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Abstract: Considering the pollution of potentially toxic elements (PTEs) in the soils of China, the
present study analyzed the current state and influencing factors of PTEs in oasis soils using the
model of absolute principal component score–multiple linear regression in the piedmont zone of
the Tianshan Mountains. The possible non-carcinogenic and carcinogenic risks of PTEs at current
concentrations were also explored using a human-health risk-assessment model. The results sug-
gested that the extent to which potentially toxic elements in the soils of different geographical units
in the study area is affected by human activities varies considerably. The PTEs Cd and As in the soils
of the Yili River Watershed were the most strongly influenced by human activities, reaching levels
of 40% and 59%, respectively. However, in the Bortala River Watershed, Cu, Cd, and As were the
most strongly influenced by human activities, reaching levels of 33%, 64%, and 76%, respectively.
Geographical units with a high degree of economic development (e.g., the Yili River Watershed)
had, in contrast, low levels of PTE pollution caused by human activities, which may be related
to the regional economic development structure. The human health risk assessment showed that
the non-carcinogenic and carcinogenic risks of PTEs are currently below the threshold. However,
increasing the arsenic content to 1.78 times the current level in the Bortala River Watershed would
lead to carcinogenic risk. For the Yili River Watershed, a 3.33-fold increase in the arsenic content
above its current level would lead to a carcinogenic risk. This risk should be addressed, and targeted
environmental-protection measures should be formulated. The present research results will provide
important decision support for regional environmental protection.

Keywords: geochemical composition; influencing factors; human health risk; absolute principal
component score–multiple linear regression; oasis soil; arid central Asia

1. Introduction

Anthropogenic modifications of the natural environment have become more preva-
lent over the past century and have altered the structure and functional relationships
of different ecosystems at a range of scales [1–3]. Soil is the foundation of sustainable
agricultural development [4,5], and soil quality has significant effects on human health.
Therefore, it is understandable that the amount of pedological research has increased
rapidly in recent decades [6,7]. With population growth and economic development, soil
environmental problems in many countries have become increasingly prominent [8–10].
Among soil’s geochemical components, potentially toxic elements (PTEs) are the main
pollutants in farmland soils [11,12]. The pollution from PTEs in farmland soil is related to
the quality and safety of agricultural products and the health of farmland ecosystems [13]
and has attracted wide attention from governments and scientists of various countries.
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PTEs are affected by both the natural environments in which they form and the degree
of influence from anthropogenic activity [14,15]. There are many existing models and
methods for the apportionment of soil pollution sources, including multivariate statistical
methods [16], isotope tracing methods [17,18], receptor models of positive matrix factoriza-
tion (PMF) [19–21], the chemical mass balance (CMB) model [22], and absolute principal
component score–multiple linear regression (APCS-MLR) [23]. The multivariate statistical
method qualitatively determines the sources of certain PTEs by identifying PTEs with
similar distribution characteristics. The isotope tracing method uses the differences in the
isotope ratios of PTEs from different sources to identify the sources and their contributions.
Understanding the sources of PTEs polluting the soil, in order to formulate and adopt corre-
sponding source reduction and prevention measures, is a fundamental measure necessary
to protect the quality of farmland soil and the safety of agricultural products [24].

Xinjiang Province is an important agricultural base in China; since its establishment in
the 1950s, agricultural production in the area has developed considerably. Oasis agriculture
is the main farming technique used in arid regions of China [25]. Most oases are located
in the piedmont zone, where there is sufficient water supply [26–28]. Although much
pedological research has focused on land use [29–31], soil salinization [32,33], and oasis
evolution [34] in oasis regions and PTE pollution in coal mining areas [35], such as the
southern margin of Tarim Basin [36], Yanqi County [37], and Bosten Lake Watershed [38],
few studies have investigated the geochemical composition and PTE concentrations in soils
from oasis agricultural regions. Even basic quantitative data are lacking on the impacts
of anthropogenic influences on PTE variations in oasis soils over the past decades. The
scientific question of this study is as follows: Under the influence of high-intensity human
activities, have the potentially toxic elements in the soil changed significantly, and are the
types of PTE pollution in the soils of different regions spatially consistent or heterogeneous?

To quantify whether high-intensity exploitation in Xinjiang, China, has commensu-
rately affected the PTE composition and soil quality in the region, we present data from
soil surveys of the PTE compositions of surface soils (0–20 cm in depth) from two major
oases (the Yili River Watershed and Bortala River Watershed). Using multivariate statistical
methods and the APCS-MLR model, the characteristics of PTEs and the differences in their
responses to social and economic development are explored in the soils of different geo-
graphic units in the piedmont zone of the Tianshan Mountains. This research is expected to
provide support for advancing ecological and environmental protection in Xinjiang, China.

2. Materials and Methods
2.1. Sample Collection and Analysis

In July 2018, soils were collected from the irrigated croplands in two oasis regions (Yili
River Watershed and Bortala River Watershed) on the slopes of the Tianshan Mountains,
Xinjiang Uygur Autonomous Region of China (Figure 1). The soil-sample collection
localities are shown in Figure 1 for Bortala River Watershed (E01–E29) and Yili River
Watershed (H01–H39). Each sample was a bulked composite of five sub-samples taken as a
10 × 10 m block using the diagonal sampling method [39–41]. According to the Global Soil
Maps and Databases from the FAO soils portal (https://www.fao.org/soils-portal/data-
hub/en/, accessed on 20 August 2021) and the international standard soil classification
(World Reference Base for Soil Resources, WRB), the soils in Bortala River Watershed
(E01–E29) are Leptosols and Regosols (LP); for the Yili River Watershed, soils H01–H16
are Cambisols (CM), while the others are Leptosols and Regosols (LP) (H17–H39). Soil
samples used for geochemical analyses were collected from a 0–20 cm depth at each locality.
After air-drying, each composite sample was split into two subsamples, which were then
extracted by quartering, a technique that homogenizes a sample by thoroughly mixing it,
dividing it into four parts, and retaining two opposite quarters. The measurement of soil
grain size is based on our previously published paper [42,43]. According to the classification
standard of soil grain size [44], a recalculation was carried out, and the contents for sand
(0.05 to 2.0 mm), silt (0.002 to 0.05 mm) and clay (<0.002 mm) was collected. The analysis
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of soil organic matter content is determined by the loss-on-ignition method [45]. The pH is
measured by the potentiometric method using a suspension of soil and distilled water with
a soil-to-water ratio of 1:5 [46,47]. Bulk sediments were dried at 105 ◦C, ground through a
200 µm mesh, digested with HF–HNO3–HClO4 in a MWS-3 microwave digester (Berghof,
Eningen, Germany) and prepared for geochemical analysis using a Profile inductively
coupled plasma spectrometer (ICP-AES, Leeman Labs, Hudson, NH, USA). To ensure the
data quality of the PTEs, blanks, duplicates and standard samples (China national standard
soil samples, GBW0731) were set during the determination process. The detection limits
for Fe, V, Cr, Co, Ni, Cu, Zn, As, Cd, and Pb were, respectively, 5, 2, 0.1, 0.01, 0.05, 0.02,
0.2, 0.1, 0.01, and 0.02 mg kg−1. The standard solutions for China national standard soil
samples (GBW0731) were repeated 11 times, and the recovery was 99.1–101.5%. Duplicates
were randomly selected as parallel samples, and the deviation of the measurement results
of parallel samples was less than 5%.
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2.2. Multivariate Statistical Analysis

A two-way cluster analysis can group different features into significant sets [48,49].
For the cluster analysis, elemental contents were transformed via z-score standardization,
z = (X − µ)/σ, where z is the z-score, X is the elemental content, µ is the mean value of the
elemental contents, and σ is the standard deviation. The nearest-neighbor cluster method
using Pearson’s correlation distance was utilized for cluster analysis. Factor analysis was
conducted for the possible influencing factors of PTEs [50–52]. The optimal cluster number
was determined with the elbow method [53,54], and the linear fitting method was used
to explore the possible relationship between PTEs and natural background elements [55].
Statistical methods for analyzing surface soil data were conducted using the software
OriginPro 2022 learning edition (OriginLab, Northampton, MA, USA).

2.3. The Model of Absolute Principal Component Score–Multiple Linear Regression (APCS-MLR)

Quantitative analysis of pollution sources is an important basis for the environmental
management of watershed soils, and the APCS-MLR model was used to obtain the degree
of contribution from different material sources to potentially toxic elements in the soil. The
APCS-MLR method was based on previously published articles [56–60]. The measured
content, C, for PTEs was used as the dependent variable, and the absolute principal
component (APCS) was used as the independent variable to perform the multiple linear
regression analysis (for the calculation of APCS, refer to references [36–40]). The regression
coefficient was obtained using Equation (1):

Cj = ∑
k

akj · APCSkj + bj (1)

where Cj is the measured content of the potentially toxic element j, akj represents the
regression coefficient between Cj and the material source k, and bj is the constant term of
the multiple linear regression. In this model, akj·APCSkj expresses the contribution of the
pollution source k to Cj.

2.4. Human Health Risks from PTEs

Methods are widely used for assessing the non-carcinogenic and carcinogenic human
health risks of PTEs in soil [61–65]. These methods include the following:

For non-carcinogenic risk:

ADDing =

(
C × IngR × EF × ED

BW × AT

)
× 10−6 (2)

ADDdermal =
C × SA × AF × ABS × EF × ED

BW × AT
(3)

ADDinh =
C × InhR × EF × ED

PEF × BW × AT
(4)

HQ = ∑
ADDx

R f Dx
(5)

For carcinogenic risk:

LADDing =

(
C × IngR × EF × ED

BW × LT

)
× 10−6 (6)

LADDdermal =
C × SA × AF × ABS × EF × ED

BW × LT
(7)

LADDinh =
C × InhR × EF × ED

PEF × BW × LT
(8)

CR = ∑(LADDx × SFx) (9)
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The abovementioned parameters for the health risk assessment of PTEs; the exposure
concentrations in the Bortala River Watershed (CBortala, mg kg−1) and Yili River Watershed
(CYili, mg kg−1); the reference doses (mg kg−1 day−1) for oral (Oral RfD), inhalation (Inhal.
RfD), and dermal (Dermal RfD), and the slope factor ((mg kg−1 day−1)−1) for the SF of
oral (Oral SF), inhalation (Inhal. SF), and dermal (Dermal SF) delivery methods are shown
in Tables 1 and 2.

Table 1. Parameters for the health risk assessment of potentially toxic elements.

Parameters Description Units Value References

ADDing
LDDing

Average daily intake
from ingestion mg kg−1 day−1

ADDdermal
ADDdermal

Average daily intake from
dermal contact mg kg−1 day−1

ADDinh
ADDinh

Average daily intake
from inhalation mg kg−1 day−1

HQ Non-carcinogenic risk unitless HQ < 1, no significant risk; HQ > 1,
non-carcinogenic effects may occur. [61–63]

CR Carcinogenic risk unitless Acceptable/tolerable risk range:
10−6–10−4 [61–63]

C Concentration of PTE mg kg−1 upper limit of the 95% confidence
interval for the mean (95% UCL). [61,65]

IngR Ingestion rate mg/day 200 [63]
InhR Inhalation rate m3/day 20 [64]
SA Skin area available for soil contact cm2 5700 [64]
AF Skin adherence factor mg cm−2 day−1 0.2 [61,63]
ABS Absorption factor unitless 0.001, for As 0.03 [63–65]
PEF Particle emission factor m3/kg 1.36 × 109 [63,64]
EF Exposure frequency day/year 350 [64]
ED Exposure duration year 24 [64]
BW Body weight kg 60 [64]
AT Average time day ED × 365 [61,64]
LT Lifetime expressed in days day 70 × 365 [61]
Rfd Reference dose mg kg−1 day−1 Table 2 [61,65]
SF Slope factor (mg kg−1 day−1)−1 Table 2 [61,65]

Table 2. Exposure concentration in Bortala River Watershed(CBortala, mg kg−1) and Yili River Watershed(CYili, mg kg−1)
and the reference dose (mg kg−1 day−1) for oral (Oral RfD), inhalation (Inhal. RfD) and dermal (Dermal RfD), slope factor
([mg kg−1 day−1]−1) for SF for oral (Oral SF), inhalation (Inhal. SF) and dermal (Dermal SF).

Element CBortala CYili Oral RfD Inhal. RfD Dermal RfD Oral SF Inhal. SF Dermal SF

As-non canc. 24.1 12.9 3.0 × 10−4 3.0 × 10−4 1.23 × 10−4

As-cancer 24.1 12.9 1.5 15.1 3.66
Cd-non canc. 0.27 0.25 1.0 × 10−3 1.0 × 10−3 1.0 × 10−5

Cd-cancer 0.27 0.25 6.3
Co-non canc. 10.4 10.9 2.0 × 10−2 5.69 × 10−6 1.6 × 10−2

Co-cancer 10.4 10.9 9.8
Cr-non canc. 48.1 52.2 3.0 × 10−3 2.86 × 10−5 6.0 × 10−5

Cr-cancer 48.1 52.2 42.0
Cu 26.0 24.2 4.0 × 10−2 4.0 × 10−2 1.2 × 10−2

V 77.8 80.1 7.0 × 10−3 7.0 × 10−3 7.0 × 10−5

Ni-non canc. 26.8 25.3 2.0 × 10−2 2.0 × 10−2 5.4 × 10−3

Ni-cancer 26.8 25.3 0.84
Pb 19.2 20.1 3.5 × 10−3 3.51 × 10−3 5.25 × 10−4

Zn 82.9 74.0 0.3 0.3 6.0 × 10−2
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3. Results
3.1. General Features of the Soil Element Contents

The mean values of sand, silt and clay content in the Bortala River Basin were 30.15%,
54.85% and 15%, respectively, while the mean value of soil organic matter was 1.41% and
soil pH was 8.34. The mean values of sand, silt and clay content in the Yili River Basin were
25.46%, 56.40% and 18.13%, respectively, while the mean value of soil organic matter was
1.61% and soil pH was 8.28. The distribution of soil texture, pH, and organic matter content
of each soil sample was shown in Figures S1 and S2. The descriptive statistics for element
concentrations in the surface soil samples are presented in Tables 3 and 4. In these tables,
the unit for all elements is milligrams per kilogram. There are some differences between
the concentrations of key elements analyzed in the soil samples and those reported for
the upper continental crust (UCC) [66]. In terms of the mean value, Fe, V, Cr, Co, Ni, and
Cu were relatively depleted in the soils of the study area compared to UCC, while Pb
and Zn were relatively enriched; and the elements Cd and As were significantly enriched.
Although this phenomenon was observed in both regions, a comparison of the elemental
contents of the two regions shows that the As content in the soils of the Bortala River
Watershed (with a mean value of 20.03 mg kg−1) was much greater than that in the Yili
River Watershed (with a mean value of 12.03 mg kg−1).

Table 3. Descriptive statistical results of the soil elements of irrigated cropland in the Bortala River Watershed compared
with the upper continental crust (UCC).

Element N Mean SD SE Lower 95%
CI of Mean

Upper 95%
CI of Mean Minimum Median Maximum UCC

Fe 29 29,758.03 4858.37 902.18 27,910.01 31,606.05 17,038.54 31,141.56 39,014.14 53,300
V 29 72.87 12.94 2.40 67.94 77.79 38.20 75.80 94.35 97
Cr 29 44.87 8.42 1.56 41.66 48.07 26.86 45.74 64.22 92
Co 29 9.72 1.85 0.34 9.02 10.43 5.50 9.67 13.89 17.3
Ni 29 24.99 4.73 0.88 23.19 26.78 14.27 24.72 36.69 47
Cu 29 24.07 5.02 0.93 22.16 25.98 15.57 25.09 32.67 28
Zn 29 77.36 14.65 2.72 71.79 82.93 43.88 77.53 107.74 67
As 29 20.03 10.62 1.97 15.99 24.07 11.97 16.71 61.81 4.8
Cd 29 0.24 0.09 0.02 0.21 0.27 0.13 0.22 0.54 0.09
Pb 29 17.93 3.32 0.62 16.67 19.19 9.75 18.35 25.78 17

Table 4. Descriptive statistical results of the soil elements of irrigated cropland in the Yili River Watershed.

Element N Mean SD SE Lower 95%
CI of Mean

Upper 95%
CI of Mean Minimum Median Maximum UCC

Fe 39 29,674.33 2951.28 472.58 28,717.64 30,631.03 22,661.35 29,592.25 35,380.00 53,300
V 39 77.53 7.90 1.26 74.97 80.09 56.61 77.94 91.42 97
Cr 39 50.01 6.69 1.07 47.84 52.18 31.94 49.94 61.83 92
Co 39 10.43 1.47 0.24 9.95 10.91 7.61 10.25 12.82 17.3
Ni 39 24.00 3.93 0.63 22.73 25.28 15.71 24.00 30.94 47
Cu 39 22.72 4.41 0.71 21.29 24.15 13.20 22.18 31.77 28
Zn 39 70.38 11.25 1.80 66.73 74.02 47.98 69.74 93.91 67
As 39 12.03 2.58 0.41 11.19 12.86 6.98 11.66 17.73 4.8
Cd 39 0.23 0.05 0.01 0.22 0.25 0.12 0.23 0.35 0.09
Pb 39 19.10 2.20 0.35 18.38 19.81 14.25 19.28 23.12 17

3.2. Cluster Types for the Soil Samples and the PTEs

The cluster analysis results are shown in Figure 2. Here, polar heatmaps reflect the
degree of similarity between each element and were applied to determine whether un-
derlying relationships existed between the concentrations of different elements. Based
on the optimal cluster number determination (Figure S3), four assemblages were in-
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cluded in the dendrogram for the cluster analysis of the PTEs in the Bortala River Water-
shed (Figures 2a and S3a) and three major clusters were included for the PTEs in the Yili
River Watershed (Figures 2b and S3b). For the PTEs in the soil of the Bortala Watershed
(Figure 2a), the first clustering category was As; the second category was Cd; the third
category was Cu; and the fourth cluster was Pb, Zn, Ni, Co, Cr, and V. For the PTEs in
the soil of the Yili River Watershed, the first cluster was As and the second was Cd, which
is consistent with the clustering characteristics of PTEs in the soil of the Bortala River
Watershed. However, in the Yili River Watershed (Figure 2b), the third category was Pb,
Zn, Cu, Co, Ni, Cr, and V, which was significantly different from the soil in the Bortala
River Watershed. The element cluster analysis reflects the differences and commonalities
between the different regions.
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The content of PTEs in the cluster analysis was subject to Z-score standardization.
Consequently, the distribution of extreme values of the elements can be visualized intu-
itively from the polar heatmaps. For example, for PTEs in the soil of the Bortala River
Watershed, the As contents of the three sample points E6, E7, and E8 were the highest
among all samples. For the two samples of E26 and E28, the contents of PTEs in the fourth
cluster group (Pb, Zn, Ni, Co, Cr, and V) were the smallest. At the same time, the potentially
toxic elements in the soil of the Bortala River Watershed exhibited obvious differences
between the first and second cluster group elements (As and Cd) and the fourth cluster
group elements (Pb, Zn, Ni, Co, Cr, and V; e.g., at E6, E7, E8, etc). For the soils in the Yili
River Watershed, the content of potentially toxic elements in the different clusters of the soil
generally showed synergistic changes, which was different from the results in the Bortala
River Watershed. For example, at H34, H30, H32, H31, H28, H27, H24, H21, H35, H11, H20,
H36, H1, H4, and other samples, the content of the first cluster element (As) was high as
were the contents of the third cluster elements (Pb, Zn, Cu, Co, Ni, Cr, and V). In addition,
based on the distance of the sample clustering in Figure 2, the differences between soil
samples in the Bortala River Watershed were larger than the differences between those in
the Yili River Watershed. The above phenomenon indicates that common factors affect the
contents of potentially toxic elements in the two regions but that differences also exist.

3.3. Principal Component Analysis Results

Studies have shown that principal component analysis (PCA) has significant ad-
vantages in distinguishing the main sources of soil elements [67–69]. Through principal
component analysis and calculations, all information on the nine PTEs (nine variables) in
the soils of the Bortala River Watershed were reflected by two principal components, with
82.9% total variance (component 1 and 2, Figure 3a); i.e., analysis of the first two compo-
nents was able to reflect most of the information for all the data. The contribution rate of the
first principal component was 63.8%, which was characterized by the higher positive loads
of the factor variables on the concentrations of V (0.836), Cr (0.896), Co (0.947), Ni (0.0.845),
Cu (0.850), Zn (0.883), and Pb (0.886). However, smaller loadings were observed for As
(0.227) and Cd (0.520). The first principal component clearly dominated sources of the PTEs
V, Cr, Co, Ni, Cu, Zn, and Pb in the soils. The contribution rate of the second principal
component was 19.1%, and the loads of As and Cd were 0.862 and 0.644, respectively.
Therefore, the second principal component characterized the source contributions of the
PTEs Cd and As in the soils.

In the Yili River Watershed, complete information on the nine PTEs (V, Cr, Co, Ni,
Cu, Zn, As, Cd, and Pb) in the soils was also reflected by the two principal components
(components 1 and 2, Figure 3b), with 84.5% total variance. The contribution of the first
principal component (component 1) was 74.1% and was characterized by a high positive
loading of the factor variables on the concentrations of V (0.923), Cr (0.869), Co (0.936),
Ni (0.926), Cu (0.887), Zn (0.886), As (0.604), Cd (0.733), and Pb (0.923). The first principal
component was the dominant source of PTEs in the soils. The contribution of the second
principal component was 10.4%, and the loadings on As and Cd were 0.649 and 0.334,
respectively. Thus, the second principal component partly dominated the PTEs As and Cd
in the soils.

The PCA results showed some differences between the sources of potentially toxic
elements in the soils of the Bortala and Yili river watersheds. Although all nine PTEs were
controlled by two sources, control of the primary material source of PTEs was greater in
the Yili River Watershed than in the Bortala River Watershed.
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3.4. Human Health Risks for PTEs

According to the results of the non-carcinogenic health risk assessment of PTEs in the
soil of the Bortala River Watershed (Table 5), As had the largest non-carcinogenic health risk
(0.363), but this risk was not significant [61–63]. The health risk ranking of the considered
PTEs was As > Cr > V > Pb > Ni > Cu > Co > Cd > Zn. Among these PTEs, As, Cd, Co, Cr,
and NI were the only five PTEs that had potential carcinogenic risks. As had the highest
potential carcinogenic risk, with 5.61 × 10−5. This value falls between 10−4 and 10−6,
which is an acceptable risk level for carcinogenesis [61–63].
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Table 5. Non-carcinogenic (HQ, HI) and carcinogenic risks (RISK) for potentially toxic elements (PTEs) in the Bortala River
Watershed and Yili River Watershed.

Region PTE HQing HQinh HQdermal HI = ΣHQi RISK

Bortala

As-non. 0.256 1.89 × 10−5 0.107 0.363
As canc. 3.96 × 10−5 2.93 × 10−8 1.65 × 10−5 5.61 × 10−5

Cd-non. 8.72 × 10−4 6.41 × 10−8 4.97 × 10−4 1.37 × 10−3

Cd-canc. 1.39 × 10−10 1.39 × 10−10

Co-non. 1.67 × 10−3 4.31 × 10−4 1.19 × 10−5 2.11 × 10−3

Co-canc. 8.23 × 10−9 8.23 × 10−9

Cr-non. 5.12 × 10−2 3.95 × 10−4 1.46 × 10−2 6.62 × 10−2

Cr-canc. 1.63 × 10−7 1.63 × 10−7

Cu 2.08 × 10−3 1.53 × 10−7 3.94 × 10−5 2.12 × 10−3

V 3.55 × 10−2 2.61 × 10−6 2.02 × 10−2 5.58 × 10−2

Ni-non. 4.26 × 10−3 3.13 × 10−7 9.00 × 10−5 4.35 × 10−3

Ni-canc. 1.81 × 10−9 1.81 × 10−9

Pb 1.75 × 10−2 1.29 × 10−6 6.66 × 10−4 1.82 × 10−2

Zn 8.84 × 10−4 6.50 × 10−8 2.52 × 10−5 9.09 × 10−4

Yili River

As-non. 0.137 1.01 × 10−5 5.71 × 10−2 1.94 × 10−1

As-canc. 2.11 × 10−5 1.56 × 10−8 8.82 × 10−6 3.00 × 10−5

Cd-non. 7.99 × 10−4 5.88 × 10−8 4.55 × 10−4 1.25 × 10−3

Cd-canc. 1.27 × 10−10 1.27 × 10−10

Co-non. 1.74 × 10−3 4.51 × 10−4 1.24 × 10−5 2.21 × 10−3

Co-canc. 8.62 × 10−9 8.62 × 10−9

Cr-non. 5.56 × 10−2 4.29 × 10−4 1.58 × 10−2 7.19 × 10−2

Cr-canc. 1.77 × 10−7 1.77 × 10−7

Cu 1.93 × 10−3 1.42 × 10−7 3.67 × 10−5 1.97 × 10−3

V 3.66 × 10−2 2.69 × 10−6 2.08 × 10−2 5.74 × 10−2

Ni-non. 4.04 × 10−3 2.97 × 10−7 8.53 × 10−5 4.13 × 10−3

Ni-canc. 1.71 × 10−9 1.71 × 10−9

Pb 1.81 × 10−2 1.33 × 10−6 6.87 × 10−4 1.88 × 10−2

Zn 7.89 × 10−4 5.80 × 10−8 2.25 × 10−5 8.11 × 10−5

For the Yili River Watershed (Table 5), arsenic also had the largest non-carcinogenic
health risk, with 0.194, and reflected no significant risk. The difference between the river
watersheds of Yili and Bortala in their health risk rankings of the other PTEs was small and
was mainly reflected in the order of Co and Cu. The ranking in the Yili River Watershed
was As > Cr > V > Pb > Ni > Co > Cu > Cd > Zn. Arsenic had the highest potential
carcinogenic risk with 3.0 × 10−5. This value falls between 10−4 and 10−6, which is also an
acceptable risk level for carcinogenesis.

Judging from the level of non-carcinogenic health risks caused by all PTEs, the Bortala
River Watershed presents a greater risk than the Yili River Watershed. The total non-
carcinogenic risk of the Bortala River Watershed was 0.514 (Total HI in Table 5), whereas
that of the Yili River Watershed was 0.352 (Total HI in Table 5). The carcinogenic risk of As
in the soil of the Bortala River Watershed was 1.87 times that of the Yili River Watershed.

4. Discussion

In the two sampling areas, the content of the major element Fe was about 30 g kg−1.
Due to its high content, Fe is generally not affected by human activities. In a large number
of studies, Fe was used as a reference element to study the impacts of human activities
on potentially toxic elements relative to natural background levels [70–72]. Potentially
toxic elements in soils originate partly from the weathering of bedrock and partly from
the contamination of soils by human activities. By establishing the functional relationship
between potentially toxic elements and the natural background element Fe, the degree of
influence from each potentially toxic element controlled by natural factors can be explored.
For the Bortala River Watershed, the coefficients of determination for the linear fitting
equation were 78%, 70%, 84%, 63%, 73%, and 65% for V, Cr, Co, Ni, Pb, and Zn, respectively
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(Figure 4). These values suggested that natural effects control the variation in these PTEs.
Therefore, component 1 in the PCA was set as natural effects (Figure 3). However, the
coefficients of determination for Cu, Cd, and As were only 42%, 8%, and 0.7%, respectively
(Figure 4). In other words, the influence of human activities on these potentially toxic
elements was significant and has altered the characteristics of the potentially toxic elements
in their natural context. Therefore, component 2 was determined to be anthropogenic
factors (Figure 3). For the Yili River Watershed, the coefficients of determination for the
linear fitting equation were 88%, 64%, 70%, 77%, 62%, 66%, and 73%, respectively, for
V, Cr, Ni, Co, Cu, Zn, and Pb in the soils (Figure 5). The national soil pollution survey
bulletin showed that the five inorganic elements Cd, Hg, As, Cu, and Pb were the primary
pollutants in the soils of China [73]. Through our research, we also found that the As,
Cd, and Cu levels in the soils of the Bortala River Watershed were significantly affected
by human activities and the As and Cd contents in the soils of the Yili River Watershed
were found to be strongly affected by human activities among the whole PTEs (V, Cr,
Co, Ni, Pb, Zn, Cu, Cd, As). Compared to the soil in the Bortala River Watershed with
the coefficients of determination of 8.5% and 0.7% for Cd and As, respectively (Figure 4),
the coefficients of determination for the linear fitting equation for Cd and As in the Yili
River watershed were 35%, and 39%, respectively (Figure 5). Thus, it suggested that the
influences of human activities on PTEs in the Yili River were much stronger than those in
the Bortala River watershed.
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To quantitatively evaluate the influence of human activities on potentially toxic el-
ements, the APCS-MLR model was used to calculate the degree of impact from each
potentially toxic element. The fractions of potentially toxic elements V, Cr, Co, Ni, Pb, Zn,
Cu, Cd, and As in the soils of the Bortala Basin that originated from human activities were
12%, 6%, 14%, 8%, 17%, 27%, 33%, 64%, and 76%, respectively. On average, the three PTEs
Cu, Cd, and As were most strongly affected by human activities, which is consistent with
the results of the cluster analysis. The percentages of human sources and natural sources
for As, Cd, and Cu at each point are shown in Figure S4. The three sites with the highest
As contents (E6, E7, and E8, as shown in the polar heatmap (Figure 2)) were also the most
strongly affected by human activities, reaching 82%, 84%, and 89%, respectively.

The potentially toxic elements V, Cr, Ni, Co, Cu, Zn, Pb, Cd, and As in the soils of
the Yili River watershed were derived from human activities, accounting for 4%, 10%,
10%, 24%, 21%, 22%, 25%, 40%, and 59%, respectively. Based on the mean values, the two
potentially toxic elements Cd and As were the most strongly affected by human activities
(cluster 1 and cluster 2 in the cluster analysis (Figure 2)). Unlike in the Bortala River
Watershed, the high values of the potentially toxic elemental As in the soils of the Yili River
Watershed were not necessarily high due to exposure to human activities. For example,
the points with the maximum values of arsenic are H22 and H23 in the cluster analysis
diagram (Figure 2), but the point most affected by human activities is H09 (Figure S5),
reaching 72%. At the same time, H09 is also the point where Cd was most affected by
human activities. In this paper, we investigated the change trends of potentially toxic
elements relative to their natural occurrences by considering the soil as a whole and using
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elemental Fe as a background element. The physicochemical properties of the soils (e.g.,
grain size [74], pH [75], total organic matter [76], etc.) will have a direct impact on the
distribution and transport of these elements. Correlation analysis shows that the correlation
between PTEs and the above-mentioned physical and chemical indicators is not significant
(Tables S1 and S2), reflecting the complexity of the factors affecting the content of PTEs in
the soil of the study area. In this work, we identified that PTEs such as As and Cd are
subject to human activities. The next step will be to investigate the transport patterns of
these potentially toxic elements in different physicochemical soil contexts.

Toxicity studies of potentially toxic elements should focus on the chemical forms of
PTEs that are strongly related to bioavailability [77,78]. However, the health risk evaluation
model for total contents, which is widely used in academia [79,80] and was adopted in
this paper, can provide a preliminary evaluation of the contamination status of potentially
toxic elements in a holistic manner. Among all the pollutants in the Bortala and Yili River
Watersheds, arsenic was determined to be the most serious. Arsenic is a metalloid with high
carcinogenic risk, and high contents of arsenic (As) in the natural environment can pose a
direct health threat to both humans and ecosystems. In addition to natural causes such as
rock weathering, atmospheric arsenic pollution mainly comes from industrial production,
the use of arsenic-containing pesticides and phosphate fertilizers, and the burning of coal.
Arsenic-containing wastewater can also pollute the soil [81]. Due to the limitations of
our current information, we are still unable to give the exact sources of potentially toxic
elements and their contributions. Concerning the degree of human health risks in the
Bortala River Watershed, increasing the As content to 1.78 times the current level would
lead to a risk of cancer. In the Yili River Watershed, ongoing contamination from As in the
region alongside an increase in As content to 3.33 times the current level would lead to a
risk of cancer. Considering that As itself is a trace element in the Earth’s crust, in the Bortala
River Watershed and the Yili Basin, the average content is only 20.03 and 12.03 mg kg−1,
which should arouse great attention. Thus, arsenic-polluting enterprises in the basin must
take effective environmental-protection measures.

According to the social and economic statistics of Xinjiang (Figure 6) the social econ-
omy of the Yili Basin and the Bortala Basin has undergone fundamental changes since the
1950s, and both the gross regional product and the total social fixed asset investments have
exhibited exponential changes [82]. The development of social economy will inevitably
cause environmental pollution. This study shows that two potentially toxic elements, As
and Cd, are significantly affected by human activities in both regions. The Bortala River
Watershed is significantly greater than the Yili River Watershed in its degree of pollution.
However, the land-use intensity (grain production per unit area) and economic develop-
ment of the Yili River Watershed are significantly greater than the same factors in Bortala,
which suggests that the pollution levels of PTEs in Yili River Watershed would be higher
than those in the Bortala River Watershed. However, this hypothesis contradicts our actual
results. Through the search of relevant literatures, it was found that there were also serious
Cd and As pollution in the sediments of the tail lake of the Bortala River [83]. Due to
the limitations of our current information, we are still unable to give the exact sources of
potentially toxic elements and their contributions. In the future, more in-depth research
could be carried out using methods such as source apportionment models [84,85] and
isotope tracing [18]. Based on the results of source apportionment in the future, the impact
of differences in human social and economic activities on the pollution of PTEs can be
objectively and credibility discussed and corresponding control measures will be proposed.
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Figure 6. The main social and economic development indicators: gross regional product (unit: ten
thousand Chinese Yuan), total social fixed asset investment (unit: ten thousand Chinese Yuan),
cultivated land area (unit: thousand hectares), and grain production per unit area (unit: ton per
thousand hectares). (a) The Bortala River Watershed, including the three counties of Bole, Jinghe,
and Wenquan (locations shown in Figure 1); (b) the Yili River Watershed, including the five counties
of Yining, Huocheng, Qapqal, Nilka, and Gongliu (locations shown in Figure 1).

5. Conclusions

(1) Compared to the upper continental crust (UCC), concentrations of the potentially
toxic elements (PTEs) V, Cr, Co, Ni, and Cu were found to be relatively depleted in
the oasis agricultural soils in the piedmont zone of the Tianshan Mountains, China.
However, Pb and Zn were found to be relatively enriched, and the elements Cd and
As were significantly enriched.

(2) Based on the APCS-MLR model for evaluating the influence of human activities,
the PTEs Cd and As in the soils of the Yili River Watershed were found to be the
most strongly influenced by human activities, reaching 40% and 59%, respectively.
However, in the Bortala River Watershed, Cu, Cd, and As were the most strongly
influenced by human activities, reaching 33%, 64%, and 76%, respectively.

(3) The non-carcinogenic and carcinogenic risks of PTEs on human health are below the
threshold. Arsenic represents the largest health risk; this risk should be addressed,
and targeted environmental-protection measures should be formulated.
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