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Abstract: Soil nutrients play a vital role in plant growth and thus the rapid acquisition of soil nutrient
content is of great significance for agricultural sustainable development. Hyperspectral remote-
sensing techniques allow for the quick monitoring of soil nutrients. However, at present, obtaining
accurate estimates proves to be difficult due to the weak spectral features of soil nutrients and the
low accuracy of soil nutrient estimation models. This study proposed a new method to improve soil
nutrient estimation. Firstly, for obtaining characteristic variables, we employed partial least squares
regression (PLSR) fit degree to select an optimal screening algorithm from three algorithms (Pearson
correlation coefficient, PCC; least absolute shrinkage and selection operator, LASSO; and gradient
boosting decision tree, GBDT). Secondly, linear (multi-linear regression, MLR; ridge regression,
RR) and nonlinear (support vector machine, SVM; and back propagation neural network with
genetic algorithm optimization, GABP) algorithms with 10-fold cross-validation were implemented
to determine the most accurate model for estimating soil total nitrogen (TN), total phosphorus (TP),
and total potassium (TK) contents. Finally, the new method was used to map the soil TK content at a
regional scale using the soil component spectral variables retrieved by the fully constrained least
squares (FCLS) method based on an image from the HuanJing-1A Hyperspectral Imager (HJ-1A
HSI) of the Conghua District of Guangzhou, China. The results identified the GBDT-GABP was
observed as the most accurate estimation method of soil TN (R2

cv of 0.69, the root mean square
error of cross-validation (RMSECV) of 0.35 g kg−1 and ratio of performance to interquartile range
(RPIQ) of 2.03) and TP (R2

cv of 0.73, RMSECV of 0.30 g kg−1 and RPIQ = 2.10), and the LASSO-GABP
proved to be optimal for soil TK estimations (R2

cv of 0.82, RMSECV of 3.39 g kg−1 and RPIQ = 3.57).
Additionally, the highly accurate LASSO-GABP-estimated soil TK (R2 = 0.79) reveals the feasibility of
the LASSO-GABP method to retrieve soil TK content at the regional scale.

Keywords: VIS-NIR spectroscopy; screening algorithm; estimation model; HJ-1A imagery

1. Introduction

The rapid and efficient monitoring of soil nutrients has become an important prereq-
uisite for agricultural production management and ensuring the healthy development of
crops. However, current soil nutrient estimations are often obtained using field sampling
and laboratory analysis, which is time-consuming and costly. The monitoring of soil nu-
trients via hyperspectral remote-sensing techniques is rapid and efficient, and numerous
related studies have been performed within the past 30 years [1–4].

Agriculture 2021, 11, 1129. https://doi.org/10.3390/agriculture11111129 https://www.mdpi.com/journal/agriculture

https://www.mdpi.com/journal/agriculture
https://www.mdpi.com
https://orcid.org/0000-0002-5334-2202
https://orcid.org/0000-0003-1942-931X
https://doi.org/10.3390/agriculture11111129
https://doi.org/10.3390/agriculture11111129
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/agriculture11111129
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com/article/10.3390/agriculture11111129?type=check_update&version=2


Agriculture 2021, 11, 1129 2 of 17

Current research on the retrieval of soil nutrients via hyperspectral remote-sensing
technology typically focuses on two factors: the determination of characteristic variables
and the construction of the estimation model. The determination of suitable characteristic
variables ensures high-precision estimations. Statistical analyses (e.g., Pearson correlation
coefficient (PCC) and partial least squares regression (PLSR)) are frequently employed to
determine these variables [5,6]. For example, Liu et al. (2007) obtained the 620–810 nm char-
acteristic variables of soil organic matter by correlation and multiple regression analyses [5].
Vibhute et al. (2019) determined the characteristic variables of soil nitrogen at 480, 511, 653,
997, 1472, 1795, 2210, and 2296 nm based on correlation analysis [6]. However, statistical
variable selection methods in high-dimensional space can fail due to a lack of significance
testing and parameter estimations in the model [7]. Following the development of data
mining technology, several machine learning algorithms have been introduced to deter-
mine the characteristic variables of soil nutrients. Zhang et al. (2019) proposed a method
combining mutual information and ant colony optimization to select soil total nitrogen
(TN) characteristic bands at 943, 1004, 1097, 1351, 1550, 1710, 2123, and 2254 nm [8]. Despite
the great progress made by these studies, determining the characteristic variables remains
to be difficult due to the weak spectral responses to soil nutrients. Therefore, additional
screening algorithms, particularly machine learning approaches, are required in order to
accurately determine the characteristic variables.

Existing relationship models between spectral variables and soil nutrient contents can
be classified into two categories; linear and nonlinear models. Linear estimation methods
build linear mathematical relationships between spectral variables and soil nutrient con-
tents. Multiple linear regression (MLR) and partial least squares regression (PLSR) are the
most commonly used linear estimation methods for soil nutrients [9–11]. However, correla-
tions between spectral variables and soil nutrients are rarely linear in nature [12]. Thus,
machine learning models were introduced to solve this problem. The random forest (RF),
support vector machine (SVM), and back propagation neural network (BPNN) algorithms
are frequently employed to estimate soil nutrients [13–15]. Compared with linear models,
nonlinear methods improve on the explanatory power of the spectral changes related to
soil nutrients. However, large-scale training samples for SVM approaches are difficult to
obtain and implement due to their complexity, huge memory requirements, and extensive
computational time in quadratic programming routines [16]. In addition, RF is prone to
overfitting in regression models when learning specific details and noise in the training
data [17,18]. BPNN is associated with large weights and threshold uncertainties, affecting
the estimation accuracy [19,20]. Therefore, there is a great need to determine an optimal
algorithm for high accuracy soil nutrient content estimations.

This study has the aim of developing a new method to accurately estimate soil nutrient
contents. In order to achieve this aim, we set the following objectives: (1) to determine
the optimal screening algorithm from three algorithms (Pearson correlation coefficient,
PCC; least absolute shrinkage and selection operator, LASSO; and gradient boosting
decision tree, GBDT) for the accurate selection of soil nutrient characteristic variables; (2) to
implement the MLR, ridge regression (RR), back propagation neural network with genetic
algorithm optimization (GABP), and SVM to determine a high-accuracy model for the
estimation of soil nutrient contents; and (3) to apply a high-accuracy method to map the
soil nutrient contents at the regional scale using HuanJing-1A Hyperspectral Imager (HJ-1A
HSI) imagery. Both the hyperspectral data and HJ-1A HSI images were collected in the
Guangdong province and Conghua District of Guangzhou, China.

2. Materials and Methods
2.1. Study Area

Guangdong province, China was selected as the study area in order to build the
optimal hyperspectral estimation model of soil nutrients (Figure 1a), while Conghua
District within Guangdong was selected to map the soil nutrient contents (Figure 1b). The
East-West and North-South spans of Guangdong province are approximately 800 and
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600 km, respectively. The province belongs to the East Asian monsoon region, with middle
subtropical, south subtropical, and north tropical zone climate types from the north to
south. Mean annual temperature and precipitation of the area are 21.8 ◦C and 1789.3 mm,
respectively. Guangdong is an important grain production region, with a crop planting
area of 4.28 × 104 km2 in 2019 and total grain yield of 1.19 × 1010 kg.
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Figure 1. (a) MODIS land cover map from the MCD12 product of the study area with a spatial distribution of 75 soil samples;
(b) the test study area determined from the 2016 Cultivated Land Map planted with rice of the Conghua National Land
Department, with a spatial distribution of 33 soil samples used to assess the accuracy of the estimated soil nutrient content.

2.2. Data and Pre-Processing
2.2.1. Soil Sampling and Chemical Analysis

A total of 75 soil samples were gathered for constructing hyperspectral estimate
models of soil nutrients contents based on a 50 × 50 km sampling grid within Guang-
dong province and field actual conditions to ensure uniform distribution of the soil sam-
ples [21,22]. Surface soil samples (0–20 cm) were collected at five sampling locations at
each site. To remove stones and other large debris, the samples were air-dried and sieved
through a 2 mm polyethylene sieve. After that, the samples were pulverized into fine
powder. The soil nutrient content and soil spectral reflectance were then determined by
dividing each sample into two parts. Soil TN was measured using the semi-micro Kjeldahl
method described by Walkley and Black [23]. Soil TP and TK were determined via an
ultraviolet spectrophotometer (UV-2600, Shimadzu CO, LTD., Kyoto, Japan) and a flame
photometer (FP640, INESA Analytical Instrument CO, LTD., Shanghai, China), respectively.
The soil nutrient content statistics from the 75 soil samples are presented in Table 1.

Table 1. Statistic information for soil nutrient contents in the study area.

Soil Nutrients Min Q1 Median Q3 Max Mean SD Skewness Kurtosis CV

TN 0.21 0.99 1.33 1.70 2.79 1.36 0.57 0.43 0.21 41.91
TP 0.13 0.37 0.59 1.00 3.15 0.75 0.55 1.90 5.21 73.33
TK 0.62 4.75 9.66 16.84 30.39 10.55 7.61 0.61 −0.23 72.13

Note: soil total nitrogen, TN; total phosphorus, TP; and total potassium, TK; unit: g kg−1. Q1, first quartile; Q3, third quartile; SD, standard
deviation; CV, coefficient of variation (%).

Moreover, the mapping of Guangdong Province needs multiple HJ-1A images with
100 m spatial resolution. In addition, it is very difficult to obtain multiple high-quality
satellite images of the whole province on the same day. Therefore, in this study, Conghua
district was selected for conducting the soil nutrient mapping experiment. A total of
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33 soil samples were collected in Conghua District (Figure 1b) to verify the feasibility of
mapping soil nutrient content at the regional scale. The acquisition time of the HJ-1A HSI
image coincided with the collection of the samples, which are evenly distributed in the
whole image. The soil sample collection principle and pretreatment are consistent with the
Guangdong province samples.

2.2.2. Spectral Measurements and Pre-Processing of Soil Samples

Soil spectral measurements were performed on 75 soil samples collected across the
province. An AvaField portable spectrometer (Avantes, Inc., Apeldoorn, Holland) was
used to measure soil spectral reflectance, which has a spectral range and resolution of
340–2511 and 0.6 nm, respectively. The spectral measurements were carried out in a dark
room to regulate the lighting environment and minimize the influence of stray light. The
soil spectral reflectance values were measured using a 50 W halogen lamp with a 10◦ field
of view in vertical contact with the soil sample. Each sample was uniformly tiled on a
black cloth and measured five times. The average spectrum was calculated and used in
further processing. Prior to the collection of the reflectance readings, the spectrometer was
calibrated every three samples with a white Spectralon. To decrease signal noise, we used
Savitzky–Golay smoothing with a window size of 10. In addition, the smoothed spectral
data (raw spectral, R) were processed with the first derivative (FD), second derivative (SD),
and reciprocal logarithmic (RL) to eliminate or reduce the effect of background noise and
account for signal intensity fluctuations induced by soil surface spectral scattering and
absorption. The outcomes of the processing are shown in Figure 2.
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2.2.3. Image Acquisition and Pre-Processing

In order to extend the application of the established model at the regional scale, a
HJ-1A image acquired on 30 October 2017 with a 100 m spatial resolution and 115 bands
(459–956 nm) was used to map the soil nutrient contents. The image was subjected to
radiometric correction, atmospheric correction, geometric precision correction, and stripe
noise reduction (Figure 3) using ENVI 5.3 (Exelis Visual Information Solutions, Inc., Boulder,
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CO, USA). The image’s spectral resolution was 5 nm, which was substantially coarser than
the AvaField portable spectrometer’s measured spectral interval of 0.6 nm. ENVI’s spectral
resampling technique was utilized to spectrally resample the measured soil spectral data
gathered with the AvaField portable spectrometer in order to match the spectral resolution
of the HJ-1A HSI data.
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2.3. Methods

This section is organized into four parts. In Section 2.3.1, we describe how the optimal
algorithm of screening the soil nutrient characteristic variables can be determined using
the PLSR fit degrees. The second section explains how the optimal prediction algorithm
for soil nutrients can be screened from four algorithms by their prediction accuracy. In
Section 2.3.3, we detail the mapping of soil nutrient base on HJ-1A image data using the
above the optimal screening and predicting algorithms. Section 2.3.4 describes accuracy
validation methods for the predicting models and mapping.

2.3.1. Determining the Optimal Screening Algorithm of the Characteristic Variables

One of the most important steps in the development of the optimal hyperspectral
estimation method of the soil nutrient contents was the determination of the characteristic
variables [8,24,25]. Additionally, the determination of the accurate screening algorithms
is key for characteristic variables of the soil nutrient content. In order to determine the
optimal screening algorithm of the characteristic variables, we compared traditional linear
screening algorithm (PCC) and nonlinear screening algorithms (LASSO and GBDT) based
on two evaluation steps. First, the characteristic variables were screened using PCC, GBDT
and LASSO might be correlated with each other. That is, there are collinearities among the
variables. Therefore, the variance inflation factor (VIF) of a stepwise regression was applied
to eliminate the collinearity of the selected characteristic variables. The set of variables
having a VIF lower than 10 [26] was retained. The three screening algorithms are described
in detail as follows:

LASSO: The least absolute shrinkage and selection operator, proposed by Tibshirani
(1996), minimizes the sum of squares of residuals under the constraint that the sum of the
absolute values of the regression coefficients (penalty coefficient) is less than a pre-defined
constant. This produces regression coefficients (RC) strictly equal to 0 and removes low-
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weight variables and can therefore effectively deal with complex high-dimensional data
problems [27]. LASSO can be defined as follows:

arg min
B

{
∑n

j=1 yi −∑
p
j=1 xijBj

}
,

subject to ∑
p
j=1

∣∣Bj
∣∣ ≤ t,

(1)

where yi represents the measured spectral data in the ith band; n is the spectral dimension-
ality; Bj denotes the input weight in the jth spectral sample; xij is the covariate vector of
the ith measured spectral data and j spectral sample; and p is the spectral sample number.

GBDT: The gradient boosting decision tree is a boosting algorithm that calculates the
information gain during the branching of the decision tree to determine the spectral variable
to be split and the corresponding split value. Once all decision trees are constructed, the
feature importance (FI) is obtained by calculating the information gain of the decision tree
feature and dividing by the total frequency of the feature in all trees of the GBDT strong
learner [28]:

FI = ∑ I(a, D)

Na
, (2)

where I(a, D) denotes the feature (spectral variable) information gain; a is the feature; D is
the soil sample; and Na is the total frequency of feature a in all trees.

PCC: The Pearson correlation coefficient is commonly employed to screen character-
istic variables. Here, the PCC was implemented between the spectral variables and soil
nutrient content to determine characteristic variables with the largest correlation coefficient
(p ≤ 0.05 significance level). The Pearson correlation coefficient can be expressed as:

ri =
∑N

n=1
(

Rni − Ri
)
(yn − y)√

∑N
n=1
(

Rni − Ri
)2

∑N
n=1(yn − y)2

, (3)

where Rni is the spectral value of the ith spectral variable of the nth soil sample point; Ri is
the average spectral value of the ith spectral variable; yn is the soil nutrient content of the
nth soil sample point; and y is the average value of the soil nutrient content.

Once the characteristic variables were selected by each algorithm, PLSR fit degrees
(R2) [29–31] between the measured soil nutrient contents and characteristic variables were
compared. The screening algorithm with the maximum fit degree was determined as the
optimal.

2.3.2. Determining the Accurate Model for Estimating Soil Nutrients

In this study, the screened characteristic variables were used as independent variables
and each of the soil nutrient (TN, TP and TK) contents were used as the dependent variable.
Additionally, four different algorithms were applied to build the relationship models
between characteristic variables and soil nutrients: MLR, RR, SVM, and GABP. The four
algorithms are described in detail as follows:

(1) Multi-Linear Regression

Multi-linear regression is a type of regression analysis for multiple independent
variables. The optimal combination of these independent variables is taken to estimate the
dependent variables. This model can describe the influence of each variable on the soil
properties and is widely used in soil property estimations [32–34]. We adopted MLR to
estimate soil nutrient content using the following formula:

ZMLR = a0 + a1x1 + a2x2 + · · ·+ anxn, (4)

where ZMLR is the dependent variable (soil nutrient content); xi (i = 1, 2, . . . , n) is the
independent variable (spectral variables); ai (i = 1, 2, . . . , n) represents the regression
fitting coefficient; and a0 is the intercept.
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(2) Ridge Regression

Ridge regression (RR) is a least square estimation method that improves on its prede-
cessors. In particular, it abandons the unbiasedness of the least square method, thus losing
part of the information and reducing the accuracy and making the regression coefficient
more realistic and reliable [35]. The existence of multiple collinear relations between in-
dependent variables magnifies the mean square error. This error is reduced by using RR
estimation rather than the standard least square estimation [36,37]. The RR is expressed as:

β̂(k) = (X,X + kI)−1X,Y, (5)

where β̂(k) is the ridge regression estimate of β; and k is the ridge parameter. When k = 0,
the least square estimate of β is equal to β̂(0).

(3) Support Vector Machine

SVM, proposed by Cortes and Vapnik (1995), is a robust supervised learning model
with a capacity for solving practical problems (e.g., nonlinearity and high dimensionality).
SVM greatly simplifies the traditional regression process through efficient “transduction
inference” from training samples to predictions [38]. The SVM model can be expressed as:

f(x) = wi·∅i(x) + b, (6)

where f(x) is the soil nutrient estimate; x is the characteristic variable; wi is the weight
coefficient; b is the error term; ∅i denotes a nonlinear transfer function; and ω and b
are calculated by the following convex optimization problem with an e-insensitivity loss
function [39]:

min :
1
2
||w||2 + C ∑N

i (ξi + ξ∗i ), (7)

s.t.


yi − w∅(x)− b ≤ ε + ξ∗i
w∅(x) + b− yi ≤ ε + ξ∗i

ξi, ξ∗i ≥ 0
, (i = 1, · · · , n), (8)

where ||w||2 represents the flatness of the m-dimensional space; ε is a parameter that
indicates the maximum allowed error between the measured and estimated values; ξi
and ξ∗i are slack variables and C is the penalty factor. Equations (7) and (8) belong to the
convex quadratic programming problem with inequality constraints. In order to obtain the
Lagrangian multipliers, the equations are converted into a dual problem via the Lagrange
multiplier method. The constrained original objective function (Equation (8)) is then
transformed into the unconstrained Lagrangian objective function:

min :
1
2 ∑n

i,j=1(αi − α∗i )
(

αj − α∗j

)
(∅(xi)∅

(
xj
)
) + ε ∑n

i=1(α
∗
i + αi)−∑n

i=1 yi(α
∗
i − αi), (9)

s.t.
{

∑n
i=1
(
αi − α∗i

)
= 0

0 ≤ α∗i ≤ C, i = 1, · · · , n
, (10)

where αi − α∗i is the transformation of w. The SVM function is expressed as:

f(x) = wi·∅i(x) + b = ∑n
i=1(αi − α∗i )K(xi, x) + b, (11)

where K (xi, x) = ∅(xi)∅
(
xj
)

is the kernel function. The radial basis function was selected
as the kernel function.

(4) Genetic Algorithm-Back Propagation Neural Network

The GABP algorithm optimizes the structure and connection weight of the back prop-
agation neural network using the parallel random search ability of the genetic algorithm,
effectively avoiding a local optimal solution [40]. We adopted the population search method
to optimize the weights and thresholds of the neural network (Figure 4).
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2.3.3. Estimating Regional-Scale Soil Nutrient Contents Using HJ-1A Hyperspectral Data

Once the optimal variable screening and predictor models were selected, the method
was applied to mapping the contents of the soil nutrient using HJ-1A image with 115 bands
(459–956 nm) and 5 nm spectral resolution, which will not provide the above characteristic
variables with beyond 956 nm wavelength. Thus, the characteristic variables should be
re-screened from the resampling measured soil spectral data with 5 nm spectral resolution
using the above optimal screening algorithm and to develop the corresponding estimation
models. Then, the model was applied to mapping the contents of the soil TK using the
HJ-1A HSI image for the Conghua district at the regional scale.

Moreover, in order to apply the methods to Conghua district, the HJ-1A image was con-
sidered to contain pure pixels. However, the coarse image spatial resolution of 100 × 100 m
generally prevents the existence of pure pixels, with mixed pixels (including crop and
soil) typically dominating the study area. Thus, the fully constrained least squares (FCLS)
method [41] was used to obtained pure pixels and spectral reflectance of soil (Figure 5).
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2.3.4. Accuracy Validation

The coefficient of determination (R2), concordance correlation coefficient (CCC), ratio
of performance to interquartile range (RPIQ), the root mean square error of calibration
(RMSEC), and cross-validation (RMSECV) were used as statistical measures to assess the
performance of estimation models. The RPIQ is defined as the ratio of IQ to RMSECV [42].
IQ is the interquartile range (IQ = Q3 − Q1) of the observed values. Q1 and Q3 denote the
first and third quartile, respectively.

3. Results
3.1. Optimal Algorithm for the Screening of the Characteristic Variables

In order to determine the characteristic variables, the three choosing algorithms (PCC,
LASSO, and GBDT) were implemented on 6272 spectral data of the R, FD, SD, and RL
(Figure 2) and soil nutrient contents in the 75 sample points collected across the province.
Figure 6 illustrates the correlation coefficients of the spectral variables. Stepwise regression
with VIF analysis was further used to eliminate the collinearity among the spectral variables
screened by the PCC algorithms (Table 2).
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total potassium (TK) concentrations and the various spectral variables.

Table 2. PCC-determined characteristic variables of the three soil nutrients.

Soil Nutrient Spectral Variables Correlation Coefficients VIF

TN FD562, SD714 −0.44, −0.26 1.70, 1.51
TP FD1009, FD356, SD905 −0.50, 0.45, −0.32 2.65, 1.32, 1.42
TK R2498, FD442 0.20, 0.50 1.08, 4.14

Considering the possible existence of a nonlinear relationship between the spectral
variables and soil nutrient contents, we introduced the GBDT and LASSO algorithms for
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the screening task. Numerous experiments were performed, identifying the prediction
error of the GBDT algorithm to tend towards stability for screening criteria of soil TN, TP,
and TK in the GBDT algorithm equal to FI > 0.015, FI > 0.015, and FI > 0.01, respectively.
Figure 7 depicts the feature importance and regression coefficient of the screened spectral
variables. For the LASSO algorithm we employed RC 6= 0 as the screening criteria.
Stepwise regression with VIF analysis was further employed to eliminate the collinearity
among the spectral variables screened by the GBDT and LASSO algorithms. Table 3 reports
the final results of the screening characteristic variables for the three soil nutrients (TN, TP,
and TK).

Agriculture 2021, 11, x FOR PEER REVIEW 10 of 16 
 

 

the screening task. Numerous experiments were performed, identifying the prediction er-
ror of the GBDT algorithm to tend towards stability for screening criteria of soil TN, TP, 
and TK in the GBDT algorithm equal to FI > 0.015, FI > 0.015, and FI > 0.01, respectively. 
Figure 7 depicts the feature importance and regression coefficient of the screened spectral 
variables. For the LASSO algorithm we employed RC ≠ 0 as the screening criteria. Step-
wise regression with VIF analysis was further employed to eliminate the collinearity 
among the spectral variables screened by the GBDT and LASSO algorithms. Table 3 re-
ports the final results of the screening characteristic variables for the three soil nutrients 
(TN, TP, and TK). 

 
Figure 7. GBDT feature importance and LASSO regression coefficient. 

Table 3. GBDT- and LASSO-determined characteristic variables of the three soil nutrients. 

Models Soil Nutrient Spectral Variables VIF 

LASSO 
TN 

FD454, FD904, FD1302, FD1418, FD1707, FD2342, FD2367, 
SD529, SD668 

3.14, 2.85, 4.42, 6.35, 3.48, 3.68, 6.44, 
3.99, 3.78 

TP FD423, FD489, FD516, FD649, FD1816, FD2222, FD2386 2.34, 2.48, 2.28, 2.13, 3.01, 1.66, 6.07 
TK FD659, FD904, FD965, FD1128, FD1521, SD1006 2.89, 4.21, 2.78, 4.40, 3.10, 1.48 

GBDT 
TN FD572, FD977, FD1084, FD1015, FD2051, SD418 8.97, 4.56, 1.45, 3.87, 1.37, 3.42 
TP FD663, FD747, FD1009, SD831 2.68, 3.00, 3.42, 7.45 
TK FD1045, FD1069, FD1784, FD1796, FD2348 4.42, 2.52, 5.57, 8.53, 6.17 

In order determine the most accurate screening algorithm, the PLSR approach was 
selected to construct the model between soil nutrients and the characteristic variables 
from the three algorithms based on 75 soil samples from the province. The PLSR relation-
ship models are described as follows: 

۱۱۾ − ܀܁ۺ۾ ቐ
Yே =  1.505 − 224 × FDହ଺ଶ − 9717 × SD଻ଵସ                                                                                                                                    (Rଶ =  0.17)
Y௉ = 1.698 − 1091 × FDଵ଴଴ଽ + 46 × FDଷହ଺ + 224 × SDଽ଴ହ                                                                  (Rଶ =  0.35)
Y௄ = 12.91 + 9 × Rଶସଽ଼ + 6173 × FDସସଶ                                                                                                                                  (Rଶ =  0.40)

 

۽܁܁ۯۺ − ܀܁ۺ۾

⎩
⎪⎪
⎨

⎪⎪
⎧

Yே = 1.530 + 4928 × SD଺଺଼ + 38 × FDଵସଵ଼ + 53 × FDଵଷ଴ଶ + 786 × FDସହସ + 26                                                    
 × FDଶଷ଺଻ − 4079 × SDହଶଽ − 37 × FDଵ଻଴଻ + 32 × FDଶଷସଶ − 157 × FDଽ଴ସ                                  (Rଶ =  0.15)

Y௉ = 0.646 + 1362 × FDହଵ଺ + 159 × FDଵ଼ଵ଺ − 414 × FDସଶଷ − 57 × FD଺ସଽ                                                              
  −121 × FDସ଼ଽ − 50 × FDଶଶଶଶ + 67 × FDଶଷ଼଺                                                                                   (Rଶ =  0.15)

Y௄ = 8.871 + 290,321 × SDଵ଴଴଺ + 15,335 × FDଽ଺ହ + 2839 × FDଵହଶଵ − 11,052                                                      
  × FD଺ହଽ   − 15,362 × FDଽ଴ସ − 1372 × FDଵଵଶ଼                                                                                  (Rଶ =  0.47)

 

Figure 7. GBDT feature importance and LASSO regression coefficient.

Table 3. GBDT- and LASSO-determined characteristic variables of the three soil nutrients.

Models Soil Nutrient Spectral Variables VIF

LASSO

TN FD454, FD904, FD1302, FD1418, FD1707, FD2342,
FD2367, SD529, SD668

3.14, 2.85, 4.42, 6.35, 3.48, 3.68, 6.44, 3.99, 3.78

TP FD423, FD489, FD516, FD649, FD1816, FD2222,
FD2386

2.34, 2.48, 2.28, 2.13, 3.01, 1.66, 6.07

TK FD659, FD904, FD965, FD1128, FD1521, SD1006 2.89, 4.21, 2.78, 4.40, 3.10, 1.48

GBDT
TN FD572, FD977, FD1084, FD1015, FD2051, SD418 8.97, 4.56, 1.45, 3.87, 1.37, 3.42
TP FD663, FD747, FD1009, SD831 2.68, 3.00, 3.42, 7.45
TK FD1045, FD1069, FD1784, FD1796, FD2348 4.42, 2.52, 5.57, 8.53, 6.17

In order determine the most accurate screening algorithm, the PLSR approach was
selected to construct the model between soil nutrients and the characteristic variables from
the three algorithms based on 75 soil samples from the province. The PLSR relationship
models are described as follows:

PCC− PLSP


YN = 1.505− 224× FD562 − 9717× SD714

(
R2 = 0.17

)
YP = 1.698− 1091× FD1009 + 46× FD356 + 224× SD905

(
R2 = 0.35

)
YK = 12.91 + 9× R2498 + 6173× FD442

(
R2 = 0.40

)
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LASSO− PLSP



YN = 1.530 + 4928× SD668 + 38× FD1418 + 53× FD1302 + 786× FD454 + 26
×FD2367 − 4079× SD529 − 37× FD1707 + 32× FD2342 − 157× FD904

(
R2 = 0.15

)
YP = 0.646 + 1362× FD516 + 159× FD1816 − 414× FD423 − 57× FD649

− 121× FD489 − 50× FD2222 + 67× FD2386

(
R2 = 0.15

)
YK = 8.871 + 290, 321× SD1006 + 15, 335× FD965 + 2839× FD1521 − 11, 052
×FD659 − 15, 362× FD904 − 1372× FD1128

(
R2 = 0.47

)

GBDT− PLSP



YN = 1.908− 366× FD572 − 265× FD2051 + 237× FD1084 − 1086× SD418

−61× FD977 + 364× FD1015

(
R2 = 0.26

)
YP = 1.657− 504× FD663 − 1232× FD1009 + 915× FD747 − 4946× SD831

(
R2 = 0.37

)
YK = 19.188− 2601× FD2348 − 7380× FD1045 − 14, 742× FD1069

+1605× FD1796 + 1207× FD1784

(
R2 = 0.24

)
The results identify the optimal algorithms of soil TN, TP, and TK as GBDT, GBDT,

and LASSO, with R2 values of 0.26, 0.37, and 0.47, respectively. Among three nutrients, the
LASSO-PLSR showed the best estimation of soil TK.

3.2. Determining the Optimal Model for Soil Nutrient Content Estimations

The MLR, RR, SVM, and GABP models were adopted to determine the relationship
between the characteristic variables and soil nutrients (Figure 8). The GABP model exhib-
ited the highest predicative capability for the three soil nutrients, with scatter plots closer
to the 1:1 line compared to MLR, RR, and SVM. Additionally, it offered the most accurate
estimates in cross-validation with R2

cv of 0.69, RMSECV of 0.35, and RPIQ = 2.03 for TN;
R2

cv of 0.73, RMSECV of 0.30 and RPIQ = 2.10 for TP, R2
cv of 0.82, RMSECV of 3.39, and

RPIQ = 3.57 for TK, respectively (Table 4). The prediction effect of soil TK is obviously
better than that of TN and TP, which may be due to potassium being a metal element,
with a spectral response sensitivity that exceeds other non-metal elements (e.g., nitrogen
and phosphorus).

Agriculture 2021, 11, x FOR PEER REVIEW 11 of 16 
 

 

܂۵۰۲ − ܀܁ۺ۾

⎩
⎪
⎨

⎪
⎧

Yே = 1.908 − 366 × FDହ଻ଶ − 265 × FDଶ଴ହଵ + 237 × FDଵ଴଼ସ − 1086 × SDସଵ଼                                                      
         −61 × FDଽ଻଻ + 364 × FDଵ଴ଵହ                                                                                                            (Rଶ =  0.26)
Y௉ =  1.657 − 504 × FD଺଺ଷ − 1232 × FDଵ଴଴ଽ + 915 × FD଻ସ଻ − 4946 × SD଼ଷଵ                                     (Rଶ =  0.37) 
Y௄ = 19.188 − 2601 × FDଶଷସ଼ − 7380 × FDଵ଴ସହ − 14,742 × FDଵ଴଺ଽ                                                                      
            +1605 × FDଵ଻ଽ଺ + 1207 × FDଵ଻଼ସ                                                                                                                                      (Rଶ =  0.24)

 

The results identify the optimal algorithms of soil TN, TP, and TK as GBDT, GBDT, 
and LASSO, with R2 values of 0.26, 0.37, and 0.47, respectively. Among three nutrients, 
the LASSO-PLSR showed the best estimation of soil TK. 

3.2. Determining the Optimal Model for Soil Nutrient Content Estimations 
The MLR, RR, SVM, and GABP models were adopted to determine the relationship 

between the characteristic variables and soil nutrients (Figure 8). The GABP model exhib-
ited the highest predicative capability for the three soil nutrients, with scatter plots closer 
to the 1:1 line compared to MLR, RR, and SVM. Additionally, it offered the most accurate 
estimates in cross-validation with R௖௩

ଶ  of 0.69, RMSECV of 0.35, and RPIQ = 2.03 for TN; 
R௖௩

ଶ  of 0.73, RMSECV of 0.30 and RPIQ = 2.10 for TP, R௖௩
ଶ  of 0.82, RMSECV of 3.39, and 

RPIQ = 3.57 for TK, respectively (Table 4). The prediction effect of soil TK is obviously 
better than that of TN and TP, which may be due to potassium being a metal element, 
with a spectral response sensitivity that exceeds other non-metal elements (e.g., nitrogen 
and phosphorus). 

 
Figure 8. Scatter plots of measured and estimated values. 

Table 4. Accuracy assessment of estimated soil nutrient contents (unit: g kg−1). 

Soil Nutrients Model R2 (C) CCC RMSEC ࢜ࢉ܀
૛  RMSECV RPIQ 

TN 

MLR 0.22 0.37 0.50 0.17 0.51 1.39 
RR 0.21 0.35 0.50 0.18 0.51 1.39 

SVM 0.13 0.26 0.53 0.11 0.57 1.25 
GABP 0.76 0.86 0.28 0.69 0.35 2.03 

TP 

MLR 0.36 0.55 0.40 0.32 0.47 1.34 
RR 0.34 0.47 0.43 0.33 0.44 1.43 

SVM 0.36 0.49 0.41 0.35 0.41 1.54 
GABP 0.77 0.87 0.26 0.73 0.30 2.10 

TK 

MLR 0.48 0.67 5.30 0.42 5.52 2.19 
RR 0.44 0.61 5.32 0.43 5.33 2.27 

SVM 0.54 0.72 5.17 0.52 5.31 2.28 
GABP 0.86 0.92 2.88 0.82 3.39 3.57 

3.3. Mapping Soil Nutrient Contents Using the Proposed Method 
Table 4 demonstrates the soil TK estimation accuracy exceeding that of TN and TP. 

Therefore, we applied the proposed method to map soil TK contents in Conghua District 

Figure 8. Scatter plots of measured and estimated values.



Agriculture 2021, 11, 1129 12 of 17

Table 4. Accuracy assessment of estimated soil nutrient contents (unit: g kg−1).

Soil
Nutrients Model R2 (C) CCC RMSEC R2

cv RMSECV RPIQ

TN

MLR 0.22 0.37 0.50 0.17 0.51 1.39
RR 0.21 0.35 0.50 0.18 0.51 1.39

SVM 0.13 0.26 0.53 0.11 0.57 1.25
GABP 0.76 0.86 0.28 0.69 0.35 2.03

TP

MLR 0.36 0.55 0.40 0.32 0.47 1.34
RR 0.34 0.47 0.43 0.33 0.44 1.43

SVM 0.36 0.49 0.41 0.35 0.41 1.54
GABP 0.77 0.87 0.26 0.73 0.30 2.10

TK

MLR 0.48 0.67 5.30 0.42 5.52 2.19
RR 0.44 0.61 5.32 0.43 5.33 2.27

SVM 0.54 0.72 5.17 0.52 5.31 2.28
GABP 0.86 0.92 2.88 0.82 3.39 3.57

3.3. Mapping Soil Nutrient Contents Using the Proposed Method

Table 4 demonstrates the soil TK estimation accuracy exceeding that of TN and TP.
Therefore, we applied the proposed method to map soil TK contents in Conghua District
at the regional scale using HJ-1A imagery because the spectral wavelength of HJ-1A data
ranged from 459 to 956 nm, which had different range and spectral bands of wavelengths
from those of the spectral variables involved in the above estimation models. The model
based on 75 sample points collected across the province could not be utilized for the HJ-1A
images. We employed the LASSO-GABP method to re-screen the optimal spectral variables
from the resample measured soil spectral data with 5 nm spectral resolution and to develop
the corresponding estimation models. The screened spectral variables were determined as
band462, band464, band466, band470, band477, band484, band574, and band652. The soil
TK was estimated with reliable accuracy (R2 of 0.82, RMSEC of 3.28 g kg−1; Figure 9).
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Figure 10 demonstrates the spatial distribution of the soil TK contents obtained using
the estimation model. The soil TK content is generally concentrated within 10–20 g kg−1,
with flat areas exhibiting a higher content and areas with high slopes and close proximity to
rivers associated with lower content. This may be linked to soil erosion, which is consistent
with the actual situation.
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The 33 sample plots (Figure 1b) were used to verify the feasibility of mapping soil
nutrient content by calculating the R2, RMSE, and RPIQ values (Table 5). The estimation
accuracy of soil TK content was relatively high, with an R2 of 0.79 and RMSE of 4.01 g kg−1.
This indicates that the GABP model is capable of mapping the soil TK content. However,
the estimation accuracy of the regional-scale retrievals is lower than that of the point-scale.
This may be due to the limitation of the narrow spectral region of the HJ-1A HSI data
(450–960 nm).

Table 5. Estimation accuracy of soil total potassium content using the GABP model based on the
33 validation sample plots (unit: g kg−1).

Dataset Mean Max Min SD R2 RMSE RPIQ

Soil TK
Measured Value 18.35 30.57 2.64 6.67

0.79 4.01 1.86Estimated Value 20.01 36.42 1.36 8.86

4. Discussion

In the current paper we compared three algorithms (PCC, LASSO, and GBDT) and
four models (MLR, RR, SVM, and GABP) in terms of soil nutrient estimations in order to
determine a method for the prediction of high-accuracy soil nutrients.

In this method, to the best of our knowledge, this is the first attempt to use the
LASSO and GBDT algorithms to determine the characteristic variables for soil nutrient
estimations. LASSO with PLSR fit degree (R2) of 0.47 was determined as optimal for the
accurate selection of soil TK characteristic variables, and GBDT for TN and TP with R2

of 0.26 and 0.37. This indicates the significant nonlinear spectral response mechanism
of the soil nutrients. The result found that 16 characteristic variables obtained using the
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optimal screening algorithms are sensitive to soil nutrients: FD572, FD977, FD1084, FD1015,
FD2051, SD418 for TN, FD663, FD747, FD1009, SD831 for TP and FD659, FD904, FD965, FD1128,
FD1521, SD1006 for TK. Some selected wavelengths are in general agreement with previous
research [43–45].

Previous studies generally employ linear models to estimate soil nutrients [2,46–48]. In
order to improve the estimation accuracy of soil nutrients, we adopted linear (MLR and RR)
and nonlinear (SVM and GABP) algorithms to construct the soil nutrient estimation models
based on the determined spectral characteristic variables (Table 3). The validation results
(Table 4) revealed the GBDT-GABP algorithm to perform the best in soil TN (R2

cv of 0.69,
RMSECV of 0.35, and RPIQ = 2.03) and TP (R2

cv of 0.73, RMSECV of 0.30, and RPIQ = 2.10)
estimations, while LASSO-GABP was optimal for soil TK (R2

cv of 0.82, RMSECV of 3.39,
and RPIQ = 3.57), which are in general agreement with previous research results with R2

from 0.56 to 0.84 (TN), 0.65 to 0.81 (TP), and 0.67 to 0.82 (TK) [43,49–54]. The proposed
model constructed using machine learning algorithms outperformed the linear models.
This indicates the existence of a significant nonlinear relationship between the soil nutrients
and spectral characteristic variables.

In order to validate the regional-scale applicability of the new method, HJ-1A image
data obtained from pure pixels using the fully constrained least squares (FCLS) method was
used to map soil TK with the best estimation accuracy (R2 = 0.86) on point scale. Results
using the 33 validation sample plots demonstrate the screened spectral characteristic
variables to explain 79% of the variance in the TK content, with an RMSE of 4.01 g kg−1 for
the mapping of TK content. This indicates the great potential of GABP to map the soil TK
content at a large scale. However, the point-scale estimation accuracy is higher than that of
the regional-scale due to the narrow spectral range of the HJ-1A HSI data. Future research
will map the TK contents using satellite hyperspectral images covering a wider spectral
region (350–2500 nm).

The prediction effect of soil TK is obviously better than that of TN and TP (Table 3).
This may be because potassium is a metal element, with a spectral response sensitivity that
exceeds other non-metal elements (e.g., nitrogen and phosphorus). The introduction of
additional soil elements (including metals and nonmetals) to explore this phenomenon
will be the focus of further work.

We employed 75 soil samples to develop the models and validate the method for the
whole Guangdong province, while 33 sample plots were used to verify the feasibility of
mapping soil nutrient content in Conghua District. Although the sampling design was
conducted based on different soil characteristics and soil types, the sample sizes were
relatively small. Future studies will employ larger sample sizes to further develop and
validate the proposed method.

5. Conclusions

The determination of characteristic variables is key for accurate hyperspectral esti-
mation models of the soil nutrient content. This paper introduced the LASSO and GBDT
algorithms to screen the optimal relevant characteristic variables of soil TN, TP, and TK.
The estimation models of soil nutrient content were subsequently developed using the
selected characteristic variables and field observations of soil nutrient content. The most
accurate estimation model was then adopted to explore the possibility of spatially map-
ping the soil nutrient content using HJ-1A data. The results demonstrated that compared
with the statistical analysis method, the machine learning method effectively screened the
characteristic variables. In addition, based on the RMSECV values, the GABP models of the
soil nutrient contents determined the most accurate estimates at the soil sample point level.
The new method provides the potential for soil nutrient mapping at the regional scale
with a reasonable accuracy using hyperspectral imagery. Results indicate the ability of the
LASSO and GBDT algorithms to improve the estimation accuracy of soil TN, TP, and TK,
which are crucial for agricultural management. The proposed machine learning method
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has the potential to effectively select the spectral characteristic indices of soil nutrients,
increasing the accuracy of the results.
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