (Table 4). Pleiotropic Loci were identified on chromosome 1A (TGW,
GYP), 1B (FLA, GYP, GLC, GPC), 3A (TGW, GYP, GLC and GPC), 3D (GPC and GLC), 4A (GYP, GPC
and GLC), 5D (FLA, GYP and GLC) and 7B (GYP, GPC and GLC) under water-deficit conditions
(Table 5). Yield and yield-related traits controlled by the locus (RAC875_s117925_244) on chromosomes
5A at 15.53 cM were associated with FLA, TGW and GYP under normal condition. Pleiotropic
region (BobWhite_c23828_341) for TGW and GYP were identified on chromosomes 6B at 43.94 cM.
Another chromosomal pleotropic region (wsnp_CAP8_c334_304253) was associated with TGW and
GLC identified on chromosome 7B at 29.49 cM under normal condition. Under a water-deficit
condition, pleiotropic locus (Excalibur_c48047_90, Tdurum_contig100702_265 and BobWhite_c19429_95)
for GYP, GPC and GLC were identified on chromosomes 3A, 4A and 7B at 133.59 cM, 138.76 cM
and 101 cM, respectively. Quality related traits governed by a pleiotropic locus (BS00063551_51
and RAC875_c28721_290) associated with GPC and GLC on chromosome 1B and 3A at 158.59 cM
and 177.24 cM, respectively. The locus (IAAV6265) showed pleotropic effects for GYP and GLC on
chromosome 5D at 87.06 cM under water-deficit conditions.

3.11. Mapping SNPs and Identification of Candidate Genes

Out of 72 SNPs that were found to be associated with different attributes in this experiment,
seventy one SNPs were successfully mapped on the bread wheat reference sequence. Eleven candidate
genes were predicted for FLA under normal conditions (Table S2) and seven candidate genes were
predicted under water-deficit conditions (Table S3). The adjacent genes TraesCS1B02G440200 and
TraesCS1B02G480200 on chromosome 1B were predicted as candidate genes for FLA under normal
and water-deficit conditions, respectively. A total of 15 and 42 candidate genes were found near SNPs
associated with TGW under normal and water-deficit conditions, respectively. For GYP, 14 and 21
candidate genes were identified under normal and water-deficit conditions, respectively. For GPC six
and eight new candidate genes were predicted under normal and water-deficit conditions, respectively
(Tables S2 and S3). For GLC 27 and 28 new candidate genes were predicted in our study under both
conditions. Twenty SNPs associated with the traits under study were mapped in coding DNA sequence
(CDS) of the respective candidate genes.

4. Discussion

4.1. Phenotypic Evaluation

From the results of ANOVA, the interaction between water treatments and genotypes was highly
significant for all studied traits which indicated the genotypic variation in response to water treatments
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as indicated in Table 1. Significant water treatments and genotypes were also observed in previous
studies on spring wheat germplasm [11]. Heritability is a statistic used in the fields of breeding and
genetics that estimates the degree of variation in a phenotypic trait in a population that is due to
genetic variation between individuals in that population. Heritability estimates provide information
about the extent of which a particular genetic character to be transmitted to the successive generations.
In current experiments, high heritability was reported in the studied traits like GYP (0.95), followed by
TGW (0.92), FLA (0.90) and GLC (0.90) which indicates (Table 2) that these are simply inherited traits
and most likely the heritability is due to additive gene effects and selection may be effective in early
generations for these traits. Previous studies have also reported the high heritability in TGW and GYP
as complex traits in thirty wheat diverse genotypes evaluated under water-deficit conditions in Alpha
Lattice Design with similar heritability of the current study [39]. The quality traits like GPC and GLC
had high heritability in the present study similarly earlier reported by Yagdi et al., in diverse wheat
genotypes [40]. The grain yield and quality-related attributes heritability in different hexaploid under
normal and water-deficit conditions ranged from 0.40 to 0.90 in previous studies [41,42] were also in
line with our findings (Table 2). Budak et al. [43] stated that broad-sense heritabilities of grain yield and
protein contents were 67% and 64%, respectively. Heritability is a concept that summarizes how much
of the variation in a trait is due to variation in genetic factors. Summary statistics of studied attributes
under normal and water-deficit conditions based on data averaged over the years presented in Table 2
and exhibited the variation among genotypes in different environments. FLA, which has an important
role in photosynthesis and has directly contributed in yield and transpiration, is associated with leaf
area under water-deficit conditions [7]. The severity of the effects of water-deficit are particularly acute
during the anthesis and grain-filling periods, resulting in decreases in the major yield components, and
ultimately lower the total yield per plant [9]. Thousand-grain weight (TGW) is a vital yield component
and is more-or-less stable character of wheat cultivars. The mean values decreased due to water-deficit
stress in FLA, TGW and GYP but in quality traits like protein and gluten contents mean values increased
under water-deficit stress conditions. Water shortage conditions may also have a considerable effect on
the chemical composition of the grain, including the storage protein in wheat grain. Our results are
similar to the results of wheat scientists they stated that water-deficit stress reduced the wheat grain
yield but enhanced the performance of quality traits like GPC and GLC [44,45]. Negative effects of
water-deficit stress on wheat performance and genotypic differences in response to a water deficit have
also been reported earlier [46]. In water-deficit conditions, GYP and TGW were negatively affected,
whereas GPC and GLC were significantly increased. Generally, water-deficit condition is known to
reduce the carbohydrate content (including sucrose and starch) of the grain and to increase the protein
content similar results were obtained in current study. However, the effects are highly dependent on
the degree and timing of the water-deficit and on interactions with other environmental stresses. [26,47].
It is established that terminal drought stress during anthesis and post-anthesis stages in wheat is
associated with maximum yield losses [12], which are predominantly caused by a decrease in grain
yield per plant [48]. At the booting stage, the early induced terminal drought stress directly decreased
flag leaf area and ultimately decreased TGW and GYP. The outcomes agreed with our observations
regarding drought stress at the booting stage. Other reasons linked with the restraint of physiological
and biochemical pathways, i.e., early leaf senescence, the potential level of leaf water, closure of stomata,
decreased net photosynthates, oxidative damage of chloroplasts, carbon fixation rate decreased and
assimilation of translocation were also contributed in yield losses under water-deficit stress [49]. The
significant association of flag leaf area to yield per plant in wheat has been revealed to be due to its
ability to capture radiant energy. In the present study, the GPC contents increased significantly under
water-deficit conditions (Table 3) which also previously reported by wheat breeders [50]. An increase
in grain protein contents under water-deficit conditions has been reported mainly due to higher rates
of accumulation of grain nitrogen and lower rates of accumulation of carbohydrates [51]. The negative
association of quality and yield attributes suggested that an increase in yield under water-deficit stress
might be achieved with an insignificant decrease in protein and gluten contents [44].
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4.2. Population Structure Analysis

Population structure is an important component in association mapping analyses between
molecular markers and traits because it may reduce both type I and II errors. In this study, structure
analysis suggested that the 96 accessions originating from different ancestors. According to known
origin evidence from the maintainer of 96 wheat accessions and pedigree records, showed three kinds of
populations but genetically the studied materials was classified into four groups. Structure genotypic
analysis was directed to the classification of 96 bread wheat accessions in four sub-groups. In the
wheat breeding scheme, these methods were also applied by wheat scientists [11,15,52]. In the current
experiment, STRUCTURE analysis suggested dissimilarities among 96 bread wheat accessions and all
groups were genetically diverse. The maximum genetic distance between groups exhibited indicating
genetic similarity within groups and genetic dissimilarity between the groups. Particularly, results
were useable for conferring to the previously known pedigree record and origin of wheat genotypes.
Genetic diversity evaluation could be helpful to identify the different genotypes for the advancement
and improve the future wheat breeding scheme [9,11]. The genotypes with different genetic makeup
can be selected for desirable combinations to develop complex and significant attributes to obtain
maximum yield. Discrimination of wheat genotypes based on their genetic basis would be useful
for effective and early selection of desired genotypes in the wheat breeding scheme for developing
promising wheat genotypes.

4.3. Markers–Traits Associations for Yield and Quality Attributes

Marker-trait association study established the relationship among specific phenotypic and genetic
variability within a genome, which ultimately detected loci underpinning corresponding traits [18].
This diverse panel was never utilized earlier for a study of the genetics of quality and yield-related
traits using GWAS. In this study, 35,320 high-density, polymorphic SNP markers from the 90 K Illumina
iSelect SNP array were analyzed [31] to detect SNPs linked with quality yield and yield-related traits.
Marker-trait associations for studied parameters in both conditions were analyzed. This study allowed
us to identify important genomic regions carrying some important genes associated with studied traits.
The flag leaf area of the wheat plant is an important character and directly influences on yield because
a greater area enables us to produce photosynthates in higher amounts, which are translocated in seed
to increase their yield. Earlier research was in line with current results they reported MTAs for FLA on
chromosome 1B, 4D, 5A, 6B, 7D using a wheat recombinant inbred line (RIL) population under normal
and water-deficit conditions [53]. Wu et al. identified the thirteen chromosome regions to be associated
with FLA explaining 3.33–26.13% of the phenotypic variance in wheat using an integrated high-density
SNP genetic linkage maps [54]. Zhao et al., Identify the significant markers for FLA on chromosomes
2A under four environments in the RIL wheat population [55]. In the current study, MTA for
TGW were distributed across 17 chromosomes. Genome-wide association studies (GWAS) were
undertaken by wheat breeders to identify SNP markers associated with TGW in 123 Pakistani historical
wheat cultivars evaluated under rainfed field conditions. These cultivars were genotyped by using
high-density Illumina iSelect 90K single nucleotide polymorphism (SNP) assay, They reported MTAs
for TGW on chromosomes 3A, 3A, 3B, and 5B [11]. Stable genomic regions for TGW were frequently
identified on chromosomes 5A, 3B and 5B which influence TGW in various wheat populations using
association mapping analysis which was reported by wheat breeders [48]. MTAs were detected by
many wheat scientists using different hexaploid wheat panel using genome-wide SNP studies for
TGW on chromosomes 1A, 2D, 3A [10], 2A, 3B, 7B, 7D [4], 2B [56], 4B [8] and 5B [57], theses previous
findings were also in agreement with the current study.

In this study, MTAs controlling GYP trait was found on chromosomes 1A, 3A, 4A, 1B, 4B, 6B, 7B,
5D and 7D under both conditions. Previously observed MTAs for GYP, in various wheat panel analyzed
thorough GWAS using high-density SNP assay, on chromosomes 1A, 2D, 3A, 7B and 7D [11], 1B [8],
2B, 3A, 3D, 5B, 7A and 7B [10] under different water regimes. The marker locus on 4B was associated
with GYP under water stress conditions was also reported previously to be associated with this trait
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in Pakistani wheat population [15]. Similarly in genome-wide association mapping, Edae et al. [19]
reported MTAs for GYP on chromosomes 4A, 1B, 5B, and 2B of spring wheat association panel under
contrasting moisture regimes. Moreover, Lozada et al. [56] stated MTAs for GYP on chromosomes
5A, 1B, 2B and 4B in a diverse panel of 239 wheat (Triticum aestivum) genotypes evaluated across two
growing seasons using SNP markers. Wheat breeders [20] identified MTA for GYP on 3A, 3B and 2D
in a set of 287 diverse advanced wheat lines across different environments. Tadesse et al. [17] reported
GYP related MTAs on 1B in 120 elite hexaploid wheat genotypes which evaluated under rain-fed and
irrigated conditions for a genome-wide study. Pinto et al. [8] detected GYP related MTA on 4A which
explained 27% of variation under water-deficit stress using 167 wheat recombinant inbred line (RIL)
under three different water regimes. MTAs responsible for GYP were identified on chromosomes 1A,
4B, 6B, and 7D in bi-parental QTL analyses were also reported [58]. Sukumaran et al. [4] identified
MTAs on chromosome 5A, 6A, 2B and 3B in GWAS on multi-environment data identified genomic
regions associated with wheat yield and yield-related traits. They used a panel of 287 elite spring
bread wheat lines through 90K Illumina Infinitum SNP array, and their results were similar to the
current findings [4]. MTAs for yield per plant and its related attributes were identified in the current
experiment were specific to water treatment conditions, suggesting the dynamic nature of genetics
underpinning for wheat yield [56]. These significant SNPs associated with yield and yield-related
traits in this study can help in designing new strategies to accumulate favorable alleles for studied
traits in a future wheat breeding program.

Suprayogi et al., reported the significant associated MTAs for GPC on chromosomes 5B, 6B, 2B
and 7A in diverse wheat germplsm using SSR and SNP markers [59]. In accordance with the current
study, MTA detected by Tadesse et al. [17] on chromosomes 5B and 3B were significant and linked with
protein percentage exhibiting 16% and 15% of the total variation, respectively, using Diversity Array
Technologies (DArT) markers in 120 elite wheat genotypes under rain-fed and normal conditions.
Earlier, two MTAs for GPC on 3B and 5B were also reported by analysis of recombinant inbred lines
(RILS) derived from a cross between spring wheat and spring version of winter wheat, comprising 257
SSRs and 77 SNP markers [60]. MTAs linked with GPC were reported at the same position under two
environments on chromosomes 3B and 7B, and in one environment also reported on chromosomes 2A,
4A, 5A, 7A, 1B, 2B, 3B and 5B [61] in a mapping population of 93 RILs derived from the cross UC1113
x Kofa of duram wheat and these result are also in line with the current results which showing the
significant MTAs from A and B genome.

In wheat MTAs/QTLs for GPC were found on chromosomes 3A, 5A, 4B and 5B in wheat RIL
using Infinium iSelect SNP genotyping assays containing 9000 wheat SNPs developed by Illumina
Inc [62]. In the present study, MTA for GLC was distributed across 9 chromosomes, including, three
on A-genome, three on B-genome and three on D-genome under water-deficit condition. Our results
showed that MTAs for GLC were located on chromosomes 5A, 1B, 4B, 5B, 6B and 2D under normal
conditions, while under water-deficit conditions reported on chromosomes 3A, 4A, 1B, 7B, 3D and
5D. The MTAs in this study would provide preliminary information of genetic regions that may be
important for GPC and GLC. However, further mapping and validation of these MTAs/QTLs should
be carried out before applying in marker-assisted breeding. Chromosomes 7A, 1B, 4B and 7B were
reported to have significantly associated MTA for GPC and GLC in wheat using bia-parental population
under different environmental conditions [63]. The most significant and stable QTL influencing GLC
was found on chromosome 1B commonly found across different environmental conditions detected in
a mapping population of 93 RILs of wheat genotypes [61]. Six significant and different genomic regions
for GPC and GLC were located on chromosomes 3A, 4A, 5A, 6A, 4B and 2D in the present study and
also previously reported. These were exhibited pleiotropic effects and showed significant effects on
many quality-related attributes with no or minor negative influence on yield-related attributes [6].
Multi trait loci for yield and yield-related traits were also identified on chromosome 5A [4]. In this
experiment, MTA for TGW was documented on chromosome 7B, which was earlier reported to have
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noteworthy relations to yield traits [64]. Chromosome 5D was found to be associated with QTL for
GYP in wheat [65], in agreement with the current study.

The results from this study supported that GWAS is a beneficial tool for recognizing the positions of
genes, MTAs/QTLs and candidate genes liable for the variations in a desired quantitative characters [18].
The power to identify linked loci for the desired character via GWAS is usually based on the density of
markers, size of the population, desired attributes, phenotypic performance, and statistical analysis [66].
It is imperative to indicate that phenotypic experiments were directed in normal and water-deficit
conditions; therefore MTAs recognized in the current experiment are vital since they might be associated
with minor genes adaptation to targeted conditions. Numerous studies have been heading for localizing
genes and QTLs affecting different quality and yield attributes to expedite marker-assisted selection in
the wheat breeding program against water-deficit tolerance [8,67,68].

4.4. Mapping SNPs and Identification of Candidate Genes

To validate the SNPs reported previously [31], the sequences of the SNP loci were mapped on
a recently published bread wheat reference sequence (IWGSC RefSeq v1.0). Putative candidate genes
were identified surrounding ±250Kb of the mapped SNPS. In this study, eleven candidate genes were
predicted for FLA under normal (Table S2) and seven were predicted under water-deficit condition
(Table S3). The adjacent genes TraesCS1B02G440200 and TraesCS1B02G480200 on chromosome 1B
were predicted as candidate genes for FLA under normal and water-deficit conditions, respectively.
Previously, QTLS for FLA on 1B under different water regimes have been reported [53]. For the
FLA candidate genes, the predicted proteins and their functions were ureide permease (nitrogen
compound transport), Peptidase_A22B_SPP (aspartic-type endopeptidase activity) and Reticulon
domain-containing protein (Transmembrane). Besides the housekeeping role in N recycling, ureides
are the major products of N2 fixation in root nodules, which are translocated to the shoot [69,70].
The ureide allantoin is gaining attention as several studies have reported this metabolite to accumulate
in many plant species under water-deficit conditions [71,72] Peptidase_A22B_SPP is an endopeptidase
and is an integral component of the membrane [73]. The role of reticulon domain-containing protein is
still unknown. For GYP, 14 and 21 candidate genes were identified under normal and water-deficit
conditions, respectively. The candidates’ genes reported here in our studies are different than
those which have been cloned so far, such as TaSnRK2.10-4A, TaTGW6-A1, TaFlo2-A1, TaGS53A,
TaGASR7-A1, TaSAP1-A1, TaCwi-A1, TaGW2, TaGS1a and TaGS-D1. The predicted protein for GYP
and TGW were Laccase/Lignin degradation, MATH domain-containing protein, Importin N-terminal
domain-containing protein, NTP_transferase domain-containing protein, cyclic nucleotide-binding
domain-containing protein/ion channel activity, and WD_REPEATS_REGION domain-containing
protein. Laccase was recently reported to improve GYP by improving plant defense against fungal
infections [74]. In Arabidopsis and rice, MATH domain-containing protein has been reported to
be involved in grain yield under normal and abiotic conditions [75]. The functions of Importin
N-terminal domain-containing protein and NTP transferase domain-containing protein are still unclear
in improving grain yield. The role of cyclic nucleotide-binding domain-containing protein genes in
yield-related traits and Pst resistance have been documented [76,77].

For GLC, 27 and 28 new candidate genes were predicted under normal water deficit
conditions, respectively in our study. Twenty SNPs associated with the traits under study were
mapped in coding DNA sequence (CDS) of the respective candidate genes (Tables S2 and S3).
The new candidate genes identified herein, can be cloned and functionally characterized for the
respective traits. The predicted proteins for GPC and GLC were UDP-glucose 6-dehydrogenase,
Protein detoxification, Thioredoxin domain-containing protein, SGNH_hydro domain-containing
protein, Reticulon-like protein, 4-hydroxy-7-methoxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl
glucosidebeta-D-glucosidase and WD_REPEATS_REGION domain-containing protein (Tables S2
and S3). UDP-glucose 6-dehydrogenase is involved in the biosynthesis of UDP-glucuronic acid
(UDP-GlcA), providing nucleotide sugars for cell-wall polymers and affects protein contents in
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seeds [78]. The role of protein detoxification in GPC and GLC is well-established and comprehensively
reviewed. Thioredoxin domain-containing proteins are related to seed germination in cereals and are
reported to affect GPC and GLC in wheat [79]. Cloning and characterization of the candidate genes
wherein SNP were mapped in CDS will result in discovering novel genes underpinning yield potential
and water-deficit tolerance in bread wheat.

5. Conclusions

In addition to validating the previously reported MTAs, we identified some new candidate
genes underpinning the key grain yield and quality traits. The GPC increased significantly under
water-deficit stress. The negative association among protein and yield attributes suggested that an
increase in yield under water-deficit stress might be achieved with a significant decrease in GPC.
The new pleiotropic loci were detected on chromosomes 5A, 6B and 7B under normal conditions,
while under water-deficit stress conditions on chromosomes 3A, 4A, 1B, 7B and 5D. The MTAs on
chromosomes 7B showed pleotropic effects for studied quality and yield contributing traits under
both normal and water-deficit conditions. The newly identified genes for FLA, TGW, GYP, GPC and
GLC could be cloned and characterized for furthering understanding of the molecular mechanisms
underpinning these traits.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0472/10/9/392/s1,
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markers and predicted candidate genes under water-deficit conditions.

Author Contributions: Writing—original draft, Data curation, Formal analysis, Software and Resources,
H.G.M.-D.A.; Methodology and Software, M.S.; Funding acquisition, Writing—review & editing, Y.Z.;
Writing—review & editing, Validation, Visualization, M.I.; Visualization, Formal analysis, S.H.K.; Formal
analysis, A.U.; Software, Formal analysis, review & editing M.N.A. All authors have read and agreed to the
published version of the manuscript.

Funding: Funding was supported by the China Agriculture Research System (CARS-05-01A-04) which was used
for collection and analysis of the genotypic data through 90K SNPs Array and manuscript processing charges.

Conflicts of Interest: The authors declare that they have no competing interests.

References

1. ElBasyoni, I.; Saadalla, M.; Baenziger, S.; Bockelman, H.; Morsy, S. Cell membrane stability and association
mapping for drought and heat tolerance in a worldwide wheat collection. Sustainability 2017, 9, 1606.
[CrossRef]

2. Dixon, J.; Braun, H.-J.; Kosina, P.; Crouch, J.H. Wheat Facts and Futures 2009; Cimmyt: Mexico City,
Mexico, 2009.

3. Ahmed, H.G.M.-D.; Zeng, Y.; Yang, X.; Anwaar, H.A.; Mansha, M.Z.; Hanif, C.M.S.; Ikram, K.; Ullah, A.;
Suliman Alghanem, S.M. Conferring drought-tolerant wheat genotypes through morpho-physiological and
chlorophyll indices at seedling stage. Saudi J. Biol. Sci. 2020, 27, 2116. [CrossRef] [PubMed]

4. Sukumaran, S.; Lopes, M.; Dreisigacker, S.; Reynolds, M. Genetic analysis of multi-environmental spring
wheat trials identifies genomic regions for locus-specific trade-offs for grain weight and grain number.
Theor. Appl. Genet. 2018, 131, 999. [CrossRef] [PubMed]

5. Gulnaz, S.; Zulkiffal, M.; Sajjad, M.; Ahmed, J.; Musa, M.; Abdullah, M.; Ahsan, A.; Ur Rehman, A. Identifying
Pakistani Wheat Landraces as Genetic Resources for Yield Potential, Heat Tolerance and Rust Resistance.
Int. J. Agric. Biol. 2019, 21, 520–526.

6. Li, Y.; Zhou, R.; Wang, J.; Liao, X.; Branlard, G.; Jia, J. Novel and favorable QTL allele clusters for end-use
quality revealed by introgression lines derived from synthetic wheat. Mol. Breed. 2012, 29, 627–643.
[CrossRef]

7. Ahmed, H.G.M.-D.; Khan, A.S.; Kashif, M.; Khan, S.H. Genetic mechanism of leaf venation and stomatal
traits for breeding drought tolerant lines in wheat. Bangladesh J. Bot. 2017, 46, 35–41.

http://www.mdpi.com/2077-0472/10/9/392/s1
http://dx.doi.org/10.3390/su9091606
http://dx.doi.org/10.1016/j.sjbs.2020.06.019
http://www.ncbi.nlm.nih.gov/pubmed/32714037
http://dx.doi.org/10.1007/s00122-018-3066-x
http://www.ncbi.nlm.nih.gov/pubmed/29453525
http://dx.doi.org/10.1007/s11032-011-9578-6


Agriculture 2020, 10, 392 20 of 23

8. Pinto, R.S.; Reynolds, M.P.; Mathews, K.L.; McIntyre, C.L.; Olivares-Villegas, J.-J.; Chapman, S.C. Heat
and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects.
Theor. Appl. Genet. 2010, 121, 1001–1021. [CrossRef]

9. Ahmed, H.G.M.-D.; Sajjad, M.; Li, M.; Azmat, M.A.; Rizwan, M.; Maqsood, R.H.; Khan, S.H. Selection Criteria
for Drought-Tolerant Bread Wheat Genotypes at Seedling Stage. Sustainability 2019, 11, 2584. [CrossRef]

10. Ogbonnaya, F.C.; Rasheed, A.; Okechukwu, E.C.; Jighly, A.; Makdis, F.; Wuletaw, T.; Hagras, A.; Ugueu, M.I.;
Agbo, C. Genome-wide association study for agronomic and physiological traits in spring wheat evaluated
in a range of heat prone environments. Theor. Appl. Genet. 2017, 130, 1819–1835. [CrossRef]

11. Ain, Q.-U.; Rasheed, A.; Anwar, A.; Mahmood, T.; Imtiaz, M.; He, Z.; Xia, X.; Mahmood, T.; Quraishi, U.M.
Genome-wide association for grain yield under rainfed conditions in historical wheat cultivars from Pakistan.
Front. Plant Sci. 2015, 6, 743. [CrossRef]

12. Farooq, M.; Hussain, M.; Siddique, K.H. Drought stress in wheat during flowering and grain-filling periods.
Crit. Rev. Plant Sci. 2014, 33, 331–349. [CrossRef]

13. Zampieri, M.; Ceglar, A.; Dentener, F.; Toreti, A. Wheat yield loss attributable to heat waves, drought and
water excess at the global, national and subnational scales. Environ. Res. Lett. 2017, 12, 064008. [CrossRef]

14. Noorka, I.R.; Teixeira da Silva, J.A. Physical and morphological markers for adaptation of drought-tolerant
wheat to arid environments. Pak. J. Agric. Sci. 2014, 51, 943–952.

15. Qaseem, M.F.; Qureshi, R.; Muqaddasi, Q.H.; Shaheen, H.; Kousar, R.; Röder, M.S. Genome-wide association
mapping in bread wheat subjected to independent and combined high temperature and drought stress.
PLoS ONE 2018, 13, e0199121. [CrossRef] [PubMed]

16. Al-Maskri, A.Y.; Sajjad, M.; Khan, S.H. Association Mapping: A Step Forward to Discovering New Alleles
for Crop Improvement. Int. J. Agric. Biol. 2012, 14, 153–160.

17. Tadesse, W.; Ogbonnaya, F.; Jighly, A.; Sanchez-Garcia, M.; Sohail, Q.; Rajaram, S.; Baum, M. Genome-wide
association mapping of yield and grain quality traits in winter wheat genotypes. PLoS ONE 2015, 10,
e0141339. [CrossRef] [PubMed]

18. Su, J.; Zhang, F.; Chong, X.; Song, A.; Guan, Z.; Fang, W.; Chen, F. Genome-wide association study identifies
favorable SNP alleles and candidate genes for waterlogging tolerance in chrysanthemums. Hortic. Res. 2019,
6, 21. [CrossRef]

19. Edae, E.A.; Byrne, P.F.; Haley, S.D.; Lopes, M.S.; Reynolds, M.P. Genome-wide association mapping of yield
and yield components of spring wheat under contrasting moisture regimes. Theor. Appl. Genet. 2014, 127,
791–807. [CrossRef]

20. Lopes, M.; Dreisigacker, S.; Peña, R.; Sukumaran, S.; Reynolds, M.P. Genetic characterization of the wheat
association mapping initiative (WAMI) panel for dissection of complex traits in spring wheat. Theor Appl.
Genet. 2015, 128, 453–464. [CrossRef]

21. Gupta, P.K.; Balyan, H.S.; Gahlaut, V. QTL analysis for drought tolerance in wheat: Present status and future
possibilities. Agronomy 2017, 7, 5. [CrossRef]

22. Bhatta, M.; Shamanin, V.; Shepelev, S.; Baenziger, P.S.; Pozherukova, V.; Pototskaya, I.; Morgounov, A.
Marker-trait associations for enhancing agronomic performance, disease resistance, and grain quality in
synthetic and bread wheat accessions in Western Siberia. G3 Genes Genomes Genet. 2019, 9, 4209–4222.
[CrossRef] [PubMed]

23. McCartney, C.; Somers, D.; Lukow, O.; Ames, N.; Noll, J.; Cloutier, S.; Humphreys, D.G.; McCallum, B.D.
QTL analysis of quality traits in the spring wheat cross RL4452 × ‘AC Domain’. Plant Breed. 2006, 125,
565–575. [CrossRef]

24. Campbell, K.G.; Finney, P.L.; Bergman, C.J.; Gualberto, D.G.; Anderson, J.A.; Giroux, M.J.; Siritunga, D.;
Zhu, J.; Gendre, F.; Roue, C.; et al. Quantitative trait loci associated with milling and baking quality in a soft
× hard wheat cross. Crop. Sci. 2001, 41, 1275–1285. [CrossRef]

25. Muller, J. Determining leaf surface area by means of a wheat osmoregulation water use: The challenge.
Agricult. Meteorol. 1991, 14, 311–320.

26. Liana, A.; Alda, S.; Fora, C.; Diana, M.; Gogoasa, I.; Bordean, D.; Carciu, G.; Cristea, T. Climatic conditions
influence on the variation of quality indicators of some Romanian and foreign winter wheat cultivars.
J. Horticult. For. Biotechnol. 2012, 16, 68–72.

http://dx.doi.org/10.1007/s00122-010-1351-4
http://dx.doi.org/10.3390/su11092584
http://dx.doi.org/10.1007/s00122-017-2927-z
http://dx.doi.org/10.3389/fpls.2015.00743
http://dx.doi.org/10.1080/07352689.2014.875291
http://dx.doi.org/10.1088/1748-9326/aa723b
http://dx.doi.org/10.1371/journal.pone.0199121
http://www.ncbi.nlm.nih.gov/pubmed/29949622
http://dx.doi.org/10.1371/journal.pone.0141339
http://www.ncbi.nlm.nih.gov/pubmed/26496075
http://dx.doi.org/10.1038/s41438-018-0101-7
http://dx.doi.org/10.1007/s00122-013-2257-8
http://dx.doi.org/10.1007/s00122-014-2444-2
http://dx.doi.org/10.3390/agronomy7010005
http://dx.doi.org/10.1534/g3.119.400811
http://www.ncbi.nlm.nih.gov/pubmed/31645419
http://dx.doi.org/10.1111/j.1439-0523.2006.01256.x
http://dx.doi.org/10.2135/cropsci2001.4141275x


Agriculture 2020, 10, 392 21 of 23

27. Alda, S.; Alda, L.; Turc, A.; Dragunescu, A.; Cristea, T.; Fora, C.; Draghici, G. Screening of 16 winter wheat
cultivars for quality parameters, under conditions of Banat area (Romania). J. Horticult. For. Biotechnol. 2016,
20, 38–41.

28. Payne, R. A Guide to ANOVA and Design in GenStat; VSN International: Hempstead, UK, 2008.
29. Spss, I. IBM SPSS Statistics Version 21; Mass: International Business Machines Corp: Boston, MA, USA, 2012;

p. 126.
30. Dreisigacker, S.; Tiwari, R.; Sheoran, S. Laboratory Manual: ICAR-CIMMYT Molecular Breeding Course in Wheat

2013; ICAR: Haryana, India, 2013.
31. Wang, S.; Wong, D.; Forrest, K.; Allen, A.; Chao, S.; Huang, B.E.; Maccaferri, M.; Salvi, S.; Milner, S.G.;

Cattivelli, L.; et al. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single
nucleotide polymorphism array. Plant Biotechnol. J. 2014, 12, 787–796. [CrossRef]

32. Pritchard, J.K.; Stephens, M.; Rosenberg, N.A.; Donnelly, P. Association mapping in structured populations.
Am. J. Hum. Genet. 2000, 67, 170–181. [CrossRef]

33. Earl, D.A.; von Holdt, B.M. Structure harvester: A website and program for visualizing structure output and
implementing the Evanno method. Conserv. Genet. Res. 2012, 4, 359–361. [CrossRef]

34. Lipka, A.E.; Tian, F.; Wang, Q.; Peiffer, J.; Li, M.; Bradbury, P.J.; Gore, M.A.; Buckler, E.S.; Zhang, Z. GAPIT:
Genome association and prediction integrated tool. Bioinformatics 2012, 28, 2397–2399. [CrossRef]

35. Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to
multiple testing. J. Royal Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [CrossRef]

36. Yu, J.; Pressoir, G.; Briggs, W.H.; Bi, I.V.; Yamasaki, M.; Doebley, J.F.; McMullen, M.; Gaut, B.S.; Nielsen, D.M.;
Holland, J.B.; et al. A unified mixed-model method for association mapping that accounts for multiple levels
of relatedness. Nat. Gen. 2006, 38, 203. [CrossRef] [PubMed]

37. Anonymous. Gene Annotations and Ensembl Database Release 44. Available online: ftp://ftp.
ensemblgenomes.org/pub/plants/release-44 (accessed on 15 February 2020).

38. Anonymous. Uniprot Protein Database. Available online: https://www.uniprot.org/ (accessed on
25 February 2020).

39. Rahman, M.; Barma, N.; Biswas, B.; Khan, A.; Rahman, J. Study on morpho-physiological traits in spring
wheat (Triticum aestivum L.) Under rainfed condition. Bangladesh J. Agric. Res. 2016, 41, 235–250. [CrossRef]

40. Yagdi, K.; Sozen, E. Heritability, variance components and correlations of yield and quality traits in durum
wheat (Triticum durum Desf.). Pak. J. Bot 2009, 41, 753–759.

41. Barnard, A.; Labuschagne, M.; Van Niekerk, H. Heritability estimates of bread wheat quality traits in the
Western Cape province of South Africa. Euphytica 2002, 127, 115–122. [CrossRef]

42. Zanetti, S.; Winzeler, M.; Feuillet, C.; Keller, B.; Messmer, M. Genetic analysis of bread-making quality in
wheat and spelt. Plant Breed. 2001, 120, 13–19. [CrossRef]

43. Budak, N. Heritability, correlation and genotype × year interactions of grain yield, test weight and protein
content in durum wheats. Turk. J. Field Crop. 2000, 5, 35–40.

44. Li, Y.-F.; Wu, Y.; Hernandez-Espinosa, N.; Peña, R.J. Heat and drought stress on durum wheat: Responses of
genotypes, yield, and quality parameters. J. Cereal Sci. 2013, 57, 398–404. [CrossRef]

45. Rakszegi, M.; Lovegrove, A.; Balla, K.; Láng, L.; Bedő, Z.; Veisz, O.; Shewry, P.R. Effect of heat and drought
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67. Czyczyło-Mysza, I.; Marcińska, I.; Skrzypek, E.; Chrupek, M.; Grzesiak, S.; Hura, T.; Stojalowski, S.;
Myskow, B.; Milczarski, P.; Quarrie, S. Mapping QTLs for yield components and chlorophyll a fluorescence
parameters in wheat under three levels of water availability. Plant Genet. Res. 2011, 9, 291–295. [CrossRef]

68. Alexander, L.M.; Kirigwi, F.M.; Fritz, A.K.; Fellers, J.P. Mapping and quantitative trait loci analysis of drought
tolerance in a spring wheat population using amplified fragment length polymorphism and diversity array
technology markers. Crop. Sci. 2012, 52, 253–261. [CrossRef]

69. Pate, J.S.; Atkins, C.A.; White, S.T.; Rainbird, R.M.; Woo, K. Nitrogen nutrition and xylem transport of
nitrogen in ureide-producing grain legumes. Plant. Physiol. 1980, 65, 961–965. [CrossRef] [PubMed]

http://dx.doi.org/10.1100/2012/485751
http://dx.doi.org/10.1186/s12863-016-0399-9
http://dx.doi.org/10.1007/s10681-015-1603-0
http://dx.doi.org/10.1007/s10681-018-2288-y
http://dx.doi.org/10.1007/s10681-017-2005-2
http://dx.doi.org/10.1111/pbi.12690
http://www.ncbi.nlm.nih.gov/pubmed/28055148
http://dx.doi.org/10.1023/A:1017577918541
http://dx.doi.org/10.1007/s00122-009-1050-1
http://www.ncbi.nlm.nih.gov/pubmed/19462147
http://dx.doi.org/10.9787/PBB.2013.1.4.347
http://dx.doi.org/10.1007/s13353-011-0045-1
http://www.ncbi.nlm.nih.gov/pubmed/21523429
http://dx.doi.org/10.1016/j.cj.2015.10.002
http://dx.doi.org/10.1016/j.jcs.2009.01.001
http://dx.doi.org/10.1371/journal.pone.0095211
http://dx.doi.org/10.1007/s00122-004-1902-7
http://dx.doi.org/10.3389/fpls.2015.01058
http://dx.doi.org/10.1017/S1479262111000207
http://dx.doi.org/10.2135/cropsci2011.05.0267
http://dx.doi.org/10.1104/pp.65.5.961
http://www.ncbi.nlm.nih.gov/pubmed/16661314


Agriculture 2020, 10, 392 23 of 23

70. Herridge, D.F.; Atkins, C.A.; Pate, J.S.; Rainbird, R.M. Allantoin and allantoic acid in the nitrogen economy
of the cowpea (Vigna unguiculata [L.] Walp.). Plant. Physiol. 1978, 62, 495–498. [CrossRef] [PubMed]

71. Casartelli, A.; Melino, V.J.; Baumann, U.; Riboni, M.; Suchecki, R.; Jayasinghe, N.S.; Mendis, H.; Watanabe, M.;
Erban, A.; Zuther, E.; et al. Opposite fates of the purine metabolite allantoin under water and nitrogen
limitations in bread wheat. Plant. Mol. Biol. 2019, 99, 477–497. [CrossRef]

72. Yobi, A.; Wone, B.W.; Xu, W.; Alexander, D.C.; Guo, L.; Ryals, J.A.; Oliver, M.J.; Cushman, J.C. Metabolomic
profiling in Selaginella lepidophylla at various hydration states provides new insights into the mechanistic
basis of desiccation tolerance. Mol. Plant 2013, 6, 369–385. [CrossRef]

73. Rawlings, N.D.; Barrett, A.J. Evolutionary families of peptidases. Biochem. J. 1993, 290, 205–218. [CrossRef]
74. Soni, N.; Hegde, N.; Dhariwal, A.; Kushalappa, A.C. Role of laccase gene in wheat NILs differing at QTL-Fhb1

for resistance against Fusarium head blight. Plant Sci. 2020, 110574. [CrossRef]
75. Kushwaha, H.R.; Joshi, R.; Pareek, A.; Singla-Pareek, S.L. MATH-domain family shows response toward

abiotic stress in Arabidopsis and rice. Front. Plant Sci. 2016, 7, 923. [CrossRef]
76. Maiyar, A.C.; Leong, M.L.; Firestone, G.L. Importin-α mediates the regulated nuclear targeting of serum-and

glucocorticoid-inducible protein kinase (Sgk) by recognition of a nuclear localization signal in the kinase
central domain. Mol. Biol. Cell 2003, 14, 1221–1239. [CrossRef]

77. Guo, J.; Islam, M.A.; Lin, H.; Ji, C.; Duan, Y.; Liu, P.; Zeng, Q.; Day, B.; Kang, Z.; Guo, J. Genome-wide
identification of cyclic nucleotide-gated ion channel gene family in wheat and functional analyses of
TaCNGC14 and TaCNGC16. Front. Plant Sci. 2018, 9, 18. [CrossRef] [PubMed]

78. Klinghammer, M.; Tenhaken, R. Genome-wide analysis of the UDP-glucose dehydrogenase gene family in
Arabidopsis, a key enzyme for matrix polysaccharides in cell walls. J. Exp. Bot. 2007, 58, 3609–3621. [CrossRef]
[PubMed]

79. Guo, H.; Zhang, H.; Li, Y.; Ren, J.; Wang, X.; Niu, H.; Yin, J. Identification of changes in wheat
(Triticum aestivum L.) seeds proteome in response to anti—Trx s gene. PLoS ONE 2011, 6, e22255. [CrossRef]
[PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1104/pp.62.4.495
http://www.ncbi.nlm.nih.gov/pubmed/16660546
http://dx.doi.org/10.1007/s11103-019-00831-z
http://dx.doi.org/10.1093/mp/sss155
http://dx.doi.org/10.1042/bj2900205
http://dx.doi.org/10.1016/j.plantsci.2020.110574
http://dx.doi.org/10.3389/fpls.2016.00923
http://dx.doi.org/10.1091/mbc.e02-03-0170
http://dx.doi.org/10.3389/fpls.2018.00018
http://www.ncbi.nlm.nih.gov/pubmed/29403523
http://dx.doi.org/10.1093/jxb/erm209
http://www.ncbi.nlm.nih.gov/pubmed/18057039
http://dx.doi.org/10.1371/journal.pone.0022255
http://www.ncbi.nlm.nih.gov/pubmed/21811579
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Germplasm Collection and Experimental Layout 
	Data Recording and Statistical Analysis 
	Genotyping of the Studied Germplasm 
	Population Structure and GWAS Analysis 
	Mapping SNPs and Identification of Candidate Genes 

	Results 
	Phenotypic Evaluation 
	Population Structure 
	Markers–Traits Associations for Yield and Quality Attributes 
	Flag Leaf Area (FLA) 
	Thousand Grain Weight (TGW) 
	Grain Yield per Plant (GYP) 
	Grain Protein Contents (GPC) 
	Gluten Contents (GLC) 
	Genome-Wide MTAs 
	Pleiotropic Locus 
	Mapping SNPs and Identification of Candidate Genes 

	Discussion 
	Phenotypic Evaluation 
	Population Structure Analysis 
	Markers–Traits Associations for Yield and Quality Attributes 
	Mapping SNPs and Identification of Candidate Genes 

	Conclusions 
	References

