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Abstract: The present study aims to assess the influences of long-term crop straw returning and
recommended potassium fertilization on the dynamic change in rice and oilseed rape yield, soil
properties, bacterial and fungal alpha diversity, and community composition in a rice–oilseed rape
system. A long-term (2011–2020) field experiment was carried out in a selected paddy soil farmland
in Jianghan Plain, central China. There were four treatments with three replications: NP, NPK, NPS,
and NPKS, where nitrogen (N), phosphate (P), potassium (K), and (S) denote N fertilizer, P fertilizer,
K fertilizer, and crop straw, respectively. Results showed that long-term K fertilization and crop
straw returning could increase the crop yield at varying degrees for ten years. Compared with the
NP treatment, the long-term crop straw incorporation with K fertilizer (NPKS treatment) was found
to have the best effect, and the yield rates increased by 23.0% and 20.5% for rice and oilseed rape,
respectively. The application of NPK fertilizer for ten years decreased the bacterial and fungal alpha
diversity and the relative abundance of dominant bacterial and fungal taxa, whereas continuous
straw incorporation had a contradictory effect. NPKS treatment significantly increased the relative
abundance of some copiotrophic bacteria (Firmicutes, Gemmatimonadetes, and Proteobacteria) and
fungi (Ascomycota). Available K, soil organic matter, dissolved organic carbon, and easily oxidized
organic carbon were closely related to alterations in the composition of the dominant bacterial
community; easily oxidized organic carbon, dissolved organic carbon, and slowly available K were
significantly correlated with the fungal community. We conclude that long-term crop straw returning
to the field accompanied with K fertilizer should be employed in rice-growing regions to achieve not
only higher crop yield but also the increase in soil active organic carbon and available K content and
the improvement of the biological quality of farmland.

Keywords: straw management; potassium fertilizer; rice–oilseed rape rotation; yield; bacterial
community; fungal community

1. Introduction

Crop residue is a considerable renewable resource with abundant organic carbon (C)
and mineral nutrients [1,2]. As the country with the largest agricultural production in the
world, China produces more than 800 million tons of crop straw per year, which amounts
to 3.64, 0.73, and 14.78 million tons of nitrogen (N), phosphorus (P), and potassium (K),
respectively [3,4]. Straw incorporation serves as the most effective way of comprehensive
straw utilization compared with other ways (as burning, compost, or cooking) at present.
Many research studies have confirmed that crop residue recycling could increase crop yield
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and maintain soil fertility [5–7]. With the increased awareness of environmental protection
and ban on burning straw, directly returning straw to the field is being accepted by more
and more farmers in China.

Potassium is one of the most essential mineral nutrients for plant growth and metabolism [8].
Adequate soil K supply is beneficial for agricultural production [4]. Because of the promotion
of high-yield varieties and high inputs of N and P fertilizer, K deficiency or soil K imbalance
has become more widespread and critical in China, especially in the southern multi-cropping
region. Paddy-upland rotation, as the main crop rotation system in the southern part of China, is
mainly distributed in the rice cropping areas of the Yangtze River Basin and Huang-Huai River
Basin [9,10]. However, long-term intensive cultivation removes 210–360 kg ha−1 of K2O per
year by crop harvest and has resulted in a substantial decrease in soil available K content [11].
In addition, potash reserves are penurious and expensive in East and South Asia [12]. As a
result, farmers have employed less K fertilizer in production. Therefore, the current input of K
fertilizer falls short of maintaining the soil K balance, and straw returning is indispensable to
improve the K status of cropland [4,11].

Previous studies have showed that crop straw returning could improve soil available
K and slowly available K content. Moreover, crop straw incorporation with K fertilizer
significantly improved crop yield and maintained soil health [3,10,13]. However, the
decomposition rate of straw returning to the field was significantly affected by soil water
content. Compared with the upland cropping rotation, the paddy-upland rotation was
found to lead to seasonal dry–wet alternation in the farmland system [14,15]. The strong
conversion of hydrothermal conditions is bound to affect the decomposition rate of returned
straw and the release of straw nutrients, affecting the growth of crops and their absorption
and utilization of soil mineral nutrients [16]. Therefore, it is unclear how upland and paddy
crops respond to the long-term combinations of K fertilizer with crop residue incorporation.

In addition, crop straw contains abundant organic ingredients, and has been widely
applied in fields to promote soil C sequestration [17,18]. Soil microorganisms, such as
bacteria and fungi, are the basis of soil fertility and have a great influence on plant health
and growth [19,20]. Previous studies have documented the positive and significant impact
of straw utilization on soil bacterial and fungal community structure under short-term or
long-term straw returning [18,21,22]. However, other research has indicated that straw
incorporation decreased the richness and diversity of bacterial and fungal composition.
Ling et al. [23] found that the increase in the amount of soil microorganisms after long-term
wheat straw returning was mainly due to the increase in the multiplication of bacteria.
Additionally, some studies have shown that fertilization could alter the nutrient content
of soil (i.e., total N, available P, and available K) and directly drive the evolution of soil
microbial communities [24–26]. Wasaki et al. [27] found that the decrease in soil pH, caused
by the application of N, was the primary cause of bacterial community changes, and
soil C:P and N:P changes determine the composition of the soil microbial communities.
Long-term P fertilization increased soil microbial P immobilization by decreasing the
relative abundance of the P-starvation response gene and increasing that of the low-
affinity inorganic-P transporter gene [28]. In black soil, the alpha diversity and the relative
abundance of Acidobacteria significantly decreased with the increased rate of K fertilizer
in short-term treatment [29]. Compared with the application of N and P fertilization, K
fertilizer has not gained enough attention in soil microbial diversity and composition;
especially, the long-term effect of straw incorporation and K fertilizers on bacterial and
fungal communities in paddy soils has not been addressed. A recent study showed that
the keystone taxa had higher gene copies of oxidoreductase and 71 essential functional
genes associated with C, N, P, and sulfur cycling in controlling soil function and wheat
production. Meanwhile, the microbial community was highly responsive to K fertilization,
which was associated with lower crop production and higher abundance of potential fungal
pathogens [30]. In short-term experiments, the yield-increasing effect of K fertilizer was
higher than that of straw management [13,16,21]. However, in long-term experiments, the
impact of bacterial and fungal community and structure on crop yield is unclear [10,16]. We
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hypothesized that long-term K fertilizer application would reduce soil microbial diversity
and species composition, and straw returning could mitigate the toxic effects of K fertilizer
on microorganisms. Therefore, this study aimed to characterize the dynamics of paddy-
upland rotation yield, soil properties, microbial diversity, and community composition in
the same site treated with different field management and their associated soil properties,
which will provide scientific data of the long-term potential effects to compare against
those of short-term field experiments.

2. Materials and Methods
2.1. Experimental Site Description

The field experimental site established in 2011 was located in the town of Chuan-
dian, Jingzhou (part of the Jianghan Plain), Hubei Province, central China (30◦33′25′′ N,
112◦4′53′′ E, altitude 80 m). A rice–oilseed rape rotation system was implemented in 1999.
The average annual rainfall was 1140 mm, and the air temperature was 15 ◦C. Soil type was
classified as silty clay loam using the World Soil Classification of the Food and Agriculture
Organization (sand, 3.5%; silt, 61.0%; clay, 35.5%). At the beginning of the experiment
(June 2011), the selected soil basial properties at a depth of 0–20 cm were as follows: pH,
5.97; organic matter, 26.9 g kg−1; total N, 0.61 g kg−1; Olsen-P, 8.1 mg kg−1; available K,
164.8 mg kg−1; slowly available K, 405.4 mg kg−1.

2.2. Experimental Design

A complete randomized block design was conducted with four treatments and three
replications. The treatments were (1) NP, chemical fertilizer N, and P application; (2) NPK,
balanced chemical fertilizer N, P, and K application; (3) NPS, application of chemical fertil-
izer N, P plus straw returning, where S represents crop straw; and (4) NPKS, application of
chemical fertilizer N, P, K plus straw returning. The dimensions of the plot were 20 m2,
with a length of 5.0 m and a width of 4.0 m. The cropping sequence was rice followed
by winter oilseed rape. Rice was transplanted at the age of five leaves at a density of
22 hills m−2 (row spacing: 25 cm × 18 cm) and two plants per hill in mid-June and har-
vested in mid-September. Winter oilseed rape was directly seeded onto the soil surface at a
rate of roughly 7.5 kg ha−1 in early October, and the crop was harvested in early May. The
water regimes were early flooding-mid season drainage intermittent irrigation for the rice
season and a rain-fed agricultural regime for the oilseed rape season.

The amounts of N, P, and K fertilizer application for rice and oilseed rape under
different treatments are described in Table 1. During the rice season, N (urea, 46% N) was
applied in three splits: 60% as basal fertilizer before rice transplanting, 20% at tillering
stage, and 20% at the booting stage. K (as potassium chloride, 60% K2O) was applied
as 60% basal fertilizer and 40% booting fertilizer. P (as superphosphate, 12% P2O5) was
applied manually as basal fertilizers. During the winter oilseed rape season, N was applied
in three splits: 60% as basal fertilizer, 20% during the overwintering stage, and 20% at the
beginning of stem elongation. P, K, and B (as sodium borate, 11% B) fertilizers were applied
manually as basal fertilizers.

In order to ensure the consistency of the experiment, the straw amount of the first crop
season (rice) returned to field in 2011 was 2250 kg ha−1 of winter rape stalks and shells.
The K contents of the stalk and shell were 1.82% and 2.56%, respectively. All straw should
be protected from rainfall before returning to prevent K+ leaching. In the rice season, the
oilseed rape straw was crushed by a machine (to a length of 10 cm) and incorporated into
the plough layer together with basal fertilizer. In the oilseed rape season, the rice straw
was placed as mulch onto the soil with no tillage.
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Table 1. The application rates of N, P, K, and B for treatments in both seasons per year from 2011 to 2020 (kg ha−1).

Treatment

Rice Season Oilseed Rape Season

Chemical Fertilizer
(N-P2O5-K2O)

Crop Straw
(N-P2O5-K2O)

Chemical Fertilizer
(N-P2O5-K2O)

Crop Straw
(N-P2O5-K2O)

Boron
(Na2B4O7·5H2O)

NP 180-60-0 0-0-0 180-60-0 0-0-0 15.0
NPK 180-60-90 0-0-0 180-60-90 0-0-0 15.0
NPS 180-60-0 19.4-3.1-142.6 180-60-0 53.4-7.8-164.3 15.0

NPKS 180-60-90 20.2-3.5-151.5 180-60-90 61.6-8.5-179.1 15.0

Note: the nutrient (N, P, and K) apparent input of crop straw was the average value from 2011 to 2020. The conversion coefficients of N, P,
and K to N, P2O5, and K2O were 1, 2.3, and 1.2, respectively.

2.3. Sample Sampling and Determination
2.3.1. Grain Yield

For each crop season, the mature oilseed rape and rice plants were harvested and
thrashed in each plot, and the grains were dried to determine the grain yield. The crop
straw was moved out or fully returned to the field according to each treatment. Before the
harvest, five plants of rice and oilseed rape were randomly collected for element analysis of
N, P, and K. The sampled plants were partitioned into straw and grain. The dry matter was
digested in 70% concentrated H2SO4 and 30% H2O2 to determine the N, P, and K content
in grain and plants.

2.3.2. Soil Samples

On 10 September 2020 (after rice harvest), soil samples were randomly collected from
four points in each plot at a depth of 0–20 cm using an auger with a diameter of 5.0 cm.
Soil from the four core samples of a plot was mixed to obtain one composite sample.
After removing stones, roots, and plant residue using a 2 mm mesh, each sample was
divided in half: one half was air-dried for physicochemical analyses, and the other half
was immediately stored at −80 ◦C for soil DNA extraction [22].

2.3.3. Determination of Soil Physicochemical Indexes

The air-dried soil samples were used to determine physicochemical properties. Soil
pH was measured in water (1:2.5 w/v) by a pH meter (PHS-3C, INESA Scientific Instru-
ment Co. Ltd., Shanghai, China). Olsen-P was extracted with 50 mL of 0.5 mol L−1

NaHCO3 (pH 8.5) and determined using an injection pump analyzer (AA3, Bran+ Luebbe,
Norderstedt, Germany). Available K and slowly available K were extracted with 1 mol L−1

NH4OAc and 1 mol L−1 HNO3 solution, respectively, and measured by a photoelectric
flame photometer [24]. The SOM was determined using a wet oxidation procedure with
potassium dichromate (K2Cr2O7)-sulfuric acid (H2SO4). EOC content was measured in
15 mg of each soil sample to which 25 mL of 333 mM KMnO4 was added. Afterwards,
the samples were shaken at 200 rpm for 1 h and then centrifuged at 4000 rpm for 5 min.
Then, the supernatant was removed and diluted 1:250 with distilled water. The absorbance
of the diluted solution was measured at 565 nm. DOC was measured by adding 60 mL
of distilled water to 20 g of fresh soil (3:1, v/w) in a 150 mL polypropylene bottle. The
samples were shaken on a shaker for 30 min at 250 rpm and then centrifuged for 10 min at
10,000 rpm. The upper suspension was filtered through a 0.45 µm filter into a bottle, and
the C content in the filtered solution was determined using a C/N element analyzer (Velp,
Usmate Velate, Italy) [10]. Furthermore, soil available N content was determined by the
alkaline hydrolysis diffusion method.

2.3.4. Soil DNA Extraction and High-Throughput Sequencing Analysis

DNA was extracted from the soil samples (0.5 g) using a Fast DNA Spin Kit for Soil
(MP Biomedicals, Santa Ana, CA, USA) in accordance with the protocol of the manufac-
turer. The quantity and quality of the DNA extracts were determined using a NanoDrop
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2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). The extracted
DNA was stored at −20 ◦C for further analysis.

An aliquot of the extracted DNA from each sample was used as the template for am-
plification. The V3–V4 hypervariable regions of the bacterial 16S rRNA gene sequences and
the ITS region of the fungal rRNA gene sequences were amplified [31]. Amplicon libraries
were prepared using tagged bacterial and fungal universal primers, i.e., 338F and 806R for
bacteria and ITS1F and ITS2R for fungi. The DNA samples were amplified individually
using the fusion primer pairs 338F (5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R (5′-
GGACTACHVGGGTWTCTAAT-3′) for bacteria and ITS1F (5′-CTTGGTCATTTAGGAAGTAA-
3′) and ITS2R (5 ‘-GCTGCGTTCTTCATCGATGC-3′) for fungi to generate polymerase chain
reaction (PCR) fragments [32]. The following thermal program was used for amplification:
initial denaturation 98 ◦C for 2 min, followed by 27 cycles of denaturation at 98 ◦C for 15 s,
annealing at 55 ◦C for 30 s, extension at 72 ◦C for 30 s, and a final extension at 72 ◦C for 5
min. The PCR reactions were performed in a 25 µL mixture containing 5 µL of 5× reaction
buffer, 5 µL of 5×GC buffer, 2 µL of dNTP (2.5 mM), 1 µL of forward primer (10 uM), 1 µL of
reverse primer (10 uM), 2 µL of DNA template, 8.75 µL of ddH2O, and 0.25 µL of Q5 DNA
polymerase [24]. The PCR products were purified using the AxyPrep DNA Gel Extraction Kit
(Axygen Biosciences, San Francisco, CA, USA) and quantified using a Quantus Fluorometer
(Promega, Madison, WI, USA). The target sequences were performed on an Illumina MiSeq 250
sequencing platform by Shanghai Personal Biotechnology Co., Ltd. (Shanghai, China).

2.3.5. Sequence Processing

In sequencing the original data to remove the primer adapter sequence, the processed
low-quality bases (maximum expected error higher than 1 for bacteria and 0.5 for fungi,
shorter than 370 bp for bacteria and 200 bp for fungi) were removed from downstream
analysis [31]. Then, the remaining data were spliced to obtain valid sequence data for
each sample. Finally, using 97% as the threshold, the 16S and ITS sequences were divided
into operational taxonomic units (OTUs). Using QIIME 2 software, the UCLUST sequence
comparison tool was used to cluster with 97% sequence similarity. Each sequence with
the highest OTU degree was selected as the representative sequence of the OTU [33]. For
bacterial 16S rRNA and fungal ITS genes, both the Greengenes database and the Silva
database were used as template sequences for OTU classification status identification [34].
After quality filtering and removal of chimeric sequences, 257,956 and 333,433 high-quality
sequences were clustered into 14,906 and 1627 OTUs, respectively, for each bacterial and
fungal sample.

2.4. Statistical Analysis

The analysis of variance procedure in SPSS 18.0 (SPSS Inc., Chicago, IL, USA) was
used to perform data analysis on soil biogeochemical properties and alpha diversity. Before
statistical analysis, we tested the normality of the data using the Shapiro–Wilk test. The
Shannon and Simpson indexes, abundance-based coverage estimator (ACE), and Chao1
were calculated to estimate alpha diversity of each treatment using MOTHUR [35]. The
yield, soil properties, and alpha diversity were tested by one-way analysis of variance
(ANOVA), with Duncan’s test, at a p value < 0.05. A two-way analysis of variance (ANOVA)
was also used to examine the contribution of treatment (T) and year (Y) to crop yield.
To determine the structural differences between bacterial and fungal communities at
different treatments, an analysis of similarities was also conducted using QIIME2 based on
Bray–Curtis distance measurements and abundance data. To determine which taxa were
significantly affected, the linear discriminant analysis effect size (LEfSe) algorithm was
implemented [17]. The “vegan” package in R language was used to perform similarity
analysis. The clustering analysis was constructed using the “heatmap” package based on
the Spearman correlation matrix. Each column in the heatmap represents one treatment,
and each row represents a genus. The color from red to blue indicates that the abundance is
from high to low. Redundancy analysis was used to access the effects of soil environmental
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factors on bacterial and fungal communities. To reveal how the potential pathways (soil
properties, alpha diversity, and microbial community) influence rice yield and oilseed rape
yield, partial least squares path models (PLS_PM) were evaluated using the Goodness
of Fit (GOF) statistic [36], and assembled by the “inner plot” function using the “plspm”
package of R 4.1.0.

3. Results
3.1. Grain Yield

Over the ten-year study period, grain yield was affected by straw returning, K fertilizer,
and planting duration for rice and oilseed rape (Figure 1). The grain yields without K
fertilizer (NP treatment) were 9.4 t ha−1 and 1.75 t ha−1 annual average for rice and oilseed
rape, respectively. In the first crop rotation, when the crop straw returned to the field or
K fertilizer was applied, the rice yield did not show a significant increase compared with
that of NP treatment, but after two rotation cycles, a significant increase could be seen in
Figure 1. For the subsequent crop oilseed rape, a yield increase effect appeared in the first
rotation. Compared with the NP treatment, the average annual increments of rice and
oilseed rape by NPK treatment were 1.5 t ha−1 and 0.13 t ha−1, and the average increase
rates were 15.8% and 7.4%, respectively. In straw returning (NPS treatment) compared with
NPK treatment, the yield increase rate of oilseed rape was higher, while the yield increase
rate of rice was the opposite. The yields of rice and oilseed rape for NPKS treatment were
the highest, reaching an annual average of 11.6 t ha−1 and 2.11 t ha−1, respectively, and the
corresponding yield increase rates were 23.0% and 20.5%, respectively.
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Figure 1. Variation and distribution of grain yields for rice (a,b) and oilseed rape (c,d) under different
fertilization treatments NP, NPK, NPS, and NPKS over 10 years. *, **, and *** indicate significant
differences at the p < 0.05, p < 0.01, and p < 0.001 level, respectively in (a,c). The upper, middle, and
lower limits of each box represent the 75th, 50th, and 25th percentage for crop yield, respectively.
Red lines indicate the mean value, and different lower-case letters indicate significant differences for
the mean crop yield between treatments at p < 0.05 in (b,d).

3.2. Soil Properties

Table 2 shows the effects of straw incorporation and K fertilizer on the soil properties.
From the results, the SOM, available N, available K, slowly available K, EOC, and DOC
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differed significantly among the treatments (p < 0.05). SOM in NPKS treatments was
significantly greater (p = 0.036) than in NP treatment and ranked as NPKS, NPS > NPK,
NP. There was no significant difference in soil Olsen-P and pH value among the treatments
(p > 0.05). Soil available K ranged from 169.5 to 254.7 g kg−1, with the highest concentration
of that obtained in the NPKS treatment. Slowly available K was lowest with the NPKS
treatment, and EOC, and DOC with the NPKS treatment was significantly greater (p = 0.024)
than those with the NPK and NPS treatments.

Table 2. Effects of straw incorporation and K fertilizer on soil properties in the bulk soils.

Soil Properties
Treatments

NP NPK NPS NPKS

pH 5.82 ± 0.03 a 5.76 ± 0.04 a 5.75 ± 0.03 a 5.73 ± 0.02 a
SOM (g kg−1) 29.8 ± 2.9 b 31.5 ± 3.4 b 32.8 ± 2.6 ab 35.7 ± 1.4 a

Available N (mg kg−1) 77.3 ± 8.9 b 71.8 ± 8.3 b 89.0 ± 6.3 a 85.7 ± 7.4 a
Olsen-P (mg kg−1) 9.6 ± 0.5 b 10.1 ± 0.6 b 11.2 ± 1.1 a 10.4 ± 0.8 b

Available K (mg kg−1) 169.5 ± 8.8 d 183.0 ± 7.6 c 208.0 ± 11.4 b 254.7 ± 16.2 a
Slowly available K (mg kg−1) 601.5 ± 10.3 b 572.9 ± 14.5 c 632.0 ± 16.7 a 529.0 ± 14.8 d

EOC (g kg−1) 5.9 ± 0.5 c 5.1 ± 0.2 c 7.6 ± 0.4 b 9.5 ± 0.3 a
DOC (mg kg−1) 20.8 ± 0.4 c 22.0 ± 1.0 c 27.0 ± 0.9 b 30.6 ± 1.2 a

Note: SOM, soil organic matter; EOC, easily oxidized organic carbon; DOC, dissolved organic carbon. Within a
row, data (mean ± SD, n = 3) followed by different letters are significantly different (p < 0.05).

3.3. Alpha Diversity of Bacterial and Fungal Communities

A total of 364,587 and 336,310 filtered sequences remained after quality control, and
257,956 and 333,433 reads (high-quality sequence) were generated for further bioinformatic
analysis (Table S1). All these sequences were subsequently clustered into 14,906 and
1627 OTUs based on 97% similarity. The number of observed OTUs detected in each
sample ranged from 2890 to 4426 and 298 to 535 for bacterial and fungal groups, respectively.
Good’s coverage index of each sample was >0.990. The rarefaction curves (Figure S1) were
close to the saturation phase, indicating that sufficient sequencing coverage was achieved
and that the OTUs were representative of the overall microbial community libraries.

There were significant differences among the treatments in the alpha diversity, except
the Simpson index, of bacterial and fungal populations, as shown by richness and diversity
indexes (Table 3). Among the treatments, NP treatment had the highest value of Chao1 and
ACE, suggesting that long-term non-K fertilizer application resulted in greater richness of
bacterial populations than the other treatments. The Shannon index was significantly higher
for the NP and NPS treatments than for the NPK and NPKS treatments, but no significant
difference was observed between the treatments on the Simpson index. Meanwhile, this
tendency was shown in the fungal group that NPK and NPKS treatments had lower
richness and diversity indexes than those of NP and NPS treatments.

Table 3. Alpha diversity of bacterial and fungal gene sequences in the soil samples.

Microbe
Type Treatment

Richness Index Diversity Index
Coverage

Chao1 ACE Simpson Shannon

Bacteria

NP 4463 ± 142 a 4422 ± 135 a 0.999 ± 0.031 a 10.98 ± 0.06 a 0.994 ± 0.035 a
NPK 3664 ± 165 b 3470 ± 124 b 0.998 ± 0.045 a 10.27 ± 0.05 b 0.990 ± 0.051 a
NPS 4298 ± 151 a 4128 ± 128 a 0.998 ± 0.037 a 10.65 ± 0.08 ab 0.998 ± 0.048 a

NPKS 3045 ± 123 c 2897 ± 135 c 0.993 ± 0.033 a 9.33 ± 0.06 c 0.991 ± 0.044 a

Fungi

NP 535 ± 21 a 518 ± 19 a 0.952 ± 0.031 a 6.45 ± 0.04 a 1.000 ± 0.045 a
NPK 298 ± 11 c 264 ± 16 d 0.958 ± 0.043 a 5.82 ± 0.03 b 1.000 ± 0.053 a
NPS 477 ± 18 b 453 ± 21 b 0.953 ± 0.036 a 5.98 ± 0.04 b 1.000 ± 0.039 a

NPKS 317 ± 16 c 311 ± 14 c 0.966 ± 0.045 a 6.23 ± 0.04 ab 1.000 ± 0.044 a

Note: Different letters for the same item indicate p < 0.05 (significant differences).



Agriculture 2021, 11, 1233 8 of 18

3.4. Composition of Bacterial and Fungal Communities

Long-term straw returning and K fertilizer altered the relative abundance of bacterial
and fungal phyla in soil (Figure 2). Proteobacteria and Acidobacteria had the highest
relative abundance in each treatment, belonging to the predominant bacterial community
(relative abundance > 15.0%), with averages of 32.0% and 16.9%, respectively. The relative
abundances of Actinobacteria, Chloroflexi, Nitrospirae, Rokubacteria, Bacteroidetes, and
Verrucomicrobia were higher, with averages of 4.3%, 2.5%, 2.1%, 2.0%, 1.4%, and 1.1%,
respectively (Figure 2a). In the fungi phylum (Figure 2b), Ascomycota was the dominant
species, with an average relative abundance of 48.1%, followed by Basidiomycota and
Mortierellomycota with average relative abundances of 24.8% and 4.4%, respectively.
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At the level of bacterial phylum (Figure 2c), Actinobacteria, Bacteroidetes, Gemma-
timonadetes, and Verrucomicrobia were significantly altered taxa in the NP treatment.
Latescibacteria and Spirochaetes were found to be sensitive to NPK treatment. Intrigu-
ingly, the predominant Proteobacteria, Chloroflexi, Planctomycetes, and Patescibacteria
were significantly altered in the NPS treatment, and only Acidobacteria, Rokubacteria,
and Nitrospirae were positively altered in the NPKS treatment. At the level of fungal
phylum (Figure 2d), Mortierellomycota, Aphelidiomycota, Olpidiomycota, Mucoromycota,
Zoopagomycota, and Rozellomycota were the significantly altered taxa in the NP treatment.
Basidiomycota was sensitive to NPK treatment. Conversely, there were no taxa changed
in the NPS treatment. Ascomycota, Glomeromycota, and Chytridiomycota were clearly
altered in the NPKS treatment. These results indicated that long-term application of N and
P fertilizer without K fertilizer stimulated an increase in the species and relative abundance
of oligotrophic bacteria and fungi. At the same time, the application of straw with K
fertilizer contributed to the increase in existing eutrophic microorganisms.

The species composition of bacteria and fungi at the genus level is shown in Figure 3.
The results indicate that the relative abundances of dominant species in the fungal com-
munity for four treatments were more significant than those of the bacterial community.
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At the bacterial genus level (Figure 3a), Anaeromyxobacter was the dominant genus, with
an average relative abundance of 1.56%, followed by Haliangium, Nitrospira, Geobacter,
Candidatus Solibacter, Candidatus, Udaeobacter, and Sh765B-TzT-35, with average relative
abundances of 0.90%, 0.83%, 0.73%, 0.67%, 0.57%, and 0.54%, respectively. Among them,
Haliangium, Candidatus Solibacter, and Candidatus Udaeobacter had the highest relative
abundance in NP and NPS treatments, and Nitrospira and Sh765B-TzT-35 had the highest
relative abundance in NPK and NPKS treatments.
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At the genus level of fungi (Figure 3b), the dominant species were Fusarium and
Mortierella, having average relative abundances of 2.95% and 2.61%, respectively, followed
by Nigrospora, Chaetomium, Lecanicillium, Massarina, and Amphinema, with averages of
1.85%, 1.45%, 1.66%, 1.55%, and 1.89%, respectively. The relative abundance of Mortierella
was increased significantly in the NP and NPS treatments than in the NPK and NPKS
treatments. Among all treatments, Nigrospora (3.94%) in the NPKS treatment had the
highest relative abundance, while Chaetomium, Lecanicillium, Massarina, and Amphinema
had higher relative abundance in NPK treatment.

3.5. Beta Diversity of Bacterial and Fungal Communities

The Venn diagram (Figure 4a,b) shows that the microbial population had both shared
components and unique parts. NPK, NPS, and NPKS treatments shared 8.75%, 11.24%,
and 6.31% of the bacterial OTUs with NP treatment, while the unique OTUs of NPK,
NPS, NPKS, and NP were 16.36%, 20.88%, 14.09%, and 26.23%, respectively. NPK, NPS,
and NPKS shared 5.77%, 9.74%, and 5.68% of fungal OTUs with CK, while the unique
OTUs of NPK, NPS, NPKS, and NP treatments were 14.58%, 23.77%, 15.2%, and 27.59%,
respectively. These indicate that long-term straw returning and K fertilizer application
caused differences in soil microbial communities, thereby affecting the diversity of bacteria
and fungi groups among treatments.

A PCoA plot showed that bacterial communities in soils treated with K fertilizer
were distinct from those in soils treated with non-K fertilizers along the x-axis (Figure 4c),
and the first principal component (x-axis) accounted for 52.6% of the total variation. Still,
the straw returning also regulated the communities along the y-axis, but the second
principal component (y-axis) only contributed 25.0% of the variation in communities.
Similarly, the first two principal coordinates represented 74.7% of the variation in fungi
(Figure 4d) communities according to the PCoA, in which the first principal component
(x-axis) accounted for 38.1% of the total variation.

From the heatmap (Figure 5), the distribution of dominant bacteria in each treatment
was well-marked; specifically, in the NP treatment, up to 18 species could be identified
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in the number of abundant bacteria. On the contrary, the abundant bacteria in the NPK,
NPS, and NPKS treatment were 12, 14, and 6 types of species, respectively. Furthermore,
the cluster analysis results reflected that NP and NPS treatments were similar, and NPK
and NPKS were similar. The results of the fungal genus also showed that the distribution
and relative abundance of the dominant fungal groups in each treatment were significantly
different. Additionally, the cluster analysis indicated that the NP and NPS treatments
were homogeneous.
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3.6. Correlation of Dominant Microbial Communities with Soil Properties

The redundancy analysis (Pseudo-F = 388, p = 0.002 **) showed that axis 1 and axis 2
explained 80.6% and 14.8% of the total variance in soil bacterial community composition,
respectively. The phyla Rokubacteria, Nitrospirae, and Acidobacteria were clustered
together to the edge of soil DOC, SOM, available K, and EOC. In contrast, the phyla
Chloroflexi, Bacteroidetes, Actinobacteria, and Verrucomicrobia were highly correlated
with slowly available K. The available K, SOM, DOC, and EOC had a noteworthy impact
on the bacterial community, which explained the variation by 51.3%, 19.8%, 18.8%, and
9.1%, respectively (Figure 6a). The redundancy analysis (Pseudo-F = 518, p = 0.002 **)
showed that axis 1 and axis 2 explained 84.6% and 13.9% of the total variance in soil
fungal community composition, respectively (Figure 6b). The Ascomycota had a positive
correlation with soil available K, DOC, and EOC; the Basidiomycota was highly corrected
with slowly available K; and the phylum Mortierellomycota was negatively correlated with
slowly available K, available N, pH, and EOC. The EOC, DOC, and slowly available K
explained the variation by 27.8%, 57.9%, and 12.5%, respectively.
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3.7. Potential Pathways Influencing Crop Yield

The PLS_PM analysis showed that the final model had GOF of 0.81 and 0.54 for
bacterial group and fungal group in 2020, respectively. The pathways of soil proper-
ties, alpha diversity, and bacterial community composition together explained 82.3% of
the total variance in crop yield, while those represented 45.2% of the variation in fun-
gal group (Figure 7b). The direct effect of soil properties (path coefficient = 0.85) on
the crop yield was greater than the direct effect of bacterial community composition
(path coefficient = −0.50) and alpha diversity (path coefficient = 0.47) as well as fungal com-
munity composition (path coefficient = −0.37) and alpha diversity (path coefficient = 0.31).
Moreover, the PLS_PM analysis suggested that soil properties indirectly affected the crop
yield by changing bacterial alpha diversity (path coefficient = 0.92) and community compo-
sition (path coefficient = −0.88) as well as fungal alpha diversity (path coefficient = 0.66)
and community composition (path coefficient = −0.70) in 2020.
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4. Discussion
4.1. Effects of Long-Term of Straw Returning and K Fertilizer on Crop Yield

Many studies have reported that straw returning increased crop yields and nutrient
uptake [22,37,38]. Our study showed similar results during ten-year field experiments
where the same fertilizer inputs were applied among the four treatments, especially for
oilseed rape (Figure 1). Through the investigation of yield structure components, the main
reason for the increase in crop yield is that straw return significantly improved the number
of productive ear and spike granules of rice and wheat, and the number of siliques per
plant and the number of seed per pod of oilseed rape [39,40]. In paddy-upland rotation,
the yield-increasing effect of the upland season (wheat, oilseed rape) was greater than the
rice season. The phenomenon could also be seen in Figure 7, which shows that the soil
properties, microbial alpha diversity, and community composition had higher relationships
with oilseed rape yield than rice yield and the direct effect of soil properties as SOM, EOC,
SOC, and available K content on yield increase were greater than those of the bacterial and
fungal groups. Overall, compared with no straw returning, the increase rate of rice yield
with straw returning was 5.2%, whereas the yield increase rates of oilseed rape and wheat
with straw returning were 10.5% and 12.4%, respectively, in southern China, higher than
that of rice [41]. The result of Figure 1 confirmed that the increase rate of oilseed rape in
NPS treatment was higher than that of rice. Moreover, as the experiment progressed, the
increase rate of yield in field under straw management was more noticeable compared
with those with no straw returning. Wang et al. [42] showed that the yield-increasing effect
of straw returning was influenced by the annual average temperature, soil nutrient status,
returning period, and fertilization. In the study, the increased rate of yield in NPK and
NPS treatments did not reach a significant level in the first and second year of rice season,
but the third year of rice shows a significant difference compared to that of NP treatment.
However, the oilseed rape season showed a significant increase in production during the
first crop rotation. This is because the contribution rates of K fertilizer to the rice and
oilseed rape were 8.2% and 11.5%, and the dependent rates of soil K status for rice and
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oilseed rape were 83.0% and 75.2%, respectively [43]. Therefore, the K element absorbed
by the whole rice plant mainly comes from the soil supply, while oilseed rape and wheat
are more dependent on exogenous K fertilizer supply.

From the dynamic changes of crop yield over ten years, the increase rate of NPK
treatment was slightly better than that of NPS treatment in the rice season compared to
NP treatment, and the result was the opposite in the oilseed rape season. Our previous
multi-field results also indicated that the yield-increasing rate of K fertilizer application
was better than that of straw returning in the rice season. Straw returning involved in not
only the process of the release of N, P, and K mineral elements but also the process of straw
self-decomposition [44]. High temperature, waterlogging, and straw rot accelerated in rice
seasons, which caused a certain toxic effect on root by a higher concentration of phenols
and organic acids from straw decomposition, thereby weakening the yield increasing rate
of straw returning [45,46]. The decomposition rate of straw in the oilseed rape season was
relatively slower, the nutrient release cycle was longer than those of the rice season, and the
poison caused by straw rot was relatively weak. In addition to the biochemical effects, the
straw mulching in the oilseed rape season has physical effects, such as enhancing crops to
resist the resistance of adversity (low temperature and drought) and relieving temperature
changes in winter, which was beneficial to crop straw returning [47–49].

4.2. Effects of Long-Term Straw Returning and K Fertilizer on the Soil Properties

In the present study, NP treatment led to the decline tendency on crop yield and lowest
chemical properties after 10 years of experimentation. However, straw returning and K
fertilizer application significantly improved the soil chemical properties, including the SOM,
available K, slowly available K, EOC, and DOC, compared with those of NP treatment;
among these treatments, NPKS treatment performed the best (Table 2). However, NPK
treatment reduced soil available N content, consistent with the findings of Liu et al. [18]
who reported a decline in soil total N with chemical P or K fertilizer. The reason might be
that NPK treatment produces more grain than NP treatment resulting in more N uptake
and soil N consumption, particularly available N under the same input of chemical N
fertilizer. Moreover, the contents of available K, EOC, and DOC were significantly higher
in treatments NPKS and NPS than those in NPK and NP treatments, while the slowly
available K content showed the opposite trend (Table 2). These results confirmed that
the accurate application of K fertilizer rate could not maintain the soil K balance without
regard to straw returning in the rice–oilseed rape rotation system [50].

K fertilizer in combination with straw returning could improve the soil available K
content [4]. On the one hand, straw returning brings in a large amount of straw K into the
farmland; on the other hand, the root secretion of crops and the humification in the process
of residual straw rot would weaken the fixation of K+ on the clay mineral, promoting
transformation of slowly available K to water-soluble K and available K, and maintain
a new dynamic balance of various soil K forms [51,52]. Notably, the soil EOC and DOC
had significant differences between the straw incorporation and without straw. Previous
studies demonstrated that straw decomposition facilitated the accumulation of active
organic carbon and the release of nutrients in the soil [10]. Therefore, NPKS treatment has
been proven to significantly improve soil K and OM content synchronously compared with
no straw or K fertilizer input, thereby enhancing crop yield and soil fertility via microbial
activities (Figure 7).

4.3. Effects of Long-Term Straw Returning and K Fertilizer on the Soil Microbial Alpha Diversity

As the results show, the microbial community structure and composition are closely
related to the soil properties (Figure 7). Different fertilization treatments changed the
physical and chemical soil properties of farmland, affecting the community diversity of
soil microorganisms. Consistent with the previous results reported in the paddy-upland
rotation system [53,54], alpha diversity analysis showed different effects of long-term
straw incorporation and fertilization on the richness and diversity of the microbial com-
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munity. The PCoA plot showed significant differences (p < 0.05) in bacterial and fungal
community structure under different treatments (Figure 4), which was consistent with
the results of Bai et al. [11], who documented clear separation of bacterial and fungal
community composition between the straw utilization with no straw utilization and K
fertilizer application with no K fertilizer. In this experiment, compared with NP treatment,
the application of chemical K fertilizer (NPK treatment) for ten years caused bacterial and
fungal richness index and diversity index to decrease (Table 3). Guo et al. [25] had shown
that long-term single fertilizer significantly reduces the richness and diversity of bacteria,
which was consistent with our result. However, the addition of crop straw (NPS and NPKS
treatment) could increase the richness index and diversity index compared with those of
NPK treatment. This was because straw incorporation provided exogenous organic carbon
resources for bacteria and fungi living, which was conducive to their breeding growth,
reduced competition between them, and enhanced diversity of soil bacterial and fungal
communities [17,38]. Therefore, straw incorporation directly affects the microbial alpha
diversity by promoting or inhibiting the change of soil bacterial and fungal composition,
further impacting the soil biological fertility.

Furthermore, the correlation analysis of soil properties and diversity index (Tables S2 and S3)
implied that the Simpson and Shannon indexes of bacteria and fungi were significantly positively
correlated with SOM, EOC, and DOC and that they had a negative correlation with pH and
available K. Prior studies all have shown that the adverse impact of soil acidification in paddy
soil caused by the superfluous application of N or NPK fertilizer on soil microbial diversity
far exceeded the positive effect of fertilization [55,56]. Therefore, applying organic fertilizer in
combination with NPK chemical fertilizer was reported to be more effective than applying NPK
fertilizer alone in the future for microbial diversity.

4.4. Effects of Long-Term Straw Returning and K Fertilizer on the Soil Microbial Community

At present, there has been no more attention as to the effect of long-term straw re-
turning with K fertilizer on soil microbial community composition in paddy soil, and
the reported results were not consistent [57]. In this study, the predominant bacterial
phyla (Figure 2) in four treatments were Proteobacteria and Acidobacteria, at an average
of 32.0% and 16.9%, which is consistent with those reported by Wang et al. [31] and Guo
et al. [25] based on agricultural soils. Although the 10-year fertilization results in differ-
ences in soil nutrient content, the effect of that on the category of predominant bacteria
in each treatment was not noteworthy. Proteobacteria, Nitrospirae, Firmicute, and Acti-
nobacteria (i.e., R-strategist) are considered as copiotrophic groups, while Acidobacteria,
Actinobacteria, Chloroflexi, and Planctomycetes were typical oligotrophic (i.e., K-strategist)
bacteria [58]. Sun et al. [59] found that the relative abundance of Proteobacteria was sig-
nificantly positively correlated with soil C and N content. Our study also confirmed that
NPS treatment had a higher relative abundance of Proteobacteria than other treatments,
while the application of K fertilizer had no significant impact on the dominant bacterial
groups (Figure 2). Both long-term and short-term studies have found that the abundance
of Acidobacteria decreased significantly with the increase in NPK fertilizer, which was
closely associated with soil pH value [56,60], whereas, in our study, the relative abun-
dance of Acidobacteria, serving as typically oligotrophic bacteria in NP (15.4%) and NPKS
(24.3%) treatments, was higher than that in NPK (13.6%) and NPS (14.8%) treatments, in
contradiction with previous research. This may be related to the increase in the special sub-
group function of Acidobacteria, which, in terms of the genus, were unclassified Subgroup
3, unclassified Subgroup 6, unclassified Subgroup 17, and uncultured Desulfovirga sp.
(Figure 3). Additionally, the content of available K in NP was not enough for plant growth,
and thereby insufficient K application could stimulate the propagation of Acidobacteria
phylum community, activating the insoluble mineral ions in the soil.

In the fungi groups, Ascomycota (eutrophic) and Basidiomycota (oligotrophic) were
the dominant phyla [11,31] communities in the four treatments, at an average of 48.1% and
24.8%, respectively; they are important decomposers based on organic substrates, such
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as wood, fallen leaves, and feces [17]. Figure 2 shows that compared with NP treatment,
NPS and NPKS treatments significantly increased the abundance of Ascomycota and
significantly decreased the relative abundance of Basidiomycota and Mortierellomycota.
In contrast, the NPK treatment had the contrary result, which is in accordance with that
reported by Wang et al. [31]. From the result of Table 2, we observed that the NPK
treatment had a lower SOM and active carbon content in contrast to the NPS and NPKS
treatments. As a class of fungi that can decompose cellulose into Ascomycota, Chaetomium
can decompose cellulase and xylanase, which play important roles in the carbon cycle
of the natural ecosystem and can result in soil improvement [61,62]. This again proves
that abundant organic carbon leads to an increase in the relative abundance of eutrophic
fungi and a decrease in the relative abundance of oligotrophic fungi. Moreover, the
relative abundance of Mortierellomycota and Olpidiomycota in the NP treatment was
higher than that in others. Some of those species belonged to pathogenic fungi generating
polyketides, terpenoids, and nonribosomal peptides to cause plant disease [31]; hence,
insufficient K content may induce the growth and reproduction of harmful fungi in paddy
soil [63]. Particularly, according to the results of the cluster analysis at the genus level,
there were significant differences in the distribution of fungal species among nutrient
deficiency treatments (Figure 5), which may be closely related to soil nutrient status. This
phenomenon was also found in the results of redundancy analysis, i.e., EOC, DOC, and
slowly available K had the maximal influence on the fungal community (Figure 6b).

As can be seen from Table 2, after 10 years of fertilization management, the soil
organic C resource and the available K content changed significantly among treatments; in
particular, the available K content in the NP and NPK treatments decreased significantly,
which was mainly because crop harvest took away a large amount of K, leading to the
imbalance of K in farmlands [53]. However, straw incorporation could clearly increase
active organic C, as EOC and DOC. Therefore, the content of EOC, DOC, available K,
and slowly available K became the most important index affecting the relative abundance
of microbial community. Fan et al. [63] combined ecological network theory with the
ecological resistance index to evaluate the responses of microbial community to wheat
production under the condition of long-term fertilization. Their results suggest that the
microbial resistance indirectly drives the effects of nutrient fertilization on plant production.
Two mechanisms may explain the role of microbial resistance to nutrient fertilization
in the promotion of plant production: (1) resistant microbial community with organic
fertilizer addition could facilitate plants acquiring more nutrients and less competition
from microbial species in soil; (2) low responsive microbial community may lead to lower
relative abundance of potential fungal plant pathogens. Our research also indicated that the
microbial diversity and community influenced rice yield and oilseed rape yield; moreover,
the bacterial community had a higher impact than fungal community on the crop yield.
Therefore, crop straw residue returning could alleviate the toxic effect of long-term potash
fertilization on microbial population and stimulate crop yield as well as soil C sequestration.

5. Conclusions

In the present study, we found that ten years of continuous crop residue management
and K fertilizer application in the rice–oilseed rape rotation significantly improved the crop
yield; altered soil physiochemical properties such as SOC, EOC, DOC, available K, and
slowly available K; and, therefore, modified the diversity and composition of soil bacterial
and fungal communities. The long-term application of K fertilizer and straw returning had
a significant increase rate in yield after one crop rotation, and NPKS treatment resulted
in the best effect. The application of K fertilizer significantly decreased the richness and
diversity index of soil bacterial and fungal populations compared to NP treatment. At the
same time, continuous straw incorporation could alleviate the negative effect of K fertilizer
on microbial composition. The NPKS treatment increased the relative abundance of the
copiotrophic bacteria, such as the Firmicutes, Gemmatimonadetes, and Proteobacteria
phyla, and the relative abundance of Ascomycota. Available K, SOM, DOC, and EOC
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were closely related to alterations in the composition of the soil bacterial community; EOC,
DOC, and slowly available K were significantly correlated with fungal community. These
findings provide deep insights into the role of straw incorporation coordinated with K
fertilizer on the dynamic change of yield of rice and oilseed rape, and shape soil bacterial
and fungal communities and their relationship with soil properties and crop yield.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/agriculture11121233/s1, Figure S1: Rarefaction curves for (a) bacteria and (b) fungi in the four
treatments. Table S1: Detailed sequencing depth results of soil samples under different treatments.
Table S2: The correction of soil properties with bacterial community structures. Table S3: The
correction of soil properties with fungal community structures.
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