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Abstract: Rice is a primary food for more than three billion people worldwide and cultivated on about
12% of the world’s arable land. However, more than 88% production is observed in Asian countries,
including Pakistan. Due to higher population growth and recent climate change scenarios, it is
crucial to get timely and accurate rice yield estimates and production forecast of the growing season
for governments, planners, and decision makers in formulating policies regarding import/export
in the event of shortfall and/or surplus. This study aims to quantify the rice yield at various
phenological stages from hyper-temporal satellite-derived-vegetation indices computed from time
series Sentinel-II images. Different vegetation indices (viz. NDVI, EVI, SAVI, and REP) were used to
predict paddy yield. The predicted yield was validated through RMSE and ME statistical techniques.
The integration of PLSR and sequential time-stamped vegetation indices accurately predicted rice
yield (i.e., maximum R2 = 0.84 and minimum RMSE = 0.12 ton ha−1 equal to 3% of the mean rice
yield). Moreover, our results also established that optimal time spans for predicting rice yield are
late vegetative and reproductive (flowering) stages. The output would be useful for the farmer and
decision makers in addressing food security.

Keywords: rice yield; vegetation indices; hyper-temporal data; PLSR

1. Introduction

The rapid increase in the world population exerts pressure on the agriculture sector
and threatening the food security of the world [1]. Among cereals, rice is one of the prime
sources of food with high nutritive value (i.e., containing carbohydrate, vitamins (B, E,
thiamine), and minerals (Ca, Mg, Fe). Rice is widely grown, consumed globally (i.e., daily
food of 3.5 billion people worldwide), and accounts for 19% of the dietary energy [2].
Globally, 90% of the rice comes from Asia, which is approximately 640 million tons per
annum [3,4]. Pakistan ranks 11th at the global rice production list and contributes 8% to
the world’s total rice trade [3]. Pakistan produced seven (7) million tons of rice in the year

Agriculture 2021, 11, 1026. https://doi.org/10.3390/agriculture11101026 https://www.mdpi.com/journal/agriculture

https://www.mdpi.com/journal/agriculture
https://www.mdpi.com
https://orcid.org/0000-0003-4702-423X
https://orcid.org/0000-0002-7718-873X
https://orcid.org/0000-0003-4922-5959
https://orcid.org/0000-0003-4532-225X
https://orcid.org/0000-0001-9237-1519
https://orcid.org/0000-0001-6552-8445
https://doi.org/10.3390/agriculture11101026
https://doi.org/10.3390/agriculture11101026
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/agriculture11101026
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com/article/10.3390/agriculture11101026?type=check_update&version=2


Agriculture 2021, 11, 1026 2 of 14

2017–2018 and earned a foreign exchange of two-billion dollars ($USD) from rice export [5].
The high-quality nutritious rice (e.g., basmati) produced in the country is available at
affordable price in the international market and thus contributing in food security for the
increasing global population [6].

Timely and accurate predictions of crop yield before harvest at a large scale is crit-
ical for food security and administrative planning, especially in the current continually
changing global environment and international situation [7,8]. Different approaches have
been adopted for precise yield estimation and each method has its own strengths and
limitations. For instance, the traditional field surveys and crop statistics are useful for
precisely estimating crop yield; however, when crop yield prediction of the large region is
desired, the surveys prove inadequate due to budget, time, and large skilled manpower
constraints [9]. The use of Earth observation data (remote sensing) offers an effective
system for monitoring agriculture and quantifying crop yield at large spatial extent. The
remotely sensed solution is fast, cost-efficient, and non-destructive [10,11]. In addition, the
repetitive data acquisition capability of remote sensing sensors makes them an ideal choice
for retrieving temporal information of crop phenology, plants health (stress), response to
weather and soil nutrients (i.e., manure and fertilizer), variation in plant biomass, and
ultimately its effect on yield production [12,13].

Satellite remote sensing also enables crop yield estimation at field, landscape, and
regional scales for making policies and ensuring food security [14,15]). Yield estimation of
various crops, such as wheat [11], corn [16], and sugar beet [17] is done successfully using
assimilation algorithms on RS data. In recent research, two approaches are commonly used
for this purpose: one is canopy reflectance data, and the other is based on the spectral
indices. The free availability of optical remote sensing data of Sentinel-2 satellite with
multiple spectral bands in the red, red edge, and near infrared (NIR) is making RS an ideal
choice for monitoring agricultural crops, vegetation phenology [18] (Caballero et al., 2020),
temporal variability in cropping [19], as well as environmental monitoring and land cover
mapping [20].

Different vegetation indices (VIs) derived from satellite images are effective indica-
tors of vegetation status and are positively correlated with crop yield. The Normalized
Difference Vegetation Index (NDVI) has been widely used for predicting crop yield and
identifying growth stages [20–22]. Similarly, other variants of NDVI such as Soil Adjusted
Vegetation Index (SAVI) and Enhanced Vegetation Index (EVI) have been found effective
for crop growth monitoring in the initial filling stages of the crop [21,22]. While using
canopy reflectance data to directly estimate crop yield, multivariable analysis methods
are commonly introduced to support the dataset analysis. Partial least squares regression
(PLSR), stepwise multiple linear regression (SMLR), artificial neural network (ANN), etc.
are helpful to construct and validate the multivariate remote sensing models of estimat-
ing the yield and improve the accuracy of crop yield estimation through satellite remote
sensing, specifically when analyzing the quantitative relationship between RS variables
obtained from satellite images and crop yield [11].

The impacts of different phenological and growth stages (i.e., vegetative, reproductive,
and ripening) on yield production are rarely explored. Very few researchers quantified
the impact of growth stages on crop yields and assigned different weightage to different
growth stages [21,23]. Some studies conclude that physiological status (e.g., crop growth)
and biochemical contents (e.g., nitrogen) of pre-heading stage is more crucial [24,25],
while other found that high rice biomass at post-heading stages is essential for optimum
production [23]. Similarly, few studies highlight the relationship between late reproductive
growth period and rice yield [26,27]. The overall objective of this study is to forecast rice
yield and investigate the relationship between remote sensing derived VIs at different
phenological stages of rice crop and its yield. The study also aims to identify the most
critical growth period (phenological stage) for quantification of rice yield with hyper-
temporal sentinel-II and derived-indices using Partial Least Square Regression (PLSR)
model to improve the estimation accuracy of rice yield by remote sensing.
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2. Materials and Methods
2.1. Study Area

This study was carried out at Sheikhupora district (Latitude 31◦30′00′′ to 31◦65′30′′ N and
Longitude 73◦40′00′ ′ to 74◦23′00′ ′ E) of Punjab, Pakistan (Figure 1). Sheikhupora district
is located between Ravi and Chenab rivers and irrigated by river water from two canals
(Upper Chenab and Khanpur Canals). Climatically the region is dominated by the wet
monsoon, thus making it favorable for rice crop. The annual precipitation ranges from 120
to 720 mm, which mainly occurs between July and August [28]. The study area is dominated
by alluvial clay and loamy soil rich in humus and mineral composition. The mineralogical,
chemical and geotechnical compositions of soil (pH = 8, EC = 1.1−4.5 dS m−1 with soil field
capacity from 45–71%) make the region ideal for rice cultivation [29]. Due to the favorable
conditions, Sheikhupora district is the second largest rice-producing district in Pakistan
with an average production of 2–2.5 million tons annually [5,30].
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Figure 1. Map of the study area (sampling sites are marked as red square dots).

2.2. Data Collection
2.2.1. Field Data

Stratified-random-sampling procedure was used to collect data from 137 plots well
distributed in the study area. The rice fields with minimum size of 60 × 60 m (i.e., corre-
sponding to the coarse pixel size of satellite images used in this study) were considered for
the purpose of sampling, monitoring, and analysis. In most of the paddy fields, the rice crop
was transplanted in start of July (after seed sown in the nursery at the start of June). These
sampled plots were carefully monitored from transplanting till harvesting period. The rice
produced in each plot (Figure 2) was carefully measured and recorded for further analysis.
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2.2.2. Satellite Data Preprocessing and Vegetation Index

The optical remote sensing data of Sentinel-II satellite for year 2016 was used in
this study. The availability of multiple spectral bands in the red, red edge, and near
infrared (NIR) part of the EM spectrum with 10–20 m resolution makes Sentinel-II an ideal
choice for studying vegetation phenology and monitoring agricultural crops for stress
level, nutrient contents, pest attack, and yield estimation [31–33]. The cloud free Sentinel-2
time-series images (i.e., spanning from growing to harvesting phase) were pre-processed
for atmospheric correction using Sen2Cor processing. The atmospherically corrected
images were then used for computing vegetation indices (Table 1) from times series satellite
images spanning from sowing till harvesting period of the rice crop. Vegetation indices are
mathematical transformations using two or more spectral bands devised to enhance certain
characteristics of vegetation [34]. Several images to cover the entire growth period of rice
crop were used and vegetation indices were computed using Google Earth Engine (GEE).

Table 1. Mathematical formulas of vegetation indices (NDVI, SAVI, EVI, and Red Edge Position).

Vegetation Indices (VIs) References

NDVI = ρ(NIR)−ρ(Red)
ρ(NIR)+ρ(Red) Rouse et al. (1974) [35]

SAVI = 1 + L ρ(NIR)−ρ(Red)
ρ(NIR)+ρ(Red)+L

where L = 0.5, to minimize the brightness effect of soil
Huete (1988) [36]

EVI = G ρ(NIR)−ρ(Red)
ρ(NIR)+C1×ρ(Red)−C2×ρ(Blue)+L

where G = 2.5; L = 0.5 (Soil adjusted factor); C1 and C2 are constants to reduce
aerosols effects.

Liu and Huete (1995) [37]

Red Edge = ρ(Red)+ρ(Red Edge3)
2

REP = 704 + 35
[

Red Edge−ρ(Red Edge1)
ρ(Red Edge2)−ρ(Red Edge1)

]
where 704 and 35 represent interpolation constants that can be adjusted according
to available band’s wavelength

Filella and Penuelas (1994) [38]
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2.3. Geo-Statistical Analysis

The PLSR is an established multivariate analysis technique commonly used in chemo-
matric and hyperspectral data analysis [39,40]. The Partial Least Square Regression (PLSR)
analyses were performed to all time-series vegetation indices (explanatory variables) with
rice yields (response variable). In PLSR model development, the selection of optimum
number of latent variables (LVs) is more critical, as increase of the number of LVs would
improve the accuracy of the model, while selection of too many variables can lead to the
over fitting and the error would increase [41]. To minimize this over fitting problem, the
optimal number of LVs was selected based on achieving a combination of a high R2 and
a low root mean squared error of the prediction (RMSEP) (Figure 3). The PLSR model
was evaluated by plotting the 1:1 relationship graph between the predicted and measured
values of the yield (Figure 3). The evaluation indices were the R2 and the RMSE. A larger R2

shows that the model is better, while smaller RMSE values indicate the stronger estimation
ability of the model. To evaluate the performances of the prediction models, leave-one-out
cross-validation [42] was used, in which the model was iteratively trained on multiple time
series data and then used to predict yield. PLSR can be mathematically expressed as:

Y = a + b1X1 + b2X2 + · · ·+ bnXn (1)

where Y is response variable (rice yield), X1, X2–Xn are the selected latent variables (LVs),
which are the time series images, in this case a is the intercept and b1–bn represent the
regression coefficients (also known as β-coefficients) for different predictors.
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Figure 3. The RMSE and R2 plot. The RMSE is decreasing as the number of latent variable increases.
After a certain number of latent variables, the decrease in RMSE was negligible and that was taken as
the optimum number of variables for PLSR model development.

2.4. Spatial Distribution and Mapping of Rice Yield

To model the spatial distribution of rice yields, a two-step procedure was adopted.
The thematic map of rice crop was developed using phenological based mapping al-
gorithms (Figure 4). In this routine, the phenology profiles (or signatures) serves as
numerical key for discerning different crop types grown in the region of interest [43,44].
The time series vegetation indices (e.g., NDVI profiles computed from optical data for
the entire growth span of rice crop: 130 days) were used to demarcate the rice crop
and to compute the rice cultivated area. The phenological-mapping-routine takes into
account the entire range (minimum–maximum) of vegetation index values (e.g., NDVI
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in this case) at each time stamp (e.g., from transplanting till harvesting) and can be
mathematically expressed as:

R = (NDVI1min and NDVI1max) and (NDVI2min and NDVI2max) NDVInmin and NDVInmax) (2)

where R represents response variable (rice), and NDVI1, NDVI2, and NDVIn represent ND-
VIs derived from RS data at different crop phenological stages starting from transplanting
till harvesting.
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Figure 4. The framework of methodology followed for phenology-based rice mapping and yield estimation.

To develop the spatial distribution maps of rice yield, the models of statistical analysis
(the regression equations of PLSR analysis) were inverted to the time series vegetation
indices of rice masked areas (developed from phenological based mapping) and were
validated with an independent dataset.
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3. Results
3.1. Rice Yield Estimation (Field Level Data)

The statistical descriptions of the measured rice yield are summarized in Table 2. In
calibration datasets (with sample size n = 96), the rice yield varies between 3.06 ton/ha and
4.15 ton/ha with mean equal to 3.70 ton/ha. The standard deviation (SD) was ±0.31 ton/ha
and coefficient of covariance (CV) equal to 0.083 ton/ha. The graphical display reflects that
the calibration dataset is near normally distributed.

Table 2. Statistical description of the field measured rice yield with graphical displays of calibration and validation datasets.

Dataset
Type

Sample
Size (n)

Minimum
(ton/ha)

Maximum
(ton/ha)

Mean
(ton/ha)

SD
(ton/ha)

CV
(ton/ha) Graphical Distribution

Calibration 96 3.06 4.15 3.70 0.31 0.083
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Validation Data

The summary statistics of validation sets (n = 41) shows that rice yield ranges
between 3.16 ton/ha and 4.15 ton/ha with average equal to 3.71 ton/ha. The standard
deviation (SD) was ±0.29 and coefficient of covariance (CV) equal to 0.078 ton/ha.
The validation data are also normally distributed (Table 2: see the graphical display
at last column).

3.2. Variation in Temporal Profiles of Vegetation Indices with Rice Phenology

The temporal profiles of vegetation index spanning across the full growth period
of rice crop are shown in Figure 5. The vegetation index (e.g., NDVI) values were
least (minimum) at transplanting phase and showed gradual increase with increase in
vegetative parts (Figure 5). The vegetation indices reached at peak in the late vegetative
phase and continually maintained high values (e.g., spectral plateau) till flowering
phase. At post flowering phase (e.g., ripening phase), the vegetation index values
started declining and reached its minimum at fully ripened harvesting phase (see
Figure 5).
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3.3. Prediction of Rice Yield and the Performance of Vegetation Indices

The prediction of rice yields using PLSR and time series vegetation indices are sum-
marized Table 3. The integration of PLSR and sequential-time-stamped-vegetation indices
were found effective for quantifying rice yields. The time series NDVI yielded the highest
R2 = 0.83 (lowest RMSEcv = 0.12 ton/ha) followed by EVI (R2 = 0.80, RMSEcv = 0.14 ton/ha),
SAVI (R2 = 0.79, RMSEcv = 0.14 ton/ha), and REP (R2 = 0.64, RMSEcv = 0.17 ton/ha). The
performance of different indices (NDVI, SAVI, EVI, REP) for rice yield estimation were
consistent for both calibration and validation datasets (Table 3, Figure 6c,f,i,l).

Table 3. Results of the PLSR applied to time series vegetation indices (NDVI, SAVI, EVI, and REP). Number of latent variables (in
PLSR model), calibration R2, validation R2, calibration RMSE (RMSEC), and cross validation RMSE (RMSECV) are summarized.

Indices No. of Latent Variables
in PLSR Model Calibration R2 RMSEC (ton/ha) Validation R2 RMSECV (ton/ha)

NDVI 6 0.87 0.11 0.83 0.12
EVI 6 0.85 0.12 0.80 0.14

SAVI 6 0.84 0.12 0.79 0.14
REP 5 0.70 0.16 0.62 0.17
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Figure 6. The analysis based on temporal NDVI, EVI, SAVI, and REP. The R2 increases and RMSE decreases with augmenting
the number of variables unless it reaches saturation (dashed elliptical in Panels a,d,g,j). After certain number of latent
variables, the decrease in RMSE was negligible and that was taken as the optimum number of variables for PLSR model
development. The temporal profiles of vegetation indices are similar in shape except REP (Panels b,e,h,k). The regression
coefficients lines show that sowing, late vegetative, flowering and ripening are important phases for predicting rice yields
using PLSR. The measured vs. predicted (Panels c,f,i,l) manifest that yield was best predicted using temporal NDVI data
(yielded highest R2 and lowest RMSE).

Using the time series profiles of NDVI, EVI and SAVI, the PLSR models selected six
latent variables (Figure 6, Table 3). The selected six latent variables explained most of the
variance (e.g., as the case of NDVI where R2 = 0.83) and the addition of further variables
hardly improve the model performance (e.g., the total 21 variables yield maximum R2 of 0.84)
(Figure 6a,d,g,j). The important latent variable (in this study, time stamped vegetation
indices) was located at late vegetative, reproductive (flowering), and ripening phases of
rice growth (Figure 6b,e,h,k). Using time series Red Edge Position (REP) data, the number
of selected latent variables were five (05) with high regression coefficient (or B-coefficient)
values at flowering, ripening, and late vegetative phases (Figure 6c).

3.4. Spatial Varability in Rice Yield Potential

The distribution map (developed from best predicting PLSR model, time series vegeta-
tion indices and map of rice grown area) reflects that rice yield distribution varies in space and
ranges between 1.5 to 4.2 ton/ha (Figure 7a). The upper limit of rice yields (i.e., 4.20 ton/ha) in
the distribution map were closely matching with the ground measured yield (4.15 ton/ha).
The minimum limit was underestimated in the spatial distribution map of rice yield
(1.5 ton/ha) compared to the ground measured minimum yield (3.06 ton/ha). The valida-
tion of spatial distribution maps against independent ground measured yield data (30% of
the total samples) confirms that yield was predicted with high accuracy (see Figure 7b). The
high R2 (0.83) and low RMSE (0.14 tons/ha) manifested a close match between measured and
predicted rice yields (Figure 7b).
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4. Discussion

The field data (Table 2) reflect that the measured rice yield production (minimum
(3.06 ton/ha), mean (3.7 ton/ha), maximum 4.15 (ton/ha) in the study area is within the limits
of rice crop statistics within the country (i.e., ranging from 2.4 ton/ha to 10 ton/ ha). These
numbers are far less than the statistics of the neighboring countries (i.e., China, Vietnam,
Bangladesh) and could be attributed to the variety of rice [45], uneven water usage, weeds
and pest attacks, and post-harvest loses (e.g., shattering and improper drying and storing etc.).
The super basmati grown in the study area produces high quality rice and is famous for its
aromatic fragrance; however, it is less productive compared to other hybrid varieties.

The time series profiles show that vegetation indices (Figure 8a) are minimum at the
transplantation stage and gradually increase in vegetative phase (tillering, panicle, and
flowering stages). A decline was observed in the vegetation indices after post flowering
phases (e.g., dough, ripening). This initial increase in vegetation index values could
be associated with increase in leaf area coverage (LAI, biomass) and the post flowering
phase decline could be attributed to the senescing of rice crop. The temporal variation in
vegetation indices (in this study) are in line with the findings of previous studies [46,47],
where the peak greenness is achieved at flowering/milk phases and decline was observed
in dough stages and reaching minimum at ripening phase (Figure 8).
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The integration of PLSR and time series vegetation indices accurately predicted rice
yields (the maximum R2 = 0.83 and least RMSE = 0.12 ton/ha (3.12% of the mean yield). The
slightly better performance of NDVI (relative to SAVI, EVI, and REP) could be attributed
to the canopy characteristics (e.g., structural, vegetation percent cover) of rice crop. The
abundance of stem and leaf blades of rice crop obscures the background soil visibility and
leads to enhanced vegetation (rice) reflectance signals, thus allowing slope-based-index
(such as NDVI) to perform more precise estimates of rice yield [48,49].

Using PLSR regression, the prediction accuracy enhances with augmenting the number
of variables (NDVI, EVI, SAVI, and REP) and leads to high R2 and low RMSE until the
model stabilized at a certain point. In this study, the PLSR model saturate at the addition
of six latent variables (Figure 6a,d,g,j) and captured maximum variance present in dataset.
The addition of further variables hardly improves the prediction of rice yield and displays
a flat line [50]. The selected latent variables belong to late vegetative, reproductive (panicle,
flowering, milky), and ripening phases (Figure 6b,e,h,k) and reflects the critical importance
of these growth stages in rice yield production. The picking of late vegetative phase may
be associated with an increase in biomass and leaf covered area (leaves and shoots fully
develop at this stage and gain maximum crop height). The high correlation at reproductive
phases could be associated with the formation panicle, flowering, milk, dough, and maturity
of grain, which directly influence the crop yields. The results of this study are also consistent
with the findings of existing literature, where booting stage highly influences the rice yield
production [51]. The outcomes of this study help in estimating the rice yield and highlight the
critical phases in the life cycle (of rice crop) where monitoring and human intervention (such
as usage of water and agrochemicals) can enhance the yield production.

5. Conclusions

This study aims to accurately quantify rice yield and identify the critical growth
stages that influence the rice yield production. The integration of PLSR and time series
vegetation indices (i.e., spanning across the entire rice crop growth period) results in
accurate predictions of rice yield. Among vegetation indices, NDVI performs the best
(yield high R2 and low RMSE) followed by EVI, SAVI, and REP. Using the time stamped
vegetation indices, the PLSR coefficients identified the growth stages that influence the rice
yield. The growth stages (selected latent variables) belong to late vegetative, reproductive
(panicle, flowering, milky), and ripening phases. The selected critical growth stages were
common in all four types of vegetation indices (i.e., NDVI, EVI, SAVI, and REP) used. This
study concludes that PLSR can effectively be used for rice yield estimation and identifying
critical stages of the rice growth cycle. The precise yield estimation (rice in this case) allows
decision makers to strategize policy regarding yield import and export. The outcome of
this study can also help the farmers to monitor rice at critical time spans and allow them to
intervene (e.g., usage of water, fertilizer, pesticides etc.) in a timely manner. The timely
interventions thus help in producing more yields which in turn is essential for minimizing
hunger (SDG 2), alleviating poverty (SDG 1), ensuring land (SDG 15) and food security.

However, the present study did not compare the accuracy of PLS algorithm with
artificial neural networks, support vector machines, other geo-statistics, etc., for yield
forecasting. These would be interesting directions for future study.
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