Peanut (Arachis hypogea) Response to Low Rates of Dicamba at Reproductive Growth Stages
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Peanut Injury—2017
3.2. Peanut Lateral Growth and Canopy Closure—2017
3.3. Peanut Yield—2017
3.4. Summary of Results—2017
3.5. Peanut Injury—2018
3.6. Peanut Lateral Growth and Canopy Closure—2018
3.7. Summary of Results—2018
3.8. Discussion of 2017 and 2018 Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Steckel, L.; Craig, C. Cleaning Plant Growth Regulator (PGR) Herbicides Out of Field Sprayers; University of Tennessee Agricultural Extension Service: Boston, MA, USA, 2005. [Google Scholar]
- Behrens, R.; Lueschen, W.E. Dicamba volatility. Weed Sci. 1979, 27, 486–493. [Google Scholar] [CrossRef]
- Rathmann, D. Management of New Technologies Discussion Outline. Available online: http://docplayer.net/91635731-Management-of-new-technologies-duane-rathmann-basf-technical-service-waseca-mn.html (accessed on 22 April 2018).
- Egan, J.F.; Mortensen, D.A. Quantifying vapor drift of dicamba herbicides applied to soybean. Environ. Toxicol. Chem. 2012. [Google Scholar] [CrossRef]
- Osipitan, O.A.; Scott, J.E.; Knezevic, S.Z. Glyphosate-resistant soybean response to micro-rates of three dicamba-based herbicides. Agrosyst. Geosci. Environ. 2019. [Google Scholar] [CrossRef] [Green Version]
- Schmitz, G. Best Management Practices for Dicamba Use in Illinois. Available online: http://ifca.com/files/IFCA_2017-Schmitz_Herbicide_BMPs.pdf (accessed on 16 April 2018).
- McCown, S.; Barber, T.; Norsworthy, J.K. Response of non-dicamba-resistant soybean to dicamba as influenced by growth stage and herbicide rate. Weed Technol. 2018. [Google Scholar] [CrossRef]
- Egan, J.F.; Barlow, K.M.; Mortensen, D.A. A Meta-analysis on the effects of 2,4-D and dicamba drift on soybean and cotton. Weed Sci. 2014, 62, 193–206. [Google Scholar] [CrossRef]
- Registration of Dicamba for Use on Genetically Engineered Crops. Available online: https://19january2017snapshot.epa.gov/ingredients-used-pesticide-products/registration-dicamba-use-genetically-engineered-crops_.html (accessed on 5 March 2019).
- Weed Control in Dicamba-Resistant Soybeans. Available online: https://dl.sciencesocieties.org/publications/cm/pdfs/9/1/2010-0920-01-RS (accessed on 28 February 2019).
- Kniss, A.R. Soybean response to dicamba: A meta-analysis. Weed Technol. 2018, 32, 507–512. [Google Scholar] [CrossRef]
- Seifert-Higgins, S.; Arnevik, C.L. Development of weed management recommendations for dicamba tolerant soybeans. Weed Sci. 2012, 65, 266. [Google Scholar]
- A Final Report on Dicamba-Injured Soybean Acres. Available online: https://ipm.missouri.edu/IPCM/2017/10/final_report_dicamba_injured_soybean/ (accessed on 2 March 2019).
- Griffin, J.L.; Bauerle, M.J.; Stephenson, D.O.; Miller, D.K.; Boudreaux, J.M. Soybean response to dicamba applied at vegetative and reproductive growth stages. Weed Technol. 2013, 27, 696–703. [Google Scholar] [CrossRef]
- Leon, R.G.; Ferrell, J.A.; Brecke, B.J. Impact of exposure to 2,4-D and dicamba on peanut injury and yield. Weed Sci. 2014, 28, 465–470. [Google Scholar] [CrossRef]
- Wax, L.; Knuth, L.; Slife, F. Response of soybeans to 2,4-D, dicamba, and picloram. Weed Sci. 1969, 17, 388–393. [Google Scholar] [CrossRef]
- Henry, W.B.; Shaw, D.R.; Reddy, K.R.; Bruce, K.M.; Tamhankar, H.D. Remote sensing to detect herbicide drift of crops. Weed Technol. 2004, 18, 358–368. [Google Scholar] [CrossRef]
- Jones, G.T.; Norsworthy, J.K.; Barber, T. Off-target movement of diglycolamine dicamba to non-dicamba soybean using practices to minimize primary drift. Weed Technol. 2019, 33, 24–40. [Google Scholar] [CrossRef] [Green Version]
- Solomon, C.B.; Bradley, K.W. Influence of application timings and sublethal rates of synthetic auxin herbicides on soybean. Weed Technol. 2014, 28, 454–464. [Google Scholar] [CrossRef]
- Al-Khatib, K.; Claassen, M.M.; Stahlman, P.W.; Geier, P.W.; Regehr, D.L.; Duncan, S.R.; Heer, W.F. Grain sorghum response to simulated drift from glufosinate, glyphosate, imazethapyr, and sethoxydim. Weed Sci. 2003, 17, 261–265. [Google Scholar]
- Strachan, S.; Ferry, N.; Cooper, T. Vapor movement of aminocyclopyrachlor, aminopyralid, and dicamba in the field. Weed Technol. 2013, 27, 143–155. [Google Scholar] [CrossRef]
- Boerboom, C. Field Case Studies of Dicamba Movement to Soybeans. Available online: https://extension.soils.wisc.edu/wcmc/field-case-studies-of-dicamba-movement-to-soybeans/ (accessed on 28 February 2019).
- Cleaning Field Sprayers to Avoid Crop Injury. Available online: http://extension.missouri.edu/explorepdf/agguides/crops/g04852.pdf (accessed on 28 February 2019).
- Thompson, M.A.; Steckel, L.E.; Ellis, A.T.; Mueller, T.C. Soybean tolerance to early preplant applications of 2,4-D ester, 2,4-D amine, and dicamba. Weed Technol. 2007, 21, 882–885. [Google Scholar] [CrossRef]
- Proper Spray Tank Cleanout. Available online: http://www.croplife.com/equipment/sprayers/proper-spray-tank-cleanout/ (accessed on 28 February 2019).
- Cleaning Spray Tanks In and Out. Available online: http://www.ipmnet.org/Tim/Pesticide_Ed/Pesticide_Courses_-_2009/Cent_OR/Peachy.pdf (accessed on 28 February 2019).
- Weidenhamer, J., Jr.; Triplett, G.; Sobotka, F. Dicamba injury to soybean. Agron. J. 1988, 81, 637–643. [Google Scholar] [CrossRef]
- Kelley, K.B.; Wax, L.M.; Hager, A.G.; Riechers, D.E. Soybean response to plant growth regulator herbicides is affected by other postemergence herbicides. Weed Sci. 2005, 53, 101–112. [Google Scholar] [CrossRef]
- Pandey, R.K.; Herrera, W.A.T.; Villegas, A.N.; Pendleton, J.W. Drought response of grain legumes under irrigation gradient: III. Plant growth. Agron. J. 1984, 76, 557–569. [Google Scholar] [CrossRef]
- Prostko, E.; Grey, T.; Marshall, M.; Ferrell, J.; Dotray, P.; Jordan, D.; Grichar, W.; Brecke, B.; Davis, J. Peanut yield response to dicamba. Peanut Sci. 2011, 38, 61–65. [Google Scholar] [CrossRef]
- Blanchett, B.H.; Grey, T.L.; Prostko, E.P.; Webster, T.M. The effect of dicamba on peanut when applied during vegetative growth stages. Peanut Sci. 2015, 42, 109–120. [Google Scholar] [CrossRef]
- McCown, M.; Barber, L.; Norsworthy, J. Soybean response to low rates of dicamba applied at vegetative and reproductive growth stages. Ark. AES RES SER 2017, 637, 137–140. [Google Scholar]
- Smith, C.W.; Betran, J.; Runge, E. Corn: Origin, History, Technology, and Production; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004; pp. 719–721. [Google Scholar]
- Hill, L.V.; Santelmann, P.W. Competitive effects of annual weeds on Spanish peanuts. Weed Sci. 1969, 17, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Zimdahl, R.L. Weed-Crop Competition: A Review; International Plant Protection Center: Corvallis, OR, USA, 1980; 195p. [Google Scholar]
Dicamba Rate (g ae ha−1) | Timing | Injury (%) | Width (cm) | Canopy Closure 2 (% of nontreated) | Peanut Yield (kg ha−1) | ||
---|---|---|---|---|---|---|---|
7 DA-R2 | 28 DA-R3 | 14 DA-R3 | 28 DA-R3 | 35 DA-R3 | |||
0 | N/A | - | - | 84 a | 99 a | - | 5232 ab |
35 (1/16 X) | R1 | 15 a | 0 d | 72 d | 93 bcd | 94 bcd | 4317 abc |
R2 | 11 bc | 0 d | 75 bcd | 94 bcd | 95 bcd | 3952 bc | |
R3 | - | 9 a | 76 bc | 91 cd | 92 cd | 5106 ab | |
35 plus NIS 3 | R1 | 13 ab | 0 d | 73 cd | 90 cd | 91 cd | 4091 bc |
R2 | 11 bc | 0 d | 73 cd | 89 d | 90 d | 3574 bc | |
R3 | - | 10 a | 77 b | 94 bcd | 95 bcd | 2777 c | |
17.5 (1/32 X) | R1 | 15 a | 0 d | 77 b | 90 cd | 91 cd | 4028 bc |
R2 | 9 c | 2 c | 75 bcd | 95 ab | 97 ab | 4942 ab | |
R3 | - | 5 b | 78 b | 93 bcd | 94 bcd | 5879 a | |
17.5 plus NIS | R1 | 12 abc | 0 d | 72 d | 91 cd | 92 cd | 4274 bc |
R2 | 9 c | 1 cd | 75 bcd | 94 bc | 95 bc | 4389 ab | |
R3 | - | 6 b | 78 b | 90 cd | 91 cd | 4786 ab |
Dicamba Rate (g ae ha−1) | Timing | Injury (%) | ||||
---|---|---|---|---|---|---|
7 DA-R1 | 14 DA-R1 | 7 DA-R2 | 7 DA-R3 | 49 DA-R3 | ||
0 | N/A | - | - | - | - | - |
35 (1/16 X) | R1 | 23 bc | 20 b | 22 ab | 17 ef | 7 abc |
R2 | - | - | 12 cd | 32 a | 5 cd | |
R3 | - | - | - | 23 bcd | 9 abc | |
35 plus NIS 3 | R1 | 30 a | 25 a | 25 a | 23 bcd | 11 a |
R2 | - | - | 17 bc | 28 ab | 10 ab | |
R3 | - | - | - | 20 de | 9 abc | |
17.5 (1/32 X) | R1 | 20 c | 18 b | 20 ab | 13 f | 3 d |
R2 | - | - | 10 d | 28 ab | 6 bcd | |
R3 | - | - | - | 18 def | 5 cd | |
17.5 plus NIS | R1 | 25 b | 25 a | 22 ab | 17 ef | 6 bcd |
R2 | - | - | 12 cd | 27 abc | 5 cd | |
R3 | - | - | - | 22 cde | 7 abc |
Dicamba Rate (g ae ha−1) | Timing | Width (cm) | Canopy Closure (% of nontreated) 3 | |||
---|---|---|---|---|---|---|
7 DA-R1 | 7 DA-R2 | 7 DA-R3 | 21 DA-R3 | 35 DA-R3 | ||
0 | N/A | 55 a | 74 a | 85 a | 91 a | - |
35 | R1 | 44 b | 52 bc | 67 fg | 80 de | 94 abc |
R2 | - | 57 b | 68 efg | 83 bcde | 94 abc | |
R3 | - | - | 76 bcd | 83 bcd | 94 abc | |
35 plus NIS 4 | R1 | 41 b | 47 c | 61 g | 77 e | 91 c |
R2 | - | 61 b | 67 fg | 81 cde | 92 bc | |
R3 | - | - | 75 bcdef | 88 ab | 94 abc | |
17.5 | R1 | 41 b | 58 b | 75 bcde | 86 abc | 97 a |
R2 | - | 57 b | 69 def | 87 abc | 96 ab | |
R3 | - | - | 77 abc | 86 abcd | 95 ab | |
17.5 plus NIS | R1 | 41 b | 54 bc | 71 bcdef | 84 bcd | 94 abc |
R2 | - | 61 b | 70 cdef | 85 abcd | 94 abc | |
R3 | - | - | 79 ab | 87 abc | 95 ab |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seale, J.W.; Bararpour, T.; Bond, J.A.; Gore, J.; Golden, B.R. Peanut (Arachis hypogea) Response to Low Rates of Dicamba at Reproductive Growth Stages. Agriculture 2020, 10, 408. https://doi.org/10.3390/agriculture10090408
Seale JW, Bararpour T, Bond JA, Gore J, Golden BR. Peanut (Arachis hypogea) Response to Low Rates of Dicamba at Reproductive Growth Stages. Agriculture. 2020; 10(9):408. https://doi.org/10.3390/agriculture10090408
Chicago/Turabian StyleSeale, John W., Taghi Bararpour, Jason A. Bond, Jeffrey Gore, and Bobby R. Golden. 2020. "Peanut (Arachis hypogea) Response to Low Rates of Dicamba at Reproductive Growth Stages" Agriculture 10, no. 9: 408. https://doi.org/10.3390/agriculture10090408
APA StyleSeale, J. W., Bararpour, T., Bond, J. A., Gore, J., & Golden, B. R. (2020). Peanut (Arachis hypogea) Response to Low Rates of Dicamba at Reproductive Growth Stages. Agriculture, 10(9), 408. https://doi.org/10.3390/agriculture10090408